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Abstract—Streamline seeding rakes are widely used in vector field visualization. We present new approaches for calculating similarity

between integral curves (streamlines and pathlines). While others have used similarity distance measures, the computational expense

involved with existing techniques is relatively high due to the vast number of euclidean distance tests, restricting interactivity and their

use for streamline seeding rakes. We introduce the novel idea of computing streamline signatures based on a set of curve-based

attributes. A signature produces a compact representation for describing a streamline. Similarity comparisons are performed by using

a popular statistical measure on the derived signatures. We demonstrate that this novel scheme, including a hierarchical variant,

produces good clustering results and is computed over two orders of magnitude faster than previous methods. Similarity-based

clustering enables filtering of the streamlines to provide a nonuniform seeding distribution along the seeding object. We show that this

method preserves the overall flow behavior while using only a small subset of the original streamline set. We apply focus + context

rendering using the clusters which allows for faster and easier analysis in cases of high visual complexity and occlusion. The method

provides a high level of interactivity and allows the user to easily fine tune the clustering results at runtime while avoiding any time-

consuming recomputation. Our method maintains interactive rates even when hundreds of streamlines are used.

Index Terms—Flow visualization, clustering, similarity measures, focus+context, streamlines

Ç

1 INTRODUCTION

STREAMLINES are curves that are everywhere tangent to a
steady-state (time-invariant) vector field. They depict

the path a massless fluid element traverses at any given
time. The placement of these curves strongly affects the
impact of the resultant visualization. Many automatic
streamline seeding strategies are presented in visualization
literature [19]. However, in practice, these are not com-
monly used by Computation Fluid Dynamics (CFD)
experts. Reasons for this stem from requiring knowledge
of the seeding algorithm to correctly interpret the results.
Also, some seeding strategies place emphasis on uniform
coverage using evenly spaced streamlines [13]; however,
changes in the physical proximity of streamlines may
convey important properties of the flow that are lost while
using a technique based on producing a fixed resolution
output. Also, domain experts may not be interested in the
entire spatial domain. Their efforts may be focused on
investigating a specific subregion. In this case, a global
seeding strategy may add visual clutter to the resulting

visualization and impede the investigation by the user.
Consequently, CFD engineers rely heavily on manual
seeding. In fact, the popular visualization package, TEC-
PLOT [1], includes no automatic seeding of streamlines and
relies entirely on the user to do so.

There is less focus on research enhancing the user
experience while employing manual seeding. Typically,
streamlines are seeded at equidistant positions along a
curve or plane with little further opportunity for interaction
or refinement. In many cases, this does not result in a
visually optimal set of streamlines for the given seeding
object. While working with CFD experts, we found that they
predominantly use interactive seeding when using stream-
lines to investigate their data. CFD experts rely heavily on
the derived visualizations for disseminating the results of
their simulations. The work presented here aims to enhance
the domain expert user’s experience while employing this
frequently used tool. We provide novel interaction with,
and control of, the set of streamlines produced from
interactive seeding objects. This allows the user to easily
customize the resultant visualization enabling them to
portray their results with more flexibility. Our method
relies on only a small number of parameters which are
simple to navigate. We place a high level of importance on
this observation in order to provide an improved user
experience. The user is not required to navigate an
unintuitive, high-dimensional parameter space.

The core of our method is a set of similarity measures to
compare streamlines. Clustering based on similarity is then
performed, which then enables several enhancements such
as a focus+context visualization and filtering of streamlines
to leave an expressive subset of streamlines. The main
contributions of this paper are
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. A novel approach for computing a signature for an
integral curve, and its use for similarity testing using
the �2 (Chi squared) test.

. The production of hierarchical signatures and their
use for computing the similarity of spatially shifted
integral curves.

. The use of previous and novel measures for integral
curves, and their comparison to existing state-of-the-
art techniques. The combination of these measures
and signature offers computation two orders of
magnitude faster.

. An interactive algorithm for streamline filtering
along the seeding primitive.

. A focus+context visualization based on the stream-
line clusters.

. An algorithm that maintains a high level of interac-
tion with a large number of streamlines per seeding
rake.

Many observations motivate this work. Our discussion
with domain scientists demonstrates that they primarily
use rakes to visualize and explore vector fields. Rakes tend
to be the first tool of choice because they offer real-time
interactivity with no precomputation, provide an intuitive
visual representation of the data and do not rely on
complicated user parameters. The drawbacks of rakes are
that resulting visualizations can be cluttered, there is no
existing way to highlight streamlines or to customize the
visualization to produce high-quality rendering for com-
munication and presentation purposes. Controlling the
streamlines using streamline seeding or placement algo-
rithms could improve this situation, but this introduces
lengthy pre-computation. We investigate this area and
report an approach that offers a solution to these problems.
This work is related to the well-researched topic of seeding
to control streamline placement and bundling of DTI
fibers. Our approach is compared to existing algorithms in
those areas. The comparison demonstrates that our new
approach has applications to general integral curve
similarity calculations.

The rest of the paper is organized as follows: Section 2
provides a survey of related literature. Section 3 provides
the overview and detailed description of our method.
Section 4 describes the data sets used in the examples in this
paper. Domain expert evaluation and enhancements to our
algorithm are presented in Section 5. Section 6 contains a
discussion of our algorithm in comparison with other state-
of-the-art techniques and provides performance results.
Finally, Section 7 concludes the paper with directions of
future work.

2 RELATED WORK

Here, we discuss related work in the areas of similarity
metrics for streamlines and other integral curves, automatic
seeding strategies for global placement of streamlines and
clustering from a similarity matrix.

