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Figure 1: Single particle tracking (SPT) of fluorescently labeled proteins (bright spots in the left image) is traditionally used to derive distri-
bution of Mean Square Displacement (MSD) for all observed features (gray) as a measure of their diffusion. However, due to experimental
limitations, it is impossible to distinguish single particles from clusters in the image leading to broad distributions of MSD and no direct link
between cluster size and diffusion. Analyzing the merge and split events in the corresponding tracking graph (middle) determines, for the
first time, estimates of the number of particles in each cluster leading to conditional MSD distributions (colored). These results confirm the
prior hypothesis that observed changes in MSD are due to clustering, and that smaller clusters diffuse faster than bigger clusters.

Abstract
Single particle tracking (SPT) of fluorescent molecules provides significant insights into the diffusion and relative motion of
tagged proteins and other structures of interest in biology. However, despite the latest advances in high-resolution microscopy,
individual particles are typically not distinguished from clusters of particles. This lack of resolution obscures potential evidence
for how merging and splitting of particles affect their diffusion and any implications on the biological environment. The particle
tracks are typically decomposed into individual segments at observed merge and split events, and analysis is performed without
knowing the true count of particles in the resulting segments. Here, we address the challenges in analyzing particle tracks in the
context of cancer biology. In particular, we study the tracks of KRAS protein, which is implicated in nearly 20% of all human
cancers, and whose clustering and aggregation have been linked to the signaling pathway leading to uncontrolled cell growth.
We present a new analysis approach for particle tracks by representing them as tracking graphs and using topological events
– merging and splitting, to disambiguate the tracks. Using this analysis, we infer a lower bound on the count of particles as
they cluster and create conditional distributions of diffusion speeds before and after merge and split events. Using thousands
of time-steps of simulated and in-vitro SPT data, we demonstrate the efficacy of our method, as it offers the biologists a new,
detailed look into the relationship between KRAS clustering and diffusion speeds.
CCS Concepts
• Human-centered computing → Scientific visualization; • Applied computing → Computational biology;

1 Introduction

The development of fluorescence microscopes, coupled with the
ability to tag individual proteins with fluorescence molecules, gives
rise to single particle tracking (SPT), which is one of the most cru-
cial tools in a wide range of biological applications [SJ97, Kra15].
With specific fluorescent labels, experimental biologists are able
to tag proteins of interest (e.g., a particular drug or a mes-
senger compound) and observe its motion both in-vitro and in-
vivo [AZG06,HF13,MGP15,MRS∗18]. However, the state-of-the-

art SPT tools [DDNZ12] are still limited in resolution, especially
under noisy conditions, lacking the ability to distinguish individual
particles from clusters of particles. This bottleneck implies that par-
ticle motion is widely analyzed without knowing the true count of
particles in the observed tracks, which poses significant challenges
in the scientific interpretation of the data and limits the insights that
can be delivered through analysis.

Here, we present a new solution to the aforementioned chal-
lenges using techniques from topological analysis and from the vi-
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sualization community, in the application context of cancer biology.
Our collaborators at the Frederick National Laboratory for Can-
cer Research are interested in understanding the clustering behav-
ior of the KRAS4b (KRAS) protein, which modulates the signal-
ing pathway for cell growth. Approximately 19% of patients with
cancer harbor RAS mutations, with KRAS responsible for 75% of
that number [PHH20]. Consequently, there is significant interest in
understanding the underlying biological mechanisms involved, in
hopes of developing effective treatments. However, despite decades
of efforts, such as the RAS Initiative [NCI] of the National Cancer
Institute in the US, it has proven challenging to find effective in-
hibitors of KRAS to the extent where, until recently, it had often
been labeled undruggable [KGM∗19]. The community is spend-
ing significant attention into better understand the entire signaling
cascade in hopes of finding ways to effect KRAS indirectly. More-
over, it is known that signaling only occurs with KRAS bound to
a cell membrane and that may require nanoclustering (hereafter,
clustering) of multiple KRAS to activate the next link in the chain
(the RAF protein). The clustering of KRAS is modulated by the lo-
cal lipid membrane composition. This paper presents new analysis
techniques to help quantify the effects of different lipid environ-
ments on the clustering and diffusion of bound KRAS.

As discussed in more detail in Section 2.2, our collaborators cre-
ate various lipid environments by varying the relative concentra-
tions of different lipid types and observe the behavior of KRAS
proteins tagged with fluorescent molecules under a total internal re-
flection fluorescence (TIRF) microscope. This setup acquires time-
sequences of tens of thousands of frames, such as those shown in
Figure 1, in which, labeled KRAS appear as fluorescent spots. Each
of these frames is then segmented to locate individual particles,
which are subsequently linked through time to create the so called
tracks representing the paths of molecules over time. However, the
current state-of-the-art SPT analysis tools [JLM∗08, DDNZ12] do
not distinguish single KRAS from clusters of multiple KRAS. Fur-
thermore, proteins can attach and/or detach themselves to the mem-
brane and, thus, leave or reappear in the observed frame, and there
exist a substantial number of unlabeled and thus invisible KRAS (as
much as 95%). Therefore, it is often ambiguous to determine from
any single frame whether a given feature represents one or mul-
tiple KRAS, especially with molecules that are moving. To com-
pensate for these challenges, the current state-of-the-art considers
only standalone tracks, i.e., those that contain neither merges nor
splits, and instead treats each segment between such events as an
individual track. Analyzing the diffusion of each standalone track
provides an indirect measurement on how many KRAS might be
present. More specifically, it is expected that clusters of multiple
KRAS will diffuse slower than individual molecules, which would
make the average diffusion an indirect measurement of the cluster-
ing dynamics. Indeed, scientists have observed that different mem-
brane compositions expected to have promoted or inhibited cluster-
ing of KRAS show markedly different diffusion [INC∗20]. Never-
theless, as tracks cannot be independently labeled according to the
number of KRAS that are present, it remains unclear whether this
difference is due to clustering.

