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Abstract
Data-parallel programming (DPP) has attracted considerable interest from the visualization community, fostering major soft-
ware initiatives such as VTK-m. However, there has been relatively little recent investigation of data-parallel APIs in higher-
level languages such as Python, which could help developers sidestep the need for low-level application programming in C++
and CUDA. Moreover, machine learning frameworks exposing data-parallel primitives, such as PyTorch and TensorFlow, have
exploded in popularity, making them attractive platforms for parallel visualization and data analysis. In this work, we bench-
mark data-parallel primitives in PyTorch, and investigate its application to GPU volume rendering using two distinct DPP
formulations: a parallel scan and reduce over the entire volume, and repeated application of data-parallel operators to an
array of rays. We find that most relevant DPP primitives exhibit performance similar to a native CUDA library. However,
our volume rendering implementation reveals that PyTorch is limited in expressiveness when compared to other DPP APIs.
Furthermore, while render times are sufficient for an early “proof of concept”, memory usage acutely limits scalability.

CCS Concepts
• Human-centered computing → Scientific visualization; • Computing methodologies → Parallel computing methodolo-
gies; Rendering;

1. Introduction

Data-parallel programming (DPP) has been explored for many
parallel visualization applications [MAGM11, MAPS12, LLN∗15,
LMNC15, SM15, MSU∗16]. This is because DPP provides power-
ful abstractions that allow parallel algorithms to be expressed not
only concisely but also independently of the underlying hardware
architecture. It is thus desirable to have an API for DPP that en-
joys wide adoption and that is likely to continue to improve in the
future. In addition, a number of visualization researchers and do-
main scientists have gravitated towards tools like Python and its
GPGPU extensions because they can reduce the amount of labor
required for software implementation. Finally, machine learning
frameworks like PyTorch [PGM∗19] and TensorFlow [ABC∗16]
expose powerful data-parallel primitives, feature both GPGPU and
distributed capabilities, and have exploded in popularity in recent
years.

Therefore, the time is ripe to evaluate PyTorch as both as an API
for DPP, and as a way to implement data-parallel scientific visual-
ization algorithms. In this paper, we present the following contri-
butions:

• Preliminary evaluation of PyTorch as a data-parallel API.
• Application of DPP in PyTorch to implement a “proof of con-

cept” volume renderer for scientific visualization.

• Performance comparison of two distinct data-parallel formula-
tions of volume rendering, implemented in PyTorch, to each
other and to off-the-shelf scientific visualization tools.

2. Related Work

DPP has its roots in the seminal work of Blelloch [Ble90], which
presented a programming paradigm in which algorithms are ex-
pressed in terms of data parallel primitives, that by definition can
apply an operation to a size-N array in O(log N) time, assuming
an unlimited number of processors. Such primitives are intended
to “abstract away” implementation details such as scheduling, syn-
chronization, and communication that are specific to each paral-
lel/distributed architecture being targeted.

The well-known Thrust library for CUDA provides data-parallel
primitives and is heavily influenced by the DPP paradigm [BH12].
Within visualization, the VTK-m library exposes a data-parallel
C++ API in order to facilitate large-scale distributed ren-
dering [MSU∗16]. Copperhead, a DPP GPGPU library for
Python [CGK11], is unfortunately no longer actively maintained.
In this work, we focused on PyTorch [PGM∗19] because of its
massive popularity, high-level interface to the GPU (via Python),
built-in data-parallel operators, and volume sampling routines. In
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theory, the same algorithms could be implemented using any other
library that exposes the same data-parallel primitives.

Outside of the DPP field, there exists a large amount of work
on scientific visualization in high level languages, most of which
focuses on binding GPU rendering to languages like Python. For
instance, VTK [SMLK06], ParaView [AGL05], and yt [TSO∗10]
include GPU volume renderers, and have a Python interface. There
have also been a number of attempts to integrate GPU-based
rendering into Jupyter Notebook. For instance, VisPy [CKL∗15],
ipygany/K3D-jupyter [Qua, KTGK] and itkwidgets [Ins] bind
OpenGL, WebGL, and VTK to Jupyter, respectively.

This paper is most closely related to computer vision pa-
pers that introduce data-parallel volume rendering in either Py-
Torch or TensorFlow. Lombardi et al. [LSS∗19] use the “array of
rays” (AoR) formulation presented in Section 4.2, whereas Hen-
zler et al. [HMR19] and Mildenhall et al. [MST∗20] employ the
“scan+reduce” (SR) approach described in Section 4.1. Similar
techniques are currently implemented in the latest release of the
PyTorch3D library [RRN∗20]. In addition, Liu et al. [LGL∗20] ex-
plore sparse voxel octree acceleration. However, these papers do
not explore applications to scientific visualization, and provide only
a cursory presentation, if any, of their data-parallel formulation.
Furthermore, to our knowledge, the computer vision community
has not benchmarked the rendering performance of AoR against
SR, nor have they compared against off-the-shelf volume renderers
for visualization.