2.1 Streamline Similarity Metrics

Streamline similarity metrics have been widely used to
control the number and proximity of streamlines for
streamline placement applications. The goal is to produce

uncluttered visualizations of flow fields while maintaining
the depiction of the major features. The area was introduced
by Turk and Banks [27] through streamline seeding while
minimizing an image-space energy function. This was
extended using a farthest point seeding by Mebarki et al.
[20]. Evenly-spaced streamlines [13], [26] are another
solution to the seeding problem. For example, Liu and
Moorhead [15], incorporate the goals of maximizing
streamline length, seeding based upon distance controls
and loop detection to place streamlines. Chen et al. [2]
observe that 1) streamline placement algorithms tend to use
a uniform resolution that either potentially misses salient
features or contains redundant streamlines; or 2) rely on
feature detection in order to sample streamlines adequately,
leading to problems due to incorrect feature identification.
They propose a similarity metric that allows them to adapt
streamline resolution in the vicinity of dissimilar stream-
lines. Their similarity metric is based on computing
distances between points along a streamline that leads to
slower noninteractive computational times compared to our
approach. Li et al. [14] present a “less is more” approach to
streamline seeding. The goal is to capture the most
important flow features using the fewest streamlines. This
produces results comparable to handdrawn diagrams. This
similarity metric is also distance based. It is demonstrated
in 2D with low numbers of streamlines (relying on a
distance transform). Extending to a large 3D volume with
the number of streamlines we enable and maintaining
interactivity is unresolved as we demonstrate with our
comparison in Section 6. Other relevant work includes
streamline predicates by Salzbrunn and Scheuermann [24]
which are Boolean maps that are used to differentiate
streamlines based on input queries from the user. Similar to
flow topology, the idea is to partition the domain into
regions of coherent flow behavior. Shi et al. [25] create an
interactive environment wherein they calculate various
properties for pathlines, and then allow the user to analyze
and create selections upon the basis of those attributes.
Janicke et al. [11] and Daniels et al. [5] operate directly on
the vector field by mapping multidimensional points into
an attribute space that is subsequently interactively visua-
lized. Both methods use vortex detection for working with
flow fields. The aim is that it will be possible to select
similar regions throughout the data. Cucitore et al. [4] also
propose local criteria for vortex detection that could be built
into such a system or used within our streamline attributes
(Section 3.1).

2.2 Similarity for DTI Fiber Tracts

Distance metrics have also been applied in the domain of
DTI fiber clustering. For an introduction to the area, see
Moberts et al. [21] where they review various clustering
approaches and distance metrics for DTI fiber clustering.
Two widely implemented and state-of-the-art techniques
are by Corouge et al. [3] and Zhang et al. [29]. Corouge et al.
[3] introduce a symmetric distance measure based on the
mean of all the distances of the closest point on curve B
from each point on curve A. Zhang et al. [29] also introduce
a threshold into the distance so that curves that are close for
a good portion of their length but then diverge widely at the
end are quantified as distant. They also compare their
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method to Corouge et al. Demiralp and Laidlaw [6]
introduce a weighting term in order to weight the ends of
the curve more in the distance calculation and also
introduce a perceptual coloring. Jianu et al. [12] extend
that work further [6] with a coordinated views representa-
tion of the DTI model and the clustering. They use average
linkage hierarchical agglomerative clustering. See Jain et al.
[10] for a classification of clustering. In Section 6.1, we
compare our method to the measures by Corouge et al. [3],
Zhang et al. [29] and Chen et al. [2].

2.3 Streamline Perception in 3D

The goal of good streamline placement is a representation
that is free of visual clutter and contains the salient features.
There are many algorithms for 2D streamline placement,
but 3D placement remains a more challenging problem.
Mattausch et al. [18] provide several strategies for interact-
ing with evenly spaced flow data in 3D, also providing a
focus+context like visualization by treating the separation
distance as a measure of interesting features. More recently
Marchesin et al. [17] present a view-dependent strategy for
seeding streamlines in 3D vector fields. Based on the
observation that no distribution of streamlines is ideal for
all viewpoints, this method produces a set of streamlines
tailored to the current viewpoint. The algorithm begins by
seeding a random set of initial streamlines. These are then
filtered according to an occupancy buffer, which tracks the
number of streamlines for a given pixel and various
filtering techniques such as angular entropy.

Visual clutter can be reduced by using differing
techniques. For example, Mallo et al. [16] demonstrate an
improvement on illuminated lines [18] that exploits the use
of diffuse and specular reflection to streamlines to create
better perception of spatial structure. The introduction of
such a shading technique also helps reduce the visual
clutter of large numbers of similarly colored lines. Addi-
tional techniques include additive blending and edge
bundling [9] techniques for streamlines. Our solution is to
adapt the ideas from distance-based similarity metrics,
improve upon them for computational speed and apply
them to interactive seeding rakes.

Yu et al. [28] present an algorithm that computes a
hierarchy of streamline clusters. Their streamline similarity
metric is based on curvature and torsion. Rather than
computing curvature and torsion for each streamline, they
derive these two attributes for every data sample in the
domain. Their algorithm is prohibitively expensive for a
single CPU implementation. The algorithm we present is
fully interactive on a single CPU.