Here, we introduce a new analysis approach that considers the
entire graph of all tracks, including merge and split events, in order
to provide more-direct evidence that clustering is indeed correlated

with slower diffusion. In particular, by carefully following tracks
through merge and split events, we provide estimates of the number
of labeled KRAS within each track, i.e., by recognizing that after
observing a merge or before observing a split, the combined track
is likely to contain at least two (labeled) KRAS. This analysis en-
ables a direct comparison of the distribution of diffusion for tracks
before and after merge/split events, which are highly likely to rep-
resent smaller/larger clusters. Our results indicate that not only do
there exist populations with distinct diffusion, but, on average, the
diffusion decreases after merges and increases after splits, further
supporting the hypothesis that such changes are, in fact, directly
correlated with KRAS clustering. We have integrated this analy-
sis technique into an interactive linked-view tool that enables quick
exploration of various types of segmentation and linking options as
well as assembly of the corresponding statistics on-the-fly. Finally,
we provide an in-depth verification study using simulated data of
the same biological system [DNBC∗19,INC∗20] as well as an anal-
ysis of two different experiments demonstrating how our approach
is providing novel insights to our collaborators. The specific con-
tributions of this paper are:

• A novel analysis method for SPT tracks that takes advantage
of topological events in the tracking graph to provide enriched
statistics;
• An interactive, linked-view system that enables the intuitive ex-

ploration of experimental and simulated data, including parame-
ter and sensitivity studies;
• Verification of the analysis approach using matching simulation

data; and
• A case study of experiments that link observed diffusion to

KRAS clustering and, thus, indicate how different lipid environ-
ments affect KRAS clustering.

2 Application

As mentioned above, this work is motivated by the needs of the
experimental biology community, to use particle trajectories from
SPT to explore the link between clustering and diffusion. In the
context of KRAS and our specific application, the hypothesis is
that the local membrane environment, i.e., the types and relative
concentrations of lipids making up the membrane, can promote or
inhibit KRAS clustering. If proven correct, then manipulating the
membrane environment could provide an indirect means to modu-
late the clustering and hence the downstream signaling pathway.

2.1 Role of KRAS Clustering in Cancer Signaling

Oligomerization, clustering, and the assembly and disassembly of
macro-molecular complexes is a major component of regulating
the timing, location, and function of molecules in cells. The cell
membrane is a highly dynamic 2D organelle that functions, in part,
to regulate cell signaling. Here, we are interested specifically in
the KRAS4b protein (and other RAS isoforms) which are small
G-proteins that tether to the plasma membrane and are frequently
mutated in cancer. This signaling molecule only functions when
it is tethered to the membrane, and acts as a molecular switch to
turn on and off signaling that leads to cell growth and other cell
fate functions. In cancer, KRAS is essentially stuck in the on posi-
tion with uncontrolled growth of the cells harboring the mutation.
There is speculation that some sort of KRAS clustering is part of
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the activation process. However, the exact mechanism, ordering of
events, number of KRAS involved, etc. remain unclear. While sta-
ble dimers of KRAS have not been observed in biochemical ex-
periments, clusters of KRAS proteins have been seen in electron
micrographs in nonrandom distributions [PMPH03]. This observa-
tion has lead to the intriguing hypothesis that KRAS nanoclusters,
or perhaps dynamic oligomerization events, may be driving activa-
tion of the downstream signaling events. Since the biological sig-
nificance of nanoclustering is not clear, it is important to clarify the
dynamics of the behavior, and understand the precise mechanism of
assembly. Questions that remain are: What is the order of events?
What are the kinetics? Is it random, or nonrandom? And, finally
and most importantly, is the KRAS clustering a drug target? One
initial direction of inquiry to potentially answer the latter question
is how to quantify changes in KRAS dynamics given the fact that
direct experimental observation of nanoclusters are challenging.

2.2 Data Acquisition and Processing

To explore the aforementioned hypothesis, our collaborators cre-
ated different plasma membranes and exposed them to fluores-
cently labeled KRAS. However, to reduce the observed particle
density and allow SPT, only ∼5% of KRAS proteins were labeled.
Subsequently, the KRAS molecules on the membrane were imaged
with a Nikon N-STORM system built on an eclipse Ti microscope
(Nikon, Japan) equipped with an APO 100×, 1.49 NA objective
under TIRF illumination mode. Well-separated single molecules
in each frame were captured by a thermoelectric-cooled EMCCD
camera (iXon Ultra DU-897, Andor Technologies, USA) as diffrac-
tion limited patches at high speed (100 fps). Up to 5000 frames
were acquired each run, but each experiment took around 20 runs.
The raw image frames were organized into an image stack in TIFF
format for further processing. The resolution of each image is 0.16
µm/pixel. The experiment used the Localizer package, embedded in
the Igor Pro software (Wave Metrics, Inc. USA) [DDNZ12] to seg-
ment each single molecule as a diffraction limited spots from each
frame with the eight-way adjacency particle detection algorithm
with 30 GLRT [SBRM08] sensitivity and a point spread function
(PSF) of 1.3 pixels. High resolution spot position localization was
obtained through the 2D Gaussian fit of the PSFs for each frame.

3 Related Work

Traditional SPT is performed with two steps: (1) the fitting of the
particle positions (segmentation or feature detection step), which
provides a list of localization fittings in the form of time-tagged lo-
cation coordinates of particles; and (2) the linking of these fitted
particle positions into trajectories of moving particles (tracking or
feature correlation step), which produces the spatial diffusion tra-
jectories of each particle over time. Various tools exist to perform
these tasks as either integrated packages or as separate steps. Here,
we discuss prior work both in the context of the SPT data specifi-
cally and the analysis of time-dependent features more generally.