Within scientific visualization, Schroots and Ma [SM15] and
Larsen et al. [LLN∗15] use data-parallel primitives for direct
volume rendering, built on top of the Dax [MAGM11] and
EAVL [MAPS12] frameworks, respectively. These efforts continue
as part of the VTK-m library [MSU∗16]. Larsen et al. focus on un-
structured data, whereas Schroots and Ma use structured volumes.
Although we also use a structured grid, we could not use their par-
ticular data-parallel formulation because PyTorch does not support
a map<functor> operation that can apply arbitrary user-defined
functions (with encapsulated data) to each element of an array.

3. Background

3.1. Data-parallel operations

Data-parallel operations used in this paper include vectorized arith-
metic, scan (a.k.a. “prefix sum”), and reduction. The latter two are
defined over a binary operator, e.g., +, *, max or min. For the
purposes of this paper, let sum_reduce, mult_reduce, and
mult_scan denote what Blelloch calls +-reduce, *-reduce,
and *-scan, respectively [Ble90].

3.2. Volume rendering

We evaluate the following approximation of the volume rendering
integral [EHK∗06], where L0 is the background radiance, and L(D)
is the radiance received by the eye. Note that gi = g(xi)∆x is an
approximation of

∫ xi
xi−1

g(x)dx, where g(s) = Le(s)κ(s), κ is the ex-
tinction, and Le is the volumetric emission term.

L(D)≈ L0

N

∏
i=1

(1−αi)+
N

∑
i=1

gi

N

∏
j=i+1

(1−α j) (1)

We define alpha as αi := 1−Ti, where Ti = exp(−
∫ xi

xi−1
κ(x)dx)≈

exp(−κi∆x) denotes the transmittance of the i-th segment.

4. Method Overview

In this work, we elucidate and compare two ways to implement the
above via data-parallel primitives:

1. Using scan and reduction (Section 4.1). Denoted as “SR”.
2. Using vectorized math operators to parallelize over an array of

rays (Section 4.2). Denoted as “AoR”.

In computer vision, [HMR19] and [MST∗20] use the former ap-
proach, and [LSS∗19] employs the latter. We provide standalone
source code that implements both formulations as part of the sup-
plemental material that accompanies this paper. Unlike the CV use
case, we must apply a transfer function, and currently this is per-
formed as a preprocessing step.

4.1. Volume rendering using parallel scan and reduction (SR)

Equation 1 can be evaluated as follows, where α1 is assumed to
be zero, � denotes an elementwise product (see Section 3.1 for
definitions of mult_reduce, sum_reduce, and mult_scan):

L(D)≈ L0 ∗mult_reduce
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(2)

We obtain the input arrays, containing the required values of αi and
gi, by sampling the volume using PyTorch’s grid_sample func-
tion. A sampling grid is precomputed by creating a 3D array of uni-
formly spaced coordinates, and then applying a “perspective warp”
via scaling the sample positions by a factor proportional to their
camera space z-coordinate. (See source code included in the sup-
plemental material for details.) Whenever the viewpoint is changed,
the sample positions must be updated accordingly by applying an
appropriate transformation matrix.

4.1.1. Tiled SR (TSR)

In order to reduce memory consumption, works like [MST∗20]
split the image into tiles and do SR sequentially over each tile. In
this work, we use “TSR” to denote a “tiled” SR implementation
that divides the image into four equal-sized quadrants. In the cur-
rent implementation, the “perspective warp” of the sampling grid
is applied once per quadrant at render time, as opposed to being a
precompute step like in Section 4.1.
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Algorithm 1 Volume rendering for an m× n image using AoR
(Section 4.2). 0m×n, 1m×n, e, �, and ∆x denote an m× n array
of zeros, m× n array of ones, eye position, elementwise product,
and step size, respectively.

1: L← Background radiance
2: D← Ray directions
3: Tmin,Tmax← Ray-AABB intersect results
4: Teval ← Tmin
5: Rdone ← 0m×n

6: while Rdone 6= 1m×n do
7: P← e+Teval�D
8: G← gi values (emissive contrib.) at sample positions P
9: A← alpha values at sample positions P

10: L← G+(1−A)�L
11: Teval ← Teval +∆x
12: end while

4.2. Volume rendering using “array of rays” (AoR)

The AoR approach, summarized in 1, and utilized by Lombardi
et al [LSS∗19], resembles a traditional back-to-front compositing
loop for volume ray casting. Unlike GLSL or CUDA, however,
PyTorch has no notion of individual fragments or thread IDs. In-
stead, we perform our operations over entire multidimensional ar-
rays. Please refer the supplemental material for additional details.