3 STREAMLINE SIMILARITY

Our algorithm begins with the user seeding a set of
streamlines using an interactive seeding object. Once the
seed positions have been set the streamline trajectories
through the vector field are computed. During the integra-
tion, we ensure that the streamlines are created with their
samples placed equidistantly. If an adaptive integrator is
used then the streamlines are re-sampled. Next, streamline
signatures are computed based on the set of attributes
(Sections 3.1 and 3.2). A similarity matrix is constructed

using the �2 test (Section 3.3). Agglomerative clustering is
carried out using the similarity matrix. The user selects the
desired number of clusters which are obtained from the
clustering dendrogram. Streamlines are associated with an
appropriate cluster. The user can vary the number of
clusters interactively to customize the level of detail and
their desired visualization (Section 3.4). We also provide a
hierarchical variant of our algorithm where multiple
signatures of differing resolutions are created for each
streamline. When comparing a pair of streamlines the �2

test is run once for each signature in the hierarchy. This
extension requires more computation but addresses issues
where shifted signatures may appear very dissimilar.

In order to facilitate user interaction, our system only re-
computes the necessary stages of the pipeline as the user
interacts with the algorithm parameters. For example, once
the similarity matrix and dendrogram have been computed
the user can vary the number of clusters without recomput-
ing those stages. If the user changes the streamline attribute
for the streamline signature, then the signatures, similarity
matrix and streamline clustering are recomputed. If the user
moves the seeding rake, the algorithm is performed starting
with the streamline integration. Fig. 1 depicts the algorithm
overview. The dashed lines show the stages in the pipeline
that are affected by the corresponding user interaction.

3.1 Streamline Attributes

In order to compute the similarity between streamlines, we
use a number of new and existing attribute measures—
curvature, torsion, and tortuosity. Curvature measures how
much a curve deviates from a straight line. Torsion
measures how much a curve bends out of its osculating
plane. Tortuosity quantifies how twisted a curve is.

We compute a curvature field for the entire spatial
domain. The curvature field is computed with the same
sampling as the underlying vector field. Curvature at an
arbitrary position along a streamline is interpolated from
the curvature field. Curvature, c, is computed by [23]

c ¼ v� a

jvj3
; ð1Þ
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Fig. 1. Overview of our algorithm pipeline. First, streamlines are traced.
Streamline signatures are then computed based upon streamline
attributes. The streamline signatures are used to order the streamlines
based on similarity. This ordering is then used to extract the cluster
centroids and the streamlines are assigned to the relevant cluster.
Dotted lines show user interaction and which stages of the pipeline need
to be recomputed resulting from interaction.



where v is the local velocity and a is the local acceleration
computed by multiplying the local velocity gradient
(Jacobian) with the local velocity (rv)v. We only require
the magnitude of the curvature, jcj.

Similarly we precompute a torsion field and assign the
values to the streamlines. Torsion, � , is derived by [23]

� ¼ ðv� aÞ � ððraÞaÞ
jv� aj2

: ð2Þ

The final attribute we use is tortuosity. We have found this
to produce good results on streamlines while having a low
cost to compute. It is the ratio of the length of curve compared
the shortest distance between its start and end points. We
apply this to streamlines as a measure of deviation from the
shortest path. The tortuosity of a streamline is computed by
first summing the distances between all streamline seg-
ments. This value is then divided by the distance between the
start and end points of the streamline

ST ¼
1

kfðNÞ � fð1Þk
XN�1

i¼1

kfðiþ 1Þ � fðiÞk; ð3Þ

where fðxÞ is the spatial location of each sample in the
vector field and N is the number of points in the streamline.
Following this definition, the tortuosity of a straight line is
one, and streamlines with higher tortuosity will demon-
strate greater deviation from the direct path.

For all streamline points, we compute the curvature,
torsion, and tortuosity values. Each attribute value is then
normalized to the range [0,1] over all streamlines. All
attributes for a given point are then summed. Normalizing
each attribute places equal importance on each and
prevents a large value in one attribute from reducing the
importance of the others. This eliminates the requirement of
user-defined weightings for each parameter, thus, making
the computation fully automatic.

3.2 Streamline Signatures of Density-Based
Streamline Attributes

In exceptional cases, an overall quantity using the above
metrics may produce the same or similar value for a range
of streamlines. Thus, dissimilar streamlines may appear
similar according to a given measure. For example, using
the curvature criterion, a streamline that spirals three times
would produce the same result as a more random curve
that exhibits the same amount of curvature over its length
(Fig. 2). To alleviate this problem, and further differentiate
streamlines, we introduce the novel concept of a streamline
signature. Our motivation for this approach is that this stores
a compact description of a streamline and facilitates a

matching algorithm (hence the term signature). It is more
descriptive than just the attributes from Section 3.1. The
matching algorithm (Section 3.3) produces a single dissim-
ilarity rating based on the signature and is shown to be very
effective at distinguishing streamlines. The streamline
signature is computed by splitting the streamline into
several subcurves or bins consisting of equal numbers of
points. The metric is then computed for each bin. This set of
values then describes how the attribute changes over the
length of the streamline.

We set a number of points per bin. We discuss the effects
of increasing and decreasing this number later (Sec-
tion 3.3.3). We then iterate over each streamline point and
calculate which bin it lies in. The point attributes are then
computed (as outlined in the previous sections) and the
value is added to the bin. When the entire streamline has
been traversed, the signature is complete. This computation
creates a density-based pattern for each streamline. We
refer to these patterns as density-based as they are
computed as the sum of the above attributes per unit
length of the curve. The signature shows the distribution of
the attribute values along a curve. Fig. 3 demonstrates some
example density-based signatures.

3.3 Similarity Measure

We now introduce a novel approach to computing a
similarity measure using the streamline signatures. This
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Fig. 2. Both of these curves exhibit very similar curvature magnitude
values. Therefore, a single global measure fails to distinguish streamline
sufficiently. In this case, the tortuosity attribute would fair better but there
are cases where this would also fail. A better method creates a
distinctive signature for the streamlines using density-based attributes.