3.1 Techniques for SPT Data Analysis

Segmentation and tracking are critical steps in the SPT analysis
pipeline. A number of standard algorithms exist for both steps, and
even a cursory overview of all techniques is beyond the scope of
this paper [DDNZ12,YPW19,TPS∗17]. Since our analysis is inde-

pendent of the choice of pre-processing algorithm we instead fo-
cus on existing techniques to analyze the resulting graphs. There
are several approaches and tools for analyzing trajectories, rang-
ing from data specific methods [MBP∗15, ROBFG18] to software
tools designed for general SPT analysis [QSE91,PLUE13,TPS∗17,
VVOW∗17,LP18,HWG∗18,BPS∗06,RBZ06]. Broadly, these tools
integrate segmentation and tracking methods into a complete SPT
analysis package. Some of these tools also allow for manual or
semi-automatic tracking for users who choose to not rely on a
fully automatic tracking approach [TPS∗17, VVOW∗17], whereas
others rely on an input of pre-computed trajectories [PLUE13,
HWG∗18, LP18]. Some packages (e.g., SpotOn [HWG∗18]) are
used to correct trajectories for factors such as motion blurring in
the data. Others, like vbSPT [PLUE13] uses Hidden Markov Mod-
els to extract distinct diffusion states. Other SPT analysis tools
also include components for visualizing data, trajectories, and the
resulting diffusion analysis. SMTracker [ROBFG18] uses a com-
bination of panels to view multiple diffusion calculation meth-
ods. It also includes a panel that shows the spatial distribution of
proteins throughout an entire data set. InferenceMAP [EBDM15]
uses a Bayesian inference mapping algorithm to give a three-
dimensional landscape view that visualizes spacial cellular dynam-
ics. Diatrack [VVOW∗17] is a comprehensive SPT analysis soft-
ware package that performs segmentation, tracking, and analysis.
It provides multiple methods for filtering out trajectories of inter-
est and also gives a 3D view of how trajectories evolve over time.
TrackMate [TPS∗17] has a view that displays the evolution of tra-
jectories as a time oriented hierarchical graph that has a tree like
structure. While these tools are widely used, none of them infer
useful properties like cluster size as proposed in this paper.

3.2 Tracking Graphs in Visualization

There also exist a wide variety of more general tools to analyze
time-dependent features. In many simulation based applications,
features are often defined through isosurfaces [LC87] or interval
volumes [FMS95], and more recently through more sophisticated
hierarchical equivalents such as Morse-Smale complex [GBPH08,
BWP∗10], contour trees [CSA03], or merge trees [BKL∗11,
WKK∗15, LWM∗17]. In these cases, correlating features across
time is done via spatial overlaps [SW98, WCBP12], by interpo-
lating their spatio-temporal evolution [EHMP04, BSS02, JSW03,
WBP12], or by matching neighboring features according to their
distance and attributes [TPS∗17]. The resulting output from this
tracking can be quite complex. A third stage of analysis is of-
ten added to visualize the correlations between features across
time in the form of a tracking graph in order to support an in-
tuitive exploration of the entire time series, e.g., the one shown
in Figure 1. These visualizations can be static [RPS01, LBM∗06,
BWT∗11] or interactive [WCBP12, LGW∗20], and a number of
sophisticated approaches have been used to highlight the hierar-
chical structure [LWM∗17, LGW∗20] or to allow adaptive thresh-
olds [WKK∗15]. A comprehensive review of the corresponding
literature is beyond the scope of this paper; we refer the reader
to the large collection of papers following the 2016 Visualiza-
tion Contest [Sci16] on analyzing time dependent particle simu-
lations [GEG∗18, LAS∗17, SPD∗19] as a starting point.

In this paper, we discuss yet another, much-less explored as-
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Figure 2: The dataflow of our analysis pipeline consists of three
stages: constructing tracking graphs from user input, analyzing the
structure of the graph to produce time-varying features (TVFs) and
particle count bounds, and processing these results to produce sta-
tistical analysis. The output of each step can be used for other mod-
ules in our tool, including a statistical overview, a rendering of the
segmented features in a specified timestep, and a trajectory view.

pect of the problem — analyzing the structure of a tracking graph
not only as a visualization challenge, but to provide additional
scientific insights. Our approach is independent of both the ex-
act feature detection and feature correlation techniques. Here, we
use the current state-of-the-art in microscopy as the most-accepted
technique in the relevant application area. Despite the popular-
ity of tracking graphs for visualization and data exploration, we
are not aware of techniques that analyze its structure beyond sim-
ple time-dependent metrics. For example, many approaches ex-
tract the number, size, or location of features over time from the
graph [LBM∗06, BKL∗11, LAS∗17], but this information could
also be computed independently from a tracking graph. Widanaga-
maachchi et al. [WKK∗15] use the structure of the graph to adapt
the segmentation to simplify the graph over time, but do not exploit
the results beyond providing a less cluttered visualization. Instead,
we present the first approach that analyzes the graph globally to
infer new information — the expected number of KRAS in each
feature, which cannot be obtained otherwise.

4 Computation of Dynamic Tracking Graphs

Our SPT analysis method is driven by a dynamic tracking graph,
which is a tracking graph that interactively updates at user-defined
thresholds for tracking. Once constructed, the structure of this
graph facilitates the analysis of features’ evolution over time. To
construct tracking graphs, we use a procedure similar to that of
the state-of-the-art [WCBP12] in our preproccesing and tracking
graph construction steps. Our method is tailored to SPT analysis,
and differs in the type of input that can be used. Figure 2 outlines
our data flow and analysis pipeline. It consists of four main stages:
data preprocessing (Section 4.1), construction of the tracking graph
(Section 4.2), feature representation across time and particle count-
ing (Section 5), and interactive exploration of the resulting time-
varying features (Section 6).

4.1 Preprocessing of Input Data

SPT data is represented as images with “bright spots” at the loca-
tions where the equipment detects the presence of labeled particles

(see Section 2.2 and Figure 1). Our analysis approach is indepen-
dent of the exact details of the segmentation and tracking steps, and
can take as input any user-defined segmentation and tracking: seg-
mentation input requires IDs and coordinates of features for each
frame, along with any associated attributes (i.e., intensity); and
tracking information must specify features associated with each
track as well as a correlation weight assigned to each correlation.

If a tracking input isn’t provided, our interactive tool utilizes the
built-in distance-based tracking method from TALASS [WCBP12]
due to its advanced capabilities for topological analysis. In partic-
ular, a user-defined correlation threshold is used to define correla-
tions between features in adjacent frames (i.e., the radius or overlap
two features must be within to be considered correlated).

