
Fast Algorithms for Monotone Lower Subsets of Kronecker Least
Squares Problems

Osman Asif Malik∗1, Yiming Xu∗2, Nuojin Cheng∗3, Stephen Becker3, Alireza Doostan4,
and Akil Narayan5

1Applied Mathematics & Computational Research Division, Lawrence Berkeley National Laboratory (oamalik@lbl.gov)
2Corporate Model Risk, Wells Fargo (yiming.xu@wellsfargo.com)

3Department of Applied Mathematics, University of Colorado Boulder (nuojin.cheng@colorado.edu,
stephen.becker@colorado.edu)

4Smead Aerospace Engineering Sciences Department, University of Colorado Boulder (alireza.doostan@colorado.edu)
5Scientific Computing and Imaging Institute, and Department of Mathematics, University of Utah (akil@sci.utah.edu)

Abstract
Approximate solutions to large least squares problems can be computed efficiently using leverage

score-based row-sketches, but directly computing the leverage scores, or sampling according to them
with naive methods, still requires an expensive manipulation and processing of the design matrix.
In this paper we develop efficient leverage score-based sampling methods for matrices with certain
Kronecker product-type structure; in particular we consider matrices that are monotone lower col-
umn subsets of Kronecker product matrices. Our discussion is general, encompassing least squares
problems on infinite domains, in which case matrices formally have infinitely many rows. We briefly
survey leverage score-based sampling guarantees from the numerical linear algebra and approxima-
tion theory communities, and follow this with efficient algorithms for sampling when the design
matrix has Kronecker-type structure. Our numerical examples confirm that sketches based on exact
leverage score sampling for our class of structured matrices achieve superior residual compared to
approximate leverage score sampling methods.

1 Introduction
Efficient algorithms for computing approximate solutions to large linear least squares problems is a

well-studied topic. With A ∈ CM×N and b ∈ CM , the original, full least-squares problem is

x∗ = arg min
x

‖Ax− b‖2 . (1.1)

Algorithms that approximately generate solutions typically seek to overcome either the problems of big
data (whenM is so large that direct manipulation of A is infeasible) or expensive data (when evaluating
every entry of b is too expensive). One standard, general approach involves constructing a sketching
operator S ∈ CK×M and solving the corresponding sketched problem,

x̃ = arg min
x

‖SAx− Sb‖2 . (1.2)

As long as computing SA and Sb can be done efficiently, then if K < M the resulting problem is
smaller; yet if K < M then one cannot deterministically generate an operator S that produces an
accurate solution for generic b. On the other hand, randomly generating S allows one to state error
bounds either in expectation or with high probability.

∗Equal contribution.

1

ar
X

iv
:2

20
9.

05
66

2v
1

 [
m

at
h.

N
A

]
 1

3
Se

p
20

22

mailto:oamalik@lbl.gov
mailto:yiming.xu@wellsfargo.com
mailto:nuojin.cheng@colorado.edu
mailto:stephen.becker@colorado.edu
mailto:alireza.doostan@colorado.edu
mailto:akil@sci.utah.edu

One well-known approach that fits into the category described above is to construct S as a random
row sketch via leverage scores of A, where one has guarantees of the form,

K &
N logN
(δ + ε)ε =⇒ ‖Ax̃− b‖2

2 ≤ (1 + ε)‖Ax∗ − b‖2
2 w/ probability ≥ 1− δ.

The major remaining challenge in these cases is to develop algorithms that efficiently sample rows
according to the leverage scores of A. Direct computation of the leverage scores involves computing an
orthonormal basis for the range of A, which is expensive when M is very large. Typically two avenues
are available to mitigate this cost: (i) sample from approximate leverage scores that are efficiently
computable, e.g., [Dri+12]; or (ii) develop algorithms to compute exact leverage scores efficiently when
A has exploitable structure.

Our focus in this paper is on the second approach: the development of algorithms that efficiently
sample according to leverage scores when A is a “monotone lower” column subset of a Kronecker product
matrix. In particular, if A(1), . . . ,A(D) are D matrices, with A(d) ∈ RMd×Nd , then we consider A
constructed as,

Akr :=
D⊗
d=1

A(d), A is a “monotone lower” column subset of Akr , (1.3)

where ⊗ is the Kronecker product, and “monotone lower” refers to the collection of D-dimensional
integer indices that index columns of Akr via their coordinate representations in the columns of A(d);
see Definition 3.1. This particular structure in A is of considerable interest in high-dimensional function
approximation when one builds emulators or surrogates from function spaces, e.g., polynomials [ABW22].