Fig. 3. Curvature over the streamline intervals. Top: the streamline starts
in a vortex, but spirals out. Second row: the streamline follows a large
arc. Third row: a similar streamline, but this one approaches a saddle
point in the middle. Bottom row: a vortex spirals inwards. Note that to
depict the signatures more clearly, this example only demonstrates
curvature. The actual computation uses the combination of attributes as
outlined in Section 3.1.



measure compares streamline signature patterns using the
�2 test

�2ðPA; PBÞ ¼
X
bin2B
ððPbin;A � Pbin;BÞ2=ðPbin;A þ Pbin;BÞÞ; ð4Þ

where patterns PA and PB correspond to the streamline
signatures of two streamlines, A and B. The �2 test utilizes
the streamline signatures to provide a single value that
more accurately measures the dissimilarity between stream-
lines. Identical streamlines result in �2 ¼ 0, and �2 > 0 for
nonidentical streamlines. A larger result describes a greater
magnitude of dissimilarity. The advantage of using the �2

test is that it produces a single value measure of dissim-
ilarity between two streamlines just using their signatures.
It operates on the binned data, and is therefore fast to
compute (compared to operating on the raw streamline data
or for example using the distance metrics [2], [14] where
distances between numerous points along both streamlines
are evaluated).

In the case, where the number of bins in PA and PB are
not equal, we iterate only over the number of bins contained
in the shorter streamline. This produces partial matching,
where only the corresponding portion of the longer stream-
line is compared to the shorter one. This produces a lower
value when the �2 test is performed, i.e., the curves are
more similar. Another alternative is to give the smaller
streamlines the same number of bins as the largest stream-
line and assign the bins with a value of 0. Thus, when the �2

test is performed a greater value is produced, resulting in
the streamlines being more dissimilar. However, we favor
the first approach because, if we used the latter approach
smaller streamlines (which cover only a small part of the
volume) would have large dissimilarity, and so would end
up having high significance in the visualization.

3.3.1 Similarity Matrix

The �2 test is performed for all streamline pairs, from
which, a 2D matrix, Msim, of similarity values is con-
structed. The similarity matrix provides a fast lookup table
for the clustering phase of our algorithm. Each column in
the matrix corresponds to the set of similarity values for a
streamline against all others and the row determines which
streamline it is measured against. Entry Msim

i;j corresponds
to the dissimilarity between streamlines i and j. The
similarity matrix is therefore a symmetric matrix, whose
main diagonal is composed of zeros, i.e., Msim

i;j ¼Msim
j;i and

Msim
i;i ¼ 0.

3.3.2 Euclidean Distance Measure

Previous distance metrics attach a high weight to proximity.
In those approaches, two similarly shaped streamlines far
apart are more dissimilar than two dissimilarly shaped
streamlines collocated. Since our approach compares
streamlines based on signatures related to streamline shape,
it is independent of proximity and may match streamlines
not collocated. Therefore, we introduce a weighting based
on distance to give the user more control over this aspect.
The default is for no weighting (zero) attached to proximity
(so only the signature is matched). If the user desires close
streamlines to have a higher similarity, the weighting can be

increased using a slider. This occurs in real time, so the user
can explore this parameter space interactively. We provide
this option by adding a lightweight distance measure into
our pipeline.

Many distance tests result in the degradation in
performance of similarity algorithms, this is demonstrated
in Section 6. We keep the number of distance tests to a
minimum as they are only meant to supplement our �2

similarity measure. We record the position of the last point
in every bin. The mean of the distances between these end
of bin points for each pair of streamlines is used to construct
a second similarity matrix.

A new distance similarity table, M 0sim
i;j , is then combined

with the Msim
i;j similarity table and a weighting coefficient to

produce the final result. The similarity value for a given
similarity matrix element, M 0simi;j , is equivalent to this single
measure

M 0sim
i;j ¼ ð1� �ÞMsim

i;j þ �mean distði; jÞ; ð5Þ

where� is the weighting coefficient andmean distði; jÞ is the
mean distance between streamlines i and j, computed using
only a subset of their points as outlined above. This extra
measure provides the expert user with more control over the
clustering results. Fig. 4 shows the effect of this parameter.

3.3.3 Choice of Bin Size

If we have a high number of bins a finer sampled signature
is produced. In some cases, this may produce a very
localized change in the signature. This can lead to problems
with the streamline bins incorrectly aligning between a pair
of streamlines. For example, a pair of neighboring stream-
lines that both have a point of inflexion in their signatures
will have a spike due to a large change in curvature.
However, if the spike occurs at a slightly different position
(arc-length) along each streamline, a finer sampling of the
signatures may result in the inflexion point occurring in
different bins on the streamlines. This would result in the �2

test producing a high dissimilarity for these streamlines. A
slightly more coarse sampling for the signatures provides a
greater probability that the feature is captured by the same
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Fig. 4. Streamlines seeded from a seeding plane. The top image shows
streamline clustering based solely on using the streamline signatures
(� ¼ 0). The bottom image shows clustering using only the euclidean
distance measure (� ¼ 1). Which set of clusters is correct is subjective.
Our method provides the flexibility to allow the user to quickly navigate to
their preferred results.



bin(s) and thus gives the desired result. This problem is
greatly reduced when using rakes and seeding planes,
where the seeding object is set to be orthogonal to the local
flow. To reduce this problem further, we use a hierarchical
approach described next. Hadjidemetriou et al. [7] apply a
similar technique to create multiresolution histograms for
image recognition.