Once the segmentation and tracking have been assembled for a
data set, the next step is to construct meta graphs. A meta graph
encapsulates all possible tracking graphs for any user specified
feature-correlation threshold, along with attributes for all features.
The nodes of the meta graph encode a feature and its associated at-
tributes, and its edges encode the correlations between features and
their associated weights. Internally, meta graphs are represented as
3 sets of arrays, which store correlation types, correlation weights,
and attributes. Each feature contains a pointer to a location in each
of these arrays. The meta graph is output as a file for every time
step. The correlation and correlation weight arrays correspond to
features in the subsequent time step. Using this representation, the
dynamic tracking graph can be quickly updated by checking if the
correlation weight for a specific edge is above the user-specified
threshold and, thus, preventing any recomputation for tracking.

4.2 Construction of Tracking Graphs
Tracking graphs are constructed given the meta graphs, a focus time
step t and a time range r, and user-defined parameters correlation
type and correlation threshold p. To provide interactivity, compu-
tational optimizations are made. The tracking graph construction
process is started by loading all meta graphs into a global least-
recently-used (LRU) cache, which is accessible to all processes in
the application. Using an LRU cache reduces data I/O cost by stor-
ing data in memory for when a user is analyzing specific portions of
the tracking graph. Upon request, the computation of the tracking
graph is assigned a worker thread. Edges with correlation weights
greater than p are added to the graph, starting with t, expanding
outward in both directions at step k by alternating the computation
from t + k to t + k + 1 and t − k to t − k− 1. After every k = 50
iterations the tracking graph is served to the tracking graph view
(Section 6.1) to facilitate a quick visualization of the tracking graph
without having to wait for an entire tracking graph to be processed.
The user can use this visualization as an initial indicator of whether
the feature-correlation threshold is appropriate.

5 SPT Analysis using Tracking Graphs

In this section, we describe the method of using tracking graphs
in context of SPT analysis. There are three critical components to
this method: simplifying the graph structure to remove spurious
correlations (Section 5.1), constructing a representation of individ-
ual features as they exist over time (Section 5.2), and creating an
inference on the lower bound of number of particles in a cluster
(Section 5.3).
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5.1 Simplification of Tracking Graphs

Computationally, merge and split events are observed through the
tracking graph structure. If a feature has more than one incoming or
outgoing edges, it is marked as a merge or split event, respectively.
However, this does not necessarily indicate that an actual merge
or split event is occurring. This is because the edges in the track-
ing graph represent correlations between features. Depending on
how these correlations are defined, certain edges may represent a
glancing event. We define a glancing event as an occurrence where
a feature, x, may have more than one incoming/outgoing edge in
the tracking graph at time t, but one or more of these edges are
created due to another feature, y, at t− 1 or t + 1 being within the
feature-correlation threshold of the x at t and not a true link to the
current feature. We observe that these glancing events have a spe-
cific structure in the tracking graph, where the correlated feature,
y, also has multiple edges going in the opposite direction, forming
a “Z-like” structure. Figure 3 illustrates glancing merge and split
events in the tracking graph structure and a corresponding intuition
in the physical space.

We note that this structure may also represent a cluster of par-
ticles passing one particle to another cluster of particles. From a
biological perspective, it is unclear whether this dynamic happens.
In our analysis of 5000 frames of simulated data (Section 7.1), we
found only 0.2% of edges removed from the graph exhibited this
behavior, which leads us to believe that removing these edges is far
more advantageous in terms of inferring accurate bounds.

The tracking graph is simplified by removing these glancing
edges. If both edges in a merge or split event exhibit a glancing
structure, the most correlated edge is kept as dictated by a local
optimization function, which is defined as

Ci j(w, I) =

{
W 2

i j · ρi j for ρi j > 1
W 2

i j / ρi j for ρi j < 1
, (1)

where Wi j is the distance and ρi j =
Ii
I j

is the ratio of intensities be-
tween the two features i and j. This function is inspired by the local
optimization function for tracking isotropic random motion used by
Jaqaman et al. [JLM∗08] — a tracking method that is considered
to be state-of-the-art in the application domain. The original for-
mulation defines ρi j as the ratio of I j to the sum of intensity values
for all incoming features in order to classify merge and split events.
Instead, our modified formulation compares the ratios of each indi-
vidual incoming feature to determine the most likely correlation.

5.2 Computation of Time-Varying Features

Once the entire tracking graph has been computed for a user-
defined feature-correlation threshold and time range, the next step
in the computational pipeline is to compute time-varying features
(TVFs), which represent individual features as they exist over time.
We refer to features as the representation of the segmentation at
each individual time step, and TVFs as a set of features that are
linked together across time. TVFs are defined by a set of proper-
ties. These include a birth and death time, which represent the time
steps at which the TVF appears and disappears; correlated features,
which represent all associated individual features for the TVF for
every frame in the TVF’s lifetime; and links to other TVFs that are

T1 T2 T3

Figure 3: Edges that show merging and splitting in the tracking
graph may not represent true merge and split events, but rather
glancing events, illustrated in this figure. Each filled circle repre-
sents a feature and its correlation radius. The unfilled circles repre-
sent the feature’s position in the subsequent frame, and the overlap
between these are represented by the edges in the graph. The or-
ange edge represents the glancing event and will be removed by
our simplification process.

connected to the current TVF via merge and split events. TVFs are
related to trajectories, however we separate the two with the no-
tion that trajectories only contain the set of physical coordinates of
each feature in a TVF. TVFs are a critical component in our anal-
ysis approach. After TVFs have been computed, they can be used
for a variety of downstream analysis tasks, e.g., creating trajecto-
ries and for creating statistical properties that describe how TVFs
evolve over time.