5. Results and Discussion

Tests were performed on a desktop PC with a NVIDIA RTX 2070
GPU with 8GB of memory, and/or a “headless” server with an
RTX 3090 GPU with 24GB of VRAM. Timing in PyTorch was
performed using Python’s timeit.timeit function, and exe-
cution time for native CUDA code was benchmarked by using
std::chrono::system_clock to record “wall clock” times-
tamps for the start and end of execution. Peak GPU memory usage
was measured by monitoring the output of the nvidia-smi util-
ity. Finally, using the same benchmarking tools, we compared the
above results to those obtained from VTK’s OpenGL volume ren-
derer, which was called from its Python API. VTK results were
measured on the RTX 2070 only, since our test script must create a
window and thus requires a GUI.

5.1. Performance of data-parallel primitives in PyTorch

We first evaluated sum_scan and segmented sum_reduce,
which are standard data-parallel operators (Section 3.1). Seg-
mented reduce was performed over eight equally sized array seg-
ments. Addition was the binary operator assumed for both scan and
reduce. Finally, while not strictly a DPP primitive, we benchmarked
sorting of single-precision floating point numbers. For all above op-
erations, PyTorch was compared against native CUDA implemen-
tations provided by the Thrust library [BH12].

Next, consider a scalar c; two vectors x, y; and the op-
eration y ← y + cx, denoted as a “multiply-add”. A Py-
Torch “multiply-add” implementation, based on vectorized arith-
metic, was compared against a Thrust implementation that uses
thrust::transform.
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Figure 1: Time for scan, segmented reduce (8 segments), sort, and
50 repeated multiply-adds. Plot uses a log-log scale. Benchmarks
were done on the RTX 2070. Solid lines indicate PyTorch results,
while dotted lines indicate Thrust results. A sort at the largest ar-
ray size could not be performed with PyTorch due to memory limi-
tations.

Benchmark results can be found in Figure 1. For multiply-add,
scan, and segmented reduce, PyTorch performance appears com-
parable to Thrust at nontrivial array sizes, and this is not surpris-
ing because PyTorch calls Thrust implementations of scan and
reduce. In contrast, sort is approximately an order of magnitude
slower, and could not be performed at the largest array size.

5.2. Volume Rendering Benchmarks

Most benchmark data came from a simulation of Rayleigh-Taylor
instability [CCM04], which is represented as a 10243 float32
uniform voxel grid. We downsampled this volume to produce 5123,
2563, and 1283 versions in order to test scaling with volume size.
Since we apply the transfer function as precompute step, we did not
measure its execution time. However, the space cost of the resulting
RGBA volume is included. We compared AoR (Section 4.2), SR
(Section 4.1), TSR (Section 4.1.1), and VTK’s OpenGL backend,
as called from Python.

Figure 2: Performance profiling results for AoR, SR, and TSR, as
applied to volume rendering of a 5123 version of Rayleigh-Taylor
instability data (upper right) on the RTX 3090. “Calc sample pos.”
refers time per frame to compute sample positions, and “vol. sam-
pling” refers to time to query the volume at the necessary sample
positions, including time for trilinear interpolation. SR could not
be performed at 10242 due to memory limitations.
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Volume dimensions
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Figure 3: Dimensions of float32 uniform grid vs. render time
for Rayleigh-Taylor instability data, rendered at 512x512 (Fig-
ure 2). SR results could not be recorded at 2563 and above on the
2070, and none the PyTorch-based approaches could render the
10243 volume due to memory limitations (Figure 4). VTK measure-
ments are for the 2070 only.

First, we kept the render resolution fixed to 512x512, while
benchmarking render time and memory usage at different volume
sizes. It is quite apparent that the PyTorch-based approaches are
not memory-efficient (see Figure 4 and caption for details). In fact,
none of the PyTorch-based approaches could render the original
10243 volume due to memory saturation. By contrast, VTK had no
difficulty with this, even on the test GPU with less memory.

We then called the cProfile profiler from Python in order
to attempt to identify performance bottlenecks when rendering the
5123 version of the volume, and the results are presented in Fig-
ure 2. In particular, our PyTorch implementations tend to spend
most of their time either calculating sample positions (which must
be performed whenever the viewpoint changes) or sampling the
volumes at those positions, with the latter usually being dominant.
Interestingly, when using TSR to render at 1024x1024, calculation
of sample positions becomes the larger bottleneck.