3.3.4 Hierarchical Signatures

During the streamline integration phase, we record the
maximum streamline length and use this as the basis for
computing the number of levels in the signature hierarchy.
We take the number of sample positions in the longest
streamline and then round that number up to the nearest
power of 2. The number of levels in the signature hierarchy
is then computed as

levels ¼ log2 x; ð6Þ

where x is the lowest power of 2 which is larger than the
number of samples in the longest streamline. For example,
if the longest streamline contains 1,000 sample positions,
x ¼ 1;024 and levels ¼ 10.

Next, we compute the resolution of the signature at each
level. At the lowest level, we create x bins. Therefore, for the
longest streamline there is a one-to-one mapping between
samples and bins. For shorter streamlines with fewer
samples, we set the values of the extraneous bins to 0. As
we proceed up, the signature hierarchy the number of
samples per bin doubles at each level, i.e., the second lowest
level has two samples per bin and the next level has four
samples per bin. For a given level, the number of samples
per bin can be computed by

samples per bin ¼ 2level: ð7Þ

The top level in the hierarchy has a single bin which
contains all of the samples for a given streamline.

The computation of multiple signatures per integral
curve is not expensive nor wasteful in terms of memory
because we just need to store the signature. The �2 test is
computed once per level, during each iteration, we sum the
corresponding bins that comprise the higher levels. A
further optimization is to store the summed values at each
iteration and overwrite some of the values in the bins. For

example, if we had four bins with values 3, 5, 1, 8 on the

second iteration we would change the bin values to 8, 9, -, -.

The number of bins used halves for each level upwards and

so for this iteration we only need to iterate over the first two

bins for the �2 test. The following iteration would combine

the bins again, producing 17, -, -, -. Bins represented by a “-”

are unused in the computation.
We present a comparison between using a single

signature and the hierarchical scheme. We demonstrate

that the hierarchical case is more aware of shifted signatures

and further differentiates vastly differing signatures when

compared to the nonhierarchical approach.
Fig. 6 shows a test case of three signatures. The middle

(B) signature is a shifted version of the top (A) signature.

The bottom (C) signature varies greatly from the two above.
Table 1 shows the steps of our hierarchical method

applied to the signatures shown in Fig. 6. The top table

shows the similarity computation between the top and

middle signatures and the bottom table shows the similarity
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Fig. 5. Our similarity measures and clustering algorithm segment the
streamlines on this rake into distinct, intuitive clusters. Two rakes were
used to generate two sets of streamlines on a simulation of Bénard
convection in this image. Color indicates cluster membership. Note
colors are reused for each rake (i.e., the two red clusters are distinct
clusters).

Fig. 6. Test streamlines for the hierarchical algorithm. Left: a streamline
with a high peak toward the end. Middle: a shifted version of the top
streamline. Right: a dissimilar streamline.

TABLE 1
These Tables Show the �2 Computations Using Our

Hierarchical Method for the Signatures Shown in Fig. 6

The top table computes the similarity between the top two signatures
and the bottom table computes the signature between the top and
bottom signature. The intermediate �2 result for each bin is shown in the
columns. The overall �2 for each column is shown in the bottom row.
The final value in the bottom row is the final similarity result.



computation between the top and bottom signatures. The
middle signature is the same as the top one but has been
shifted along the x-axis. The columns in Table 1 show the �2

computations for each level of the hierarchy between the
corresponding bins of the signatures. The average of all the
similarity values is then computed.

The table shows that for the top two levels in the signature
hierarchy the signatures between A and B are identical. For
the first 3 levels, the similarity values are 49.108, 39.536, and
36.296, respectively. When all levels in the hierarchy are
averaged a value of 24.988 is obtained.

The bottom table shows that the overall similarity
computation between signatures A and C as 75.599. Other
than the levels where the signature is identical, using the
hierarchical approach, the ratio of dissimilarity between
the two pairs of curves is greater than using a single level.
Using our hierarchical approach, the level of dissimilarity
is more accurately conveyed than using any single level in
the nonhierarchical version. The exception to this rule is
when both signatures are identical, in which case both
methods produce the same results and successfully show
them as identical.

Using a hierarchical scheme handles shifted streamline
signatures in a more robust way that regards shifted
signatures as similar while maintaining the ability to
differentiate dissimilar signatures.

3.4 Clustering

Our M 0sim matrix represents the similarity between each
streamline. The lowest entry of M 0sim represents the most
similar two streamlines. We employ agglomerative hier-
archical clustering using pairwise average linkage. See Jain
et al. [10] for an overview on data clustering, and [2], [3],
[29] for examples of use in the integral curve matching
literature. The result is a tree (dendrogram) recording each
merge during the clustering process. On user interaction, a
cut can be made through the tree for a given number of
desired clusters. Fig. 5 shows the results of our clustering
algorithm on a simulation of Bénard convection using two
seeding objects.

4 DATA SETS

This section discusses the data sets used as examples in this
paper.

Hurricane isabel. The simulation of Hurricane Isabel is
sampled at a resolution of 512� 512� 100 over 48 time
steps. It is a simulation of a Category 5 hurricane making
landfall in North Carolina. This simulation exhibits several
examples of interesting behavior such as vortices and
saddle points. In the case where we demonstrate our
method for unsteady flow using pathlines, we use the entire
temporal domain. Hurricane Isabel data produced by the
Weather Research and Forecast (WRF) model, courtesy of
NCAR and the US National Science Foundation (NSF).

Bénard convection. A simulation of Rayleigh-Bénard
convection. This simulation is sampled at a resolution of
256� 128� 64. A plane is heated at the bottom of the spatial
domain creating a pattern of Bénard convection cells. This
simulation was created and provided by Daniel Weiskopf
(University of Stuttgart).