The TVF computation starts with an input from the tracking
graph, effectively a set of linked lists that represents the correla-
tions between features at consecutive time steps. To construct TVFs
from the tracking graph, we iterate through all features in consec-
utive time steps. There exist two scenarios where a new TVF is
created: (1) if the current feature of interest has no backward edges
or (2) exists directly after a split or merge event. Similarly, a TVF
dies when either the current feature has no forward edges or is the
node at which a merge or split event occurs. For each TVF that dies
at a merge or split event, a link is maintained from each of the TVFs
before the event to the TVFs following the event. For each of these
events, the most correlated link is marked. These links are used
for two purposes: the most correlated link is used for propagating
counts (Section 5.3), and all links enable analyzing the change in
diffusion before and after merge and split events.

5.3 Determination of Lower Bound on Particle Count

Although the ability to observe and label merge and split events
of particles is a critical component of SPT analysis, knowing how
many particles are involved in these events is important to biol-
ogists studying SPT data. Using the methods for data acquisition
described in Section 2.2, it is impossible to determine the exact
number of particles in a cluster of proteins due to the presence of
a “dark” (unlabeled) population. Recent work [PMPH05] estimates
the upper bound on the number of particles that may exist in a clus-
ter to be 6 to 8. However, it is possible to determine a lower bound
on the particle count of a feature by analyzing the tracking graph,
in conjunction with the computation of TVFs.
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Figure 4: Our counting method utilizes edges in the tracking graph
to infer a lower bound on the count of particles within a cluster.
From top to bottom: (a) Every feature initially receives a count of
1. (b) For merge events, we add the counts of features with incom-
ing edges, and propagate the count forward. (c) For split events,
the count is distributed among the outgoing edges. (d) If there are
too many outgoing edges to account for the current feature’s count,
the count is propagated backward along the TVF and adjust ac-
cordingly. The most-correlated features for merge/split events are
marked by an edge between nodes of the same color.

Our approach for computing these bounds is straightforward;
Figure 4 gives a visual representation of the process. Each feature
at the first time step receives a count of one. If a merge event is en-
countered, the counts of the incoming features are added together
(e.g., in Figure 4(b), the green feature gets a count of two by adding
in the count from the pink feature). These counts are then passed
along to the subsequent features (highlighted by the arrow). If a
split event is encountered, the count of the feature before the split
is distributed among the features after the split (e.g., in Figure 4(c)
the red, green, and blue features receive a count of one each, adding
up to the observed count of three of the green feature at T3). This
distribution of counts is done according to the local optimization
function (Eqn. 1). In general, if a split event has k outgoing edges,
with an inferred count j before the event, and k < j, then we assign
the the highest-correlated feature after the event a count of j−k+1
and the rest of the features a count of one (e.g., if the green feature
at time step T2 in Figure 4(d) had a count of four, the green feature
would receive a count of two, and the red and blue features would
receive a count of one each).

After the construction of TVFs and computation of the lower
bound of the number of particles in each feature, we have an en-
hanced representation of a feature’s existence over time. TVFs can
be broken into sets corresponding to the number of particles the
feature contains, and they can also be processed using their links to
other TVFs to analyze how particle diffusion changes before and

after merge and split events. In this manner, our approach enables
analyzing how specific protein aggregation and splitting events af-
fect the motion of these proteins.

5.4 Filtering of TVFs

The ability to filter the tracking graph is a vital component in
our analysis pipeline. It serves two purposes: creating statistically
meaningful analysis, and visualizing targeted data and TVFs. The
user can filter the TVFs in three ways: by the lifetime of the TVF,
by the derived particle count, or by a statistical aggregation of indi-
vidual feature attribute values within the TVF. For visualizing the
filtered data, the user can select either removing all TVFs from the
tracking graph if they are below the user specified filtering thresh-
old or alternatively highlighting the features that exist above the
specified threshold.

6 Interactive Exploration of Time-Varying Features

Analysis of SPT data can often be an iterative process. Due to
the low resolution and sometimes ambiguous nature of such data,
meaningful statistical analysis often requires manual adjustment of
certain parameters, e.g., correlation criteria, filtering out trajecto-
ries of a certain length, and identifying trajectories of interest. To
facilitate this process, it is helpful to have an interactive visualiza-
tion of the results and a quick access to statistics describing the
results. In this section, we present an interactive exploration tool
for time-varying features that was developed with the specific fo-
cus to the needs of SPT analysis (see Figure 5 for an overview).
Our tool serves three purposes: (1) it enables visualization and sta-
tistical analysis of a given data set — a task critical to users for
validating experiments and gaining an understanding of the prop-
erties of the features in the data set (e.g., intensity variations); (2)
it facilitates filtering of TVFs and the associated visualization and
statistical analysis; and (3) it incorporates the analysis techniques
presented in Section 5. Furthermore, it is immensely helpful to vi-
sualize the features and trajectories in a spatial context for explor-
ing the data set; therefore, our tool additionally includes a feature
rendering view and trajectory view, which are both also included in
standard tools for SPT analysis.

To facilitate this exploratory analysis, our visualization frame-
work comprises several inter-linked visualizations. Different views
can be enabled/disabled on demand as separate windows that are
constructed using the Qt framework [Qt] and built with the Open-
Visus [PLF∗03, SCI] API using C++. At the center of the frame-
work lies the primary view, the tracking graph visualization, which
spawns new worker threads for computations and additional views
when needed, as well as interacts with the primary UI to control
options such as filtering.

6.1 Tracking Graph Visualization

Visual exploration of tracking graphs demands the visualization of
all features and their correlations between time steps. Visualization
of the structure of the tracking graph can provide immediate in-
sights into the data, exposing the complexity and frequency of par-
ticle interactions. Figure 5 and Figure 6 give a comparison between
data sets with lipid bilayer formulation that either induce merging
and splitting versus one that does not.
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A

B

C

D

Figure 5: Our interactive analysis tool contains multiple inter-linked windows for visualizing, interacting with, and analyzing the data. (A)
shows the tracking graph, which contains a panel for adjusting the feature-correlation threshold and filtering parameters. The feature view
(B) and the trajectory view (C) shows the rendering of all the features for the specified time step and the trajectories for each TVF, in physical
space. The statistics view (D) can be used for producing statistics for feature and TVF attributes, including diffusion distributions.