We performed two additional experiments. First, kept the vol-
ume size fixed to 5123, and varied render resolution. Second, we
repeated the cProfile measurements, but for the well-known
“Magnetic Reconnection” dataset [GLDL14]. Please see the sup-
plemental material for both sets of results.

6. Evaluation and Limitations

Our experiments in (Section 5.1) indicate that individual DPP
primitives tend to perform well. (Note that sort does not execute
as quickly as Thrust’s implementation, and is not as memory effi-
cient.) As a DPP API, PyTorch is somewhat lacking in expressive-
ness. Recall from the end of Section 2 that we could not adopt the
approach of Schroots and Ma [SM15] for unstructured volumes due
to PyTorch’s lack of a map<functor> operator. More broadly
speaking, unlike Thrust, VTK-m, and Jax, PyTorch lacks the abil-
ity to pass user-defined operators as inputs to data-parallel prim-
itives, precluding straightforward implementation of unstructured
DPP volume rendering as proposed by Larsen et al. [LMNC15].
This may also increase the number of required intermediate ar-
rays and/or reads and writes to them, which is one of the main
reasons why Thrust supports composition of DPP primitives with
user-defined operators [NVI21].
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Figure 4: Grid dimensions vs. memory usage. See Figure 3 caption
for benchmark parameters, which are the same here. SR exceeds the
2070’s 8GB of memory at 5123, and all PyTorch implementations
exceed the 3090’s 24GB memory limit at 10243.

When performing volume rendering with PyTorch’s DPP prim-
itives, render times that are within about 1.5 orders of magnitude
of the “baseline” set by VTK’s volume renderer can be achieved.
While this is far from ideal, it is sufficient for a “proof of concept”,
given that VTK and OpenGL are mature, deliberately engineered
solutions.

More problematic, however, is the high memory consumption
of all of our PyTorch-based approaches. When rendering an im-
age using SR, we must take a minimum number of samples per
pixel and per cell. (In this work, we take one sample per pixel and
roughly one per cell, but a rigorous implementation would sample
at a rate that is strictly above the Nyquist frequency.) Assuming an
image size of MxM and volume size of NxNxN, the array of sam-
ples given to the scan and reduce contains O(M2N) elements.
Therefore, it is unsurprising that SR cannot scale beyond small vol-
umes and image sizes.

Using TSR (Section 4.1.1) can reduce memory consumption,
but as can be seen in Figures 3, this comes at the cost of perfor-
mance, since each tile is rendered in serial. AoR’s VRAM usage
appears to scale better with volume dimension (Figure 4), which
is sensible because AoR requires an array of sample positions and
a framebuffer, each of which contain O(M2) elements, to be held
in memory in order to render an MxM image. Unlike with SR and
TSR, the size of these arrays is independent of the dimension of
the volume. However, AoR still consumes far more memory than
VTK’s OpenGL backend, in part because preclassification forces us
to hold an RGBA volume in memory. Furthermore, Figure 3 shows
that AoR is not as fast as SR, and this may be due in part to the
fact that it does back-to-front compositing in serial, and does not
exploit parallelism in the depth dimension. Thus, while TSR and
AoR consume less memory than SR, they are slower, and only re-
duce memory consumption so much - recall from Section 5.2 that
neither approach is scalable enough to render the original 10243

volume.

7. Conclusion and Future Work

In this work, we set out to conduct a preliminary evaluation of Py-
Torch as a data-parallel API, and to compare two different DPP for-
mulations of volume rendering, as implemented within PyTorch.
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We found that the relevant DPP primitives are, for the most part,
comparable to Thrust in performance for nontrivial array sizes, with
the notable exception of sort. PyTorch is limited in expressiveness
because it lacks operations like map<functor> that enable com-
position of user-defined functors and/or binary operators with data-
parallel primitives. Furthermore, while rendering speed is reason-
able for a “proof of concept”, our approach cannot scale to large
volumes due to its high memory usage.

Future work includes investigating PyTorch performance in
greater detail - e.g., why the bottleneck changes from volume sam-
pling to sample position calculation when TSR rendering resolution
is increased from 512x512 to 1024x1024 (Figure 2).

In addition, we could investigate more ways to perform volume
bricking/tiling. While we split the image into four tiles, there are
clearly more ways in which this could be done, e.g., with more tiles.
At least in theory, there could be as many tiles as there are pixels!
Some previous authors also “brick” in the z-dimension, as opposed
to tiling in image space [LMNC15,SM15], which we did not inves-
tigate. We leave a rigorous asymptotic analysis that is aware of the
fact that tiles are processed serially, as well as supporting experi-
ments, to future work.

In the future, we may also investigate a broader range of DPP
primitives (e.g. scatter and gather), visualization algorithms (e.g.
isosurfacing), and programming frameworks (e.g. Jax and Julia).
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