Smoke plume. A simulation of the evolution of a smoke
plume. The simluation was supplied by Han Wei Shen
(Ohio State University, Columbus) and is sampled at a
resolution of 126� 126� 512.

Arnold-beltrami-childress (ABC) flow. We also use a
synthetic data set of Arnold-Beltrami-Childress flow. This
describes a closed-form solution of Euler’s equation [8]. This
type of flow has theoretical importance in fluid dynamics
and has been used many times in both fluid dynamics and
visualization literature. The vector field is given

vðx; y; zÞ ¼
A sinðzÞ þB cosðyÞ
B sinðxÞ þ C cosðzÞ
C sinðyÞ þA cosðxÞ

0
@

1
A; x 2 ½0; 2��3; ð8Þ

where A ¼
ffiffiffi
3
p

, B ¼
ffiffiffi
2
p

and C ¼ 1.

5 DOMAIN EXPERT-BASED EVALUATION

5.1 Domain Expert Involvement

The research in this paper resulted from a project team
consisting of four computer scientists and two flow
engineers that have worked together for over two years
on various projects. Five of the team are located in the same
building, and a remote collaborator has visited multiple
times. The close collaboration between the interdisciplinary
team has resulted in the visualization team gaining a good
understanding of the research goals and specific problems
of the CFD engineers. Research meetings, feedback sessions,
demonstrations, brainstorming and research seminars
between the group have led to a successful working
partnership for creating the visualization approach in this
paper and other approaches [22]. Our flow engineer co-
authors provided the following design principles.

The techniques should be interactive with low pre-computa-
tion. Various techniques proposed in the literature (and see
Section 5.2.3) frustrate due to the large start up time, or the
inability to interact with their data in any systematic way.
While they may produce good images, the information
derived from them can be quite often low due to the lack of
interaction with a static view or slow update time.

Effective visual searching. If a visualization not only
captures the flow domain, but also highlights unexpected
behavior this can massively aid the searching of large
quantities of data, or even leads to locating features that
would otherwise be overlooked. A corollary of this are that
views should not suffer from occlusion and the user should
be able to focus on specific flow features.

Mapping quantities, visual appearance. Visual appearance is
difficult to quantify here. Many visualizations from the
literature have been presented to the CFD engineers and,
simply, the most attractive or beautiful visualizations
always generate a great deal of interest. This could be
technique, for example, utilizing illuminated lines, opacity
variation, through to clarity of color mappings and effective
legends. Any parameter space exposed by the visualization
should be simple to navigate.

Large aspect ratios. The engineering coauthors tend to
work with domains that have large aspect ratio (for
example, a large area of shallow water for tidal generators,
or large area wind farms).
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Before this work, the CFD engineers chose the most
interactive elements of the visualization software that is
available to them. This primarily leads to examining large
numbers of 2D color mapped contour plots and cognitively
integrating features into 3D. This is because full domain
seeding (regular sampling) leads to clutter, or the large
domains are unsuitable for full domain algorithms due to
speed issues. After this suboptimal search, the engineer
then uses a rake to generate streamlines in the region of
interest. One of the big challenges is that either the seeding
is dense and results cluttered, or the seeding is not dense
enough and critical features are omitted. Finding the right
balance is challenging. This is a particular problem of
domains with large aspect ratio since streamline generation
treats all regions with equal importance, whereas in such
domains there are large areas of uninteresting flows with
small areas (e.g., the flows around the turbine) where the
flow is highly changeable and thus leads to visual clutter.
For these domains, the context through the largely unin-
teresting areas with focus in the interesting regions would
be most desirable. For aesthetic reasons, the engineers like
evenly spaced streamlines, but for visually searching the
domain they find the lack of interactive seeding control to
be problematic. They resort to seeding rakes due to the
excellent fine control they have over placement.

After our new technique was made available to the
engineers, it was identified that it had an impact in all
those areas. An example illustrating this is presented in the
next section.

Additionally, our flow engineers have specific interest in
tidal stream turbines which require environmental permits
from regulators, who require a clear understanding of the
changes to flow caused by such devices. This streamline
generation technique gives engineers the ability to fully
control which streamlines are shown, allowing them to
show general contextual flow in reduced opacity, and
capture the salient flow around the turbines. The attractive
visualizations, control over opacity and color mappings
results in a visually desirable form that provides a strong
clear context for discussion with regulators. This satisfied
our demand for visual appearance, ability to deal with large
aspect ratios, and also control and interactivity in order to
produce such images.

5.2 Narrative

This section presents a narrative of the features of our
algorithm with examples from standard data sets.

5.2.1 Focus+Context Visualization

Our clustering strategy segregates the streamlines into
groups with distinctive behavior. We provide a tool that
allows the user to analyze the clusters using a focus+context
visualization. This reduces visual clutter and aids in the
analysis of the flow. The varying behavior of streamlines
along the rake can be quickly and easily explored. The
resulting visualization aids the presentation and commu-
nication of results by highlighting a particular flow behavior.

The user selects the cluster they wish to analyze, the
streamlines belonging to this cluster are mapped to a high
opacity for emphasis. This allows the user to focus on the
chosen cluster within the context of the entire set of
streamlines.

Fig. 7 shows the focus+context visualization applied to
sets of streamlines on the smoke plume simulation, with
each row corresponding to a different seeding configura-
tion. The left column of images show streamlines colored
according to velocity magnitude. The streamlines exhibit a
high level of visual complexity. Even using transparency, it
is difficult to distinguish the different flow characteristics
and how they interact with each other. The middle and
right column images show the results of our clustering
strategy with focus+context applied. Streamlines are co-
lored according to cluster membership. In each image, a
different cluster is highlighted.