The main window in our tool focuses on an interactive visualiza-
tion of the tracking graph with associated user interface panel for
adjusting correlation parameters and filtering. The two correlation
parameters (as mentioned in Section 4.2) include the tracking type
and correlation weight. The use of these parameters is largely de-
pendent on the type of tracking input to the tool. The tracking type
parameter is used to define whether the built in tracking method
or user defined tracking is used. The correlation weight parame-
ter is used to define the degree of correlation (i.e., distance that is
considered for linking features together) — a higher threshold will
decrease the distance that is considered to define correlations. It is
expected that users have prior knowledge of an estimation for this
correlation from an expected range of particle diffusion. For the
distance based tracking method used in this work, the results are
sensitive to using a high correlation threshold since correlations be-
tween fast moving particles will be lost. Decreasing this correlation
threshold will have a low impact on the lower bound results, since
the spurious correlations that result from a lower threshold will be
removed through the graph simplification process described in Sec-
tion 5.1. The tracking graph view is linked to several other view
panels (discussed ahead) so that any user interactions with filtering
options cascade through the system, and associated visualizations
are updated correspondingly. The colors of the nodes in the track-
ing graph correspond to the color of the individual features in the
feature renderer to aid data exploration.

Finding an optimal layout for minimizing edge crossings is an
NP-complete problem [GJ83]. To reduce edge crossings in the
graph, we use a median heuristic approach, similar to the one used
in [WCBP12] to optimize the layout. For the first time step, each
node corresponding to a living feature is assigned a position ac-
cording to its threshold hierarchy. For each subsequent time step,
nodes are assigned to bins according to the median of all of the po-
sitions of its connected nodes in the previous time step. In practice,
we find this approach to be sufficient for avoiding significant edge

crossings. In addition, we minimize clutter by removing any nodes
from the graph that do not have any incoming or outgoing edges.

6.2 Statistical Visualization of Feature Attributes

To facilitate instantaneous insights from the tracking graph, we pro-
vide a statistical visualization window that focuses on the the evolu-
tion of feature attributes with time. A statistical overview of feature
attributes is important for biologists to gain a broad understanding
of a data set, like the number of features, variations in intensity, etc.
Understanding how these attributes change over time can help the
user determine filtering thresholds. For example, a segmentation
method may pick up features with low intensity values. The user
can use the statistics viewer to identify these values and, if deemed
to be an outlier, can filter TVFs below this threshold.

Currently, there are six types of statistics that can be computed
instantly on demand: histograms, probability- and cumulative-
density functions (PDFs and CDFs), weighted PDFs and CDFs, and
time plots. Various parameters of these statistics can be controlled
through the UI — examples of these controllable parameters are the
attribute type, which corresponds to every feature (e.g., intensity)
and aggregation mode (e.g., maximum, minimum, sum, and mean),
which corresponds to how the statistics are accumulated within a
feature (i.e., across pixels).

Whereas the distribution plots consider all features across all
time steps, time plots require additional specifications for how val-
ues are further aggregated for each time step. Since the time plots
abstract the distribution of feature attributes per frame, rather than
a distribution of all of the feature attributes present over all time
steps, a time aggregation mode is also provided to the user, which
controls how the attributes of all of the features in a single frame
are aggregated (e.g., maximum, minimum, sum, and mean). Such
aggregated values present a high-level descriptor of how feature
attributes evolve over time, and are useful to identify parts of the
temporal data that may exhibit irregularities.
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6.3 Statistical Visualization of Time-Varying Features

Focusing specifically on SPT analysis, we provide additional sta-
tistical visualization that capture the properties of time-varying fea-
tures, such as particle counts and diffusion. Similar to Section 6.2,
several interactive options are provided via the UI, including the
additional diffusion distribution and particle counts plot.

The input to this functionality is a set of TVFs and their corre-
sponding trajectories. For every TVF, its trajectory represents a set
of the physical coordinates of each feature per frame in its lifetime
and can be used to compute the diffusion using the Mean Square
Displacement (MSD) as

MSD(n ∆t) =
∑

N−n
i=1 (xi+n− xi)

2 +(yi+n− yi)
2

(N−n)
where n is the step size used for the computation and (N−n) is the
number of frames that the MSD can be computed for.

There are multiple ways for analyzing the diffusion. The first is
a distribution for the diffusion of all TVFs — this uses the trajec-
tories and corresponding diffusion values for the entire lifetime of
a TVF. The second way is to perform a similar analysis, but after
filtering the trajectories by the number of particles within a trajec-
tory segment. This filtering is performed by iterating over all TVFs
and extracting the segments that contain the number of particles
specified by the user. Furthermore, the user may also see how this
distribution changes with respect to the particle counts by aggregat-
ing the diffusion for each count present in the data and displaying
the aggregated values in a particle count plot, which shows these
aggregated values against the particle counts.

Finally, the user may create distributions to analyze how diffu-
sion change before/after merge or split events. Our data structures
make this computation straightforward: we use the linked trajecto-
ries and the associated diffusion before the merge/split events and
compute the differences. After aggregating these values, the distri-
butional shifts indicate slower or faster (left or right shifts, respec-
tively) with respect to the event.

6.4 Computational Cost and Scalability

The construction of TVFs and the computation of the lower bound
counts is very scalable. We performed a scaling study for the Lo-
calizer and PRIS segmentations of the data sets (Section 7.3) on a
laptop computer with an i7–7700HQ CPU. For the PRIS segmenta-
tion (average of 83 features per frame), the computation took 0.17,
0.34, 0.52, 0.71, and 0.83 seconds for 1000, 2000, 3000, 4000, and
5000 time steps, respectively. For the Localizer segmentation (av-
erage of 60 features per frame), the computation took 0.14, 0.25,
0.45, 0.63, and 0.74 seconds for the same time step progression.
The computation time for the tracking graph construction and lay-
out was 1.14, 2.94, 5.18, 10.18, and 13.76 seconds (PRIS) and 1.12,
2.85, 8.62, 11.28, 13.8 seconds (Localizer).