5.2.2 Streamline Filtering

A benefit of our approach is that it allows us to introduce
streamline filtering to produce variable interseed distance
along seeding objects. Typically streamlines are seeded at
equidistant positions along the seeding curve or at regular
points along a seeding plane. This results in our users
having to specify a dense set of streamlines if they encounter
complex flow behavior. The side-effect of this is that there
are dense bundles of streamlines in regions where the flow
is more uniform, which may lead to visual clutter. An ideal
solution is to produce an expressive set of streamlines which
captures all of the details of flow behavior while minimizing
the redundancy in the visualization.

Streamline filtering is performed by creating cuts
through the dendrogram representing the clustering.
The user is provided with a slider. As the user increases,
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Fig. 7. Focus+context visualization of streamline clusters created using
our method on the smoke plume simulation. Each row represents a
different seeding configuration. Images in the left column show the set of
streamlines colored according to velocity magnitude. The middle and
right columns show the focus+context views, both setting different
clusters as the focus. The selected cluster (the focus) is shown with a
high opacity. The remaining clusters (context) are assigned a lower
opacity. This allows the user to analyze each cluster more easily while
retaining the context of the cluster in regards to the entire rake. This
reduces visual complexity and reduces the effects of occlusion. The
focus+context view allows the user to analyze the interactions between
the streamlines in more detail.



the value of the slider streamlines are removed from the
visualization (they are simply not rendered, they do stay in
memory).

Fig. 8 shows our filtering strategy applied to a set of
streamlines generated on a simulation of Arnold-Beltrami-
Childress flow. The top-left image shows the complete set of
200 streamlines. There is a high level of redundancy with the
streamlines. The top-right image shows filtering removing
approx 75 percent of the original set of streamlines. In the
bottom-left image, the number of streamlines is reduced to 13
using our method. The bottom-right image shows the result
of a more uniform filtering strategy leaving the same number
of streamlines. Using our method, the remaining streamlines

still depict helpful information about the flow characteristics.
The uniform filtering loses important information.

Fig. 9 shows a comparison between a dense set of
streamlines and two sparser sets generated on the simula-
tion of Hurricane Isabel. The left image shows the rake at a
resolution of 200 streamlines. The middle image shows the
results using our filtering method. Using filtering the expert
reduced this number of streamlines down to just 12. Using
only 12 streamlines, they note our method still preserves the
interesting flow characteristics—in particular, the two
regions of vortex behavior. The reduced number of
streamlines produces a visualization that suffers from
occlusion and visual complexity to a much lesser extent.
Note that the controls are easy to use and we are able to
produce the result in a matter of seconds. We were
particularly interested in variable interseed distance along
the rake, stating it allows the visualization to express more
with less, and that is reduces visual information overload.
The right image provides a comparison using equidistantly
seeded streamlines. Note that the second vortex region is
not visualized and that the separation regions are not as
clearly defined.

5.2.3 Interaction

A high level of interactivity with the visualization is
desirable. The parameter space should be kept as small as
possible. It should also be simple and intuitive to navigate.
To this end, our algorithm relies on only a few parameters:

. The number of clusters.

. The weighting of the �2 term.

. The number of streamlines to be filtered from a
cluster (this is set on a per-cluster basis).

We utilize GUI slider widgets to control these parameters.
As shown in Section 6, our algorithm provides interactive
rates and changes to these parameters are displayed in real
time to the user. Fast response from parameter updates also
aids the user in navigation, allowing them to quickly find a
good set of values for the parameters.

All similarity and clustering algorithms have failure
cases in which the end result may not match what a user
expects with a fully manual clustering scheme. When using
a scheme that has no input parameters such as the one by
Corouge et al. [3], the user has no control over the final
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Fig. 8. Our filtering technique allows the user to filter out streamlines
based on our similarity measures. The streamline that is most similar to
the current set is iteratively removed—leaving the most dissimilar (and,
hence, the most illustrative) streamlines. The top-left image shows the
original dense set of 200 streamlines. The top-right image shows the our
method filtering out approximately 75 percent of the initial streamlines.
The bottom-left image shows filtering using our strategy to leave just
13 streamlines. Using our approach, the few streamlines that remain
depict the main characteristics of the superset. The bottom-right image
shows the 13 remaining streamline using filtering to leave a more uniform
distribution of the seeds. Important detail is lost when streamline similarity
is not taken into account as shown in the bottom-right image.

Fig. 9. Our filtering strategy applied to the simulation of Hurricane Isabel. Four clusters are selected and streamlines are filtered on a per-cluster
basis. Two-hundred streamlines in the left image are filtered down to 12. The middle image uses filtering based on similarity. The right image shows
equidistant seeding of the streamlines. Our method better represents the saddle regions and preserves the second (smaller) vortex structure.
The second vortex structure is entirely lost in the right image. Our preserves the overall structure represented through the rake and the most
important characteristics.



result. If the clustering proves inadequate, the user cannot
customize the visualization or has to resort to a different
algorithm. In contrast, the algorithm of Chen et al. [2] does
provide user-modifiable parameters. However, their algo-
rithm is computationally expensive (see Section 6) and
some parameters, such as window size, result in a complete
recomputation—meaning the user has to wait for feedback
from the application. Also, the effect that a change in the
user parameters produces is unintuitive. This means that
the user will have to perform a slow search through this
parameter space using trial and error. The method of
Zhang et al. [29] also requires a recomputation of all
similarity distances when there is a change in the minimum
distance threshold.

5.3 Unsteady Flow

Our method can be extended to unsteady flow. We compute
the torsion and curvature fields for every time step of the
simulation. The algorithm then proceeds as outlined in
the method overview (Fig. 1). However, instead of
streamlines, we trace pathlines. When the pathline attri-
butes are computed, we use the field that matches the
corresponding time of the pathline point. Where a pathline

point does not lie exactly on a time step, we interpolate
between the two closest fields. Fig. 11 shows clustering
results using our algorithm. In this figure, the pathlines
have been seeded using a seeding plane and are traced in
the simulation of Hurricane Isabel.

6 PERFORMANCE ANALYSIS

Our approach is intended to give fast computation, good
selection of similarity, leading to interactive and intuitive
rake control. Streamline similarity is a mature research
topic, but as mentioned in the related work section, all the
measures involve performing a great number of distance
tests between streamlines. In this section, we compare our
approach to state-of-the-art approaches for detecting similar
integral curves. The distance measures we compare against
are Corouge et al. [3] (2), Zhang et al. [29] (Section 3.2), and
Chen et al. [2] (Section 3).

Table 2 reports the performance times of our algorithm
tested on a 2.4 GHz Intel Core 2 Quad CPU with 4 GB RAM
using a single thread. We compare our running times
against algorithms by Chen et al. [2], Corouge et al. [3], and
Zhang et al. [29]. The results in Table 2 are generated using
100, 200, and 400 streamlines, each consisting of up to 1,000
points. We report streamline integration times in order to
provide a context which to compare the clustering phase.
The last column in the table gives the performance times as a
factor of our method. In this scenario, our algorithm takes
0.073 seconds to complete for 200 streamlines—providing
interactive results. In contrast, the techniques of Chen et al.
[2], Corouge et al. [3], and Zhang et al. [29] take more than
20 seconds to complete and are thus, prohibitively expen-
sive for use as an interactive technique. As highlighted in
the final column of the table, these algorithms can take over
300 times as long as our algorithm to compute. Fig. 10
demonstrates that our method produces comparable results
against the state of the art. Importantly, our method affords
the user the flexibility to modify the clustering results.

The vast majority of the computational workload in
these algorithms stems from the large number of distance
calculations to compute similarities. Our algorithm alle-
viates this by greatly reducing the number of distance tests.
The small number of distance tests, coupled with our (less
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Fig. 10. Three sets of four clusters for the same set of streamlines. (Left) The clustering produced using the similarity metric from [3]. This method
produces good quality clustering. However, a user may wish that the gold cluster contains only the streamlines that pass through the vortex region.
This method provides no user parameters for the user to tailor the result to their requirements. (Middle) The set of clusters resulting from our
algorithm. Once again, the gold cluster contains streamlines that don’t enter the vortex region. However, the user can very quickly fine tune the
clustering and ensure that the cluster is constrained only to the streamlines that enter the vortex region (Right). Note that the clustering in the left
image took just over 24 s to produce. Our method produced the streamlines in just over 0.07 s. Our weighting parameter space can be fully explored
in just a few seconds. Therefore, the user can easily tailor the visualization to their needs.

TABLE 2
Performance Times of Our Algorithm in Comparison

with [2], [3], and [29]

The first column identifies the algorithm used. The second column
shows the integration time for the streamlines. The similarity computa-
tion and clustering times are combined in the third column and the fourth
column shows the total computation time. The final column shows the
total computation times as a factor of our algorithm. The top, middle, and
bottom results were generated using 100, 200, and 400 streamlines,
respectively.



computationally expensive) �2 test on the binned stream-
line signatures, produces good clustering results at a
fraction of the expense of pure distance-based similarity
metrics. The seeding object type has very little effect on the
performance times. The main influence is the number of
streamlines used.

7 CONCLUSION

We present a tool for enhancing the user experience while
interactively seeding streamlines. Streamlines can be clus-
tered together and visualized using focus+context methods
giving the user the opportunity to reduce visual complexity
and target distinct flow behavior that they wish to
investigate. The method also provides a filtering scheme
to produce streamlines that are seeded at nonequidistant
positions along the seeding object. This technique produces
a set of streamlines that preserve the detail of the
visualization while greatly reducing the number of stream-
lines. This is achieved by filtering out the most similar
streamlines and preserving the least similar and hence most
illustrative set for a given rake.

From domain expert interviews, it was found that
experts prefer intuitive tools that they can modify to meet
their requirements. We reviewed previous similarity me-
trics and found that they were too computationally
expensive to meet these requirements. Thus, we introduce
the novel concept of the streamline signature. The stream-
line signature is produced from binned data that provide a
distinct pattern for each streamline. We also employ the �2

test on the streamline signatures as a similarity measure. To
the authors’ knowledge this is the first time the �2 test has
been used in this context. We also present an extension to
our algorithm based on hierarchical signatures. This
addresses limitations in the handling of shifted signatures
when using a single signature. It also removes the burden of
setting bin sizes on the user. We also provide a set of
attributes that we found useful for the computation of the
streamline signature. This is by no means an exhaustive list
and further options are available for further research.

We demonstrate the performance of our algorithm
compared to other similarity metrics and show that we
can provide similar results one to two orders of magnitude

faster. Finally, our tool allows the user to fine tune the end

visualization quickly and easily in real time—reducing the

blackbox effect of an automatic algorithm and allowing for

the user to correct fail cases should they arise.
The method, as it is presented here, is limited to the

situation where we are seeding streamlines using rakes and

planar objects. In the future, we would like to investigate 2D

attribute parameter spaces, allowing the user to investigate

how one flow attribute changes with another attribute. We

would also like to apply this method to DTI fiber bundling

and further investigate the possibility of using our method

as a fast 3D, full domain streamline seeding strategy.
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