7 Results
To demonstrate our analysis technique, we have applied it to two
different experimental conditions aimed at understanding the de-
pendency of KRAS diffusion on the lipid composition of the sup-
porting membrane. The key contribution of our approach is the abil-
ity to estimate the number of labeled KRAS within each observed

cluster, which provides more-direct evidence of the link between
observed average diffusion and the size of clusters.

7.1 Simulation of KRAS-Membrane Interactions

The experiments that are the focus of this paper are part of a larger
collaboration between computational and experimental biologists
as well as computer scientists and others, aimed at building a com-
putational framework able to simulate KRAS on a lipid membrane
for experimentally relevant time- and length-scales. A complete de-
scription is beyond the scope of this paper, and we refer the reader
to [DNBC∗19] and [INC∗20] for more information. In particu-
lar, the computational campaign [DNBC∗19] includes a continuum
scale simulation of 300 KRAS proteins interacting with a 1×1 µm2

membrane of eight different lipid types designed to approximate an
average cell membrane. Based on this simulation, the team iden-
tified a membrane composition, i.e., specific proportions between
lipid types, conducive to KRAS clustering [INC∗20], which has
subsequently been replicated in-vitro. In the following discussion,
this membrane and the corresponding experimental data is referred
to as the 8-lipid membrane.

This collaborative computational-experimental campaign makes
the continuum simulation a good candidate for a validation study
as it provides ground truth tracking information for all 300 con-
stituent KRAS proteins. However, it is important to recognize that
although the simulation and experiment were matched as best as
possible, one would still expect significant discrepancies. For ex-
ample, the time-scales remain incomparable with the experiments
covering a significantly longer time span than what can be sim-
ulated. Furthermore, the membrane composition cannot be repli-
cated perfectly in-vitro, and only about 5% of KRAS are labeled.
Finally, in the experiments, KRAS can attach and detach from the
membrane — an effect not part of the simulation. Nevertheless, the
overall motion of particles is expected to be similar.

To validate our approach in estimating cluster sizes, we assume
a perfect segmentation (i.e., we use the true spatial coordinates for
each simulated KRAS) and apply the algorithm described in Sec-
tion 5 to 5000 frames of simulated data. To account for effects of
unlabeled KRAS, we track only 100 randomly-selected (of the 300
simulated) proteins. Although this is still a significantly larger frac-
tion of labeled KRAS than in the experimental conditions, tracking
5% KRAS would result in too few events to be statistically mean-
ingful, given the overall low number of KRAS and the compara-
tively short time period of the simulation. The estimated counts are
very accurate. For clusters with cluster sizes 1, 2, 3, and 4, the per-
centage of incorrect counts were 0.001%, 0.8%, 0.01%, and 0.09%,
respectively. A more detailed analysis shows that the majority of
errors are due to glancing clusters exchanging particles (see Sec-
tion 5) as the corresponding edges are erroneously removed during
the simplification step. However, this has little impact as in all 5000
frames only 0.2% of all removed edges are due to glancing events
and should be kept, whereas the other 99.8% are spurious edges
caused by tracking artifacts that should be removed. Consequently,
since one cannot distinguish (except in simulated data) these two
cases, we remove all such edges from the tracking graphs of the ex-
perimental data. In summary, our validation demonstrates that the
algorithm is accurate and correctly estimates the number of labeled
KRAS in a cluster.
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Figure 6: The tracking graph for the 2-lipid membrane, using the
Localizer segmentation. Very few merge and split events exist, in
comparison to the 8-lipid membrane’s tracking graph (Figure 5).
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Figure 7: Histograms of MSD for the trajectories computed with
the Localizer and the PRIS segmentation techniques. Such distribu-
tions are normally extracted by current SPT analysis techniques to
be further analysed to extract diffusion states.

7.2 Experiment with 2-Lipid Membrane

Similar to the simulation data used for validating the algorithms,
our collaborators use a much-simpler membrane consisting of only
two lipid types as a baseline and comparison. This composition is
lacking some of the highly charged lipids of the 8-lipid membrane
that assemble beneath the (oppositely charged) KRAS and are
known to promote clustering. Consequently, we expect much fewer
merge and split events, which is confirmed by the resulting tracking
graph in Figure 6. Although the figure shows only a comparatively
small number of frames, even the entire 5000 frame sequence con-
tains only 72 topological events compared to the 19612 merge and
split events in the equivalent 8-lipid membrane data discussed in
Section 7.3. This data was processed using Localizer [DDNZ12]
segmentation, using the parameters discussed in Section 2.2. We
note that for both this experiment and the one in Section 7.3, each
data set had previously been processed and analyzed by our col-
laborators, which gives insights into how the parameters and fil-
tering should be performed. We used the TALASS distance based
tracking approach using a correlation threshold of 1.5 pixels. The
threshold is determined by previously estimated diffusion coeffi-
cients and is the maximal distance any KRAS is expected to travel
in between two frames. Furthermore, as discussed above, the graph
is simplified by removing edges that represent glancing events or
the exchange of KRAS between clusters. Finally, we follow the es-
tablished experimental protocols of our collaborators and remove
tracks shorter than six frames as they do not provide a reliable es-
timate of the MSD. Although the lack of merge and split events
makes the 2-lipid membrane uninteresting for the cluster estima-
tion presented here, the resulting plain tracking graph has provided
a quick and intuitive way for our collaborators to validate their in-
tuition.

7.3 Experiment with 8-Lipid Membrane

The primary dataset of interest is an 8-lipid membrane with focus
on understanding how much clustering it induces. The current state-
of-the-art is to compute the tracking graph as we are doing here,
but subsequently splitting all tracks at merges and splits to generate
a set of independent, simple trajectories. Given these trajectories,
one then measures the MSD of each track as a measure of diffusion
of the corresponding protein(s). Slower diffusion is attributed to
clustering, based on the expectation that a cluster of multiple pro-
teins has a larger total mass and a larger footprint of charged lipids
underneath, both leading to greater confinement. However, as one
cannot reliably determine the number of labeled proteins within
a cluster and there exist a large fraction of unlabeled KRAS the
connection between diffusion and clustering remains a conjecture,
albeit a well-accepted and logical one.

Here, we use 5000 frames of the 8-lipid membrane data to
demonstrate how the tracking graph analysis introduced in Sec-
tion 5 provides a more-direct link between MSD and cluster-
ing than previously reported. In particular, we present results
from two different segmentation approaches: Localizer [DDNZ12]
(the technique used in the original publication [INC∗20]) and
PRIS [YPW19] (a recently developed method based on progres-
sively refining compressive sensing reconstructions). We main-
tain the same parameters for the Localizer segmentation, tracking
method, and filtering operations as the 2-lipid membrane. For the
PRIS segmentation, a Gaussian PSF model is used in the recon-
struction with an estimated full width at half maximum (FWHM)
of 320.25 nm (σ = 0.85 pixel width) based on empirical inspection
of the PSF image compared to the imaging results of fluorescently
labeled single KRAS molecules under the same microscope. In fu-
ture applications of the proposed tool, PSF calibrations acquired
alongside with the data acquisition could be used to ensure min-
imum model error introduced by instrumentation variability, and
provide a more-precise estimation of the PSF model to achieve op-
timum performance [LMH∗18]. PRIS is optimized for higher par-
ticle densities and is better able to separate nearby particles. Given
the limited resolution, changes in brightness, particles moving into
and out of the focal plane of microscope, etc., segmentation is typi-
cally considered the main source of uncertainty in SPT approaches
and, thus, using two very different segmentation techniques pro-
vides another chance for validating the results. The Localizer seg-
mentation typically identifies around 100 clusters per frame, while
the PRIS segmentation picks up a significantly higher number of
particles, with roughly 175 particles per frame. Note that both tech-
niques rely on a number of internal parameters adjusted by the rel-
evant experts, but neither should be considered ground truth.

Figure 7 shows the average MSD for individual tracks, i.e., the
tracks separated at merge and split events, which represents the in-
formation that traditionally would have been extracted by our col-
laborators. Both segmentation techniques show a similar distribu-
tion of MSD, with PRIS resulting in a slightly tighter main mode
but a heavier tail of fast particles. In particular, we do not see any
reliable indication of multiple modes in this distribution that could
indicate distinct speeds for single KRAS, KRAS dimers, trimers,
etc. Instead, lipid compositions would be compared in their en-
tirety with overall lower speeds attributed to an increased number
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Figure 8: Normalized distributions (max = 1) of MSD partitioned by the lower-bound count of a TVF, using the Localizer (left) and PRIS
(middle) segmentation, and the mean MSD values for the corresponding data (right) are shown. As the inferred lower bound of the count
increases, the distributions skew towards a slower MSD.

1.0 0.5 0.0 0.5 1.0
Change in Mean Square Displacement

0

10

20

30

40

C
ou

nt

merge events
split events

Figure 9: The distributions of the change (after − before) in MSD
for merge and split events identified for PRIS segmentation. Left
and right skew correspond to slowing down and speeding up after
the event, respectively. Our analysis confirms that larger clusters
(after merge and before split) correlates with slower diffusion.

of clusters. Instead, by processing the merge and split events, our
technique provides an estimate for the lower bound of the number
of (labeled) KRAS in each cluster, which allows us to separate the
global distribution of tracks according to their size. Figure 8 shows
the average MSD per estimated cluster size for the two segmenta-
tion techniques with both showing a clear trend of slower speeds for
larger clusters. Since the distributions are noticeably skewed, we
also provide the respective conditional histograms for clusters of
sizes 1 through 3 (see Figure 8). In particular, the Localizer-based
approach shows a clear separation between distributions with clus-
ters estimated to contain more KRAS being slower than those with
fewer KRAS. Note that all distributions are normalized as there
are significantly more individual particles (count = 1) than clusters
(count = 2, 3). Alternatively, one can aggregate the data by com-
paring the MSD before to the MSD after a merge/split. Figure 9
show the respective changes in MSD before and after and event.
As expected, merge events are strongly correlated with a decrease
in speed and split events with marked increases in speed.

8 Discussion
Our analysis provides the first direct evidence that MSD is cor-
related to the forming or breaking up of clusters. Going forward,
the modes of the MSD distribution may provide crucial informa-
tion on the actual differences in MSD between clusters of different
size which would not only provide important insight into KRAS-
membrane interactions in general, but would also inform the sim-
ulation model. Despite the success in demonstrating the link be-

tween diffusion and clustering, it is important to be cognizant of
potential shortfalls. First, as presented here our approach is heav-
ily dependent on the quality of both the segmentation and track-
ing graph construction and, thus, failures in either step can skew
the results. Our method is valid for the distance based tracking
method, and can be extended for other tracking methods that con-
sider the correlations between atomic features. Our method may
be invalid for segmentation techniques that distinguish individual
particles within a cluster, however it could potentially be used to
validate these methods. One potential future direction is to better
understand the sensitivity to changes in preprocessing and, in par-
ticular, the impact of noise on the segmentation step. Furthermore,
given the limited temporal resolution, unlabeled proteins, and un-
observable events, such as a KRAS leaving the membrane, there
will always exist uncertainties in the counts. For example, it is con-
ceivable – even if unlikely – that each labeled KRAS is always
paired with a second (or multiple) unlabeled KRAS. Although this
would make our lower bound incorrect, note that the analysis of
diffusion before/after an event would still point to the same con-
clusion. Finally, the current graph simplification is valid since our
observed system, as represented in the simulation, appears to have
almost no clusters exchanging particles. In a different application,
these events might be more common, which might lead to more er-
rors in removing all such edges from the tracking graph. As part of
ongoing work, we are investigating the potential to use the global
particle count to disambiguate tracking artifacts from a particle ex-
change. As counts get propagated through the entire graph, assum-
ing a particle exchange and, thus, retaining the corresponding edge,
increases the total particle count that is inferred. If bounds on the
expected counts are known, these could provide an indication on
how many such edges should be removed. We are currently work-
ing with our collaborators on applications to new experiments.
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