The strategy of leverage score sampling is well-established in the numerical linear algebra community
[Mah11; Dri+12; Woo14]. An essentially identical strategy but in the cases when M and N are infinite
has been developed in the functional analysis literature with various names: induced sampling, optimal
sampling, Christoffel sampling, etc. [HD15; CM17a]. One of our goals in this paper is to present a discus-
sion of leverage score/induced sampling that unifies these concepts and results in different communities.

1.1 Contributions of this article
The main target of this article is efficient computation of solutions to least squares problems that are

formulated from data either on finite or un/countably infinite tensor-product domains in D dimensions,
which corresponds to the Kronecker product setup mentioned above. In particular, we study such
problems when the solution function is sought on a subspace of a tensor-product space of functions.
When the domain is finite, this amounts to a large but finite matrix-vector least squares problem where
the design matrix is a column subset of a Kronecker product matrix. Our main approach is a fairly
standard one: randomized row sketches. Our contributions are twofold:

• We collect and formalize results guaranteeing near-optimal solutions (in terms of residual) to sparse
row-sketched least squares problems.1 Such results are already known for infinite domains in the
approximation theory community, and for finite domains in the theoretical computer science and
numerical linear algebra communities. Our presentation is unified, collecting and summarizing
results from both communities. In the context of randomized sparse row sketches, the approach
we consider is well-known as optimal or induced sampling in approximation theory, and leverage
score sampling in the linear algebra community. This unified discussion is the topic of Section 2.

• We present efficient algorithms that can efficiently and exactly sample according to the distribution
mentioned above for certain types of product-structured least squares problems. In the infinite
domain case, product structure refers to D-dimensional tensor-product constructions, and when
the domain is finite product structure refers to D-fold Kronecker product structure of the design
matrix, cf. (1.3). Direct approaches for this sampling in these cases typically expensive whenD > 1,
but the approaches we describe have complexity scaling linearly in D. Our main contribution here

1“Sparse” here means that we need not access the entire right-hand side data function/vector, instead requiring only a
relatively small number of samples. This is in contrast to, e.g., dense Gaussian sketches that can also boast near-optimality
but require knowledge of the data b over the entire domain.

2

is an efficient algorithm when the subspace under consideration is “monotone lower”. In the finite
domain case, this corresponds to the assumption that the least squares design matrix is a monotone
lower column subset of a Kronecker product matrix. Our algorithms in this case are described in
Section 4, and in particular Algorithm 5.

An outline of this document is as follows: Section 2 provides our notation and problem setup, with Section
2.1 describing row-sketched least squares. Section 2.2 discusses a well-known M = ∞ generalization of
leverage scores, and Section 2.3 surveys known results on leverage score-based accuracy of row-sketched
least squares. Section 3 specializes our setup to the case of approximating functions ofD ≥ 1 independent
variables, which corresponds to the Kronecker product matrix structured described previously. Section 4
discusses algorithms, with our proposed algorithm for monotone lower sets given in Section 4.3.3. Finally,
we provide numerical examples in Section 5.

1.2 Related work on structured matrix sketching
A number of previous works develop various random sketches S that can be applied particularly

efficiently to matrices A whose columns have Kronecker product structure, i.e., are of the form

a1 ⊗ a2 ⊗ · · · ⊗ aD, (1.4)

where each ad ∈ RMd .

Row-structured sketches The first class of such sketches impose certain structure on the rows of S
which allows it to be applied efficiently to vectors of the form in (1.4). [BBB15] propose such a sketch
for which each row of S is the Kronecker product of D row vectors, each containing iid random variables
with zero mean and unit variance. [Sun+18] independently propose a sketch with the same structure as
well as a variance reduced version. [RR20] take these ideas further by proposing sketches whose rows are
vectorized tensors in either canonical polyadic (CP) or tensor train formats and whose factor matrices
and cores tensors have iid Gaussian entries with appropriate scaling. The follow-up paper [RR21] further
shows that the sketch with tensor train-structured rows also performs well when its core tensor entries
are drawn from a Rademacher distribution. [Iwe+21] propose a two-stage sketch which first applies a
sketch matrix which is the Kronecker product of smaller sketches, followed by another sketch that further
reduces the embedding dimension. More background on these types of sketches is in the review [MT20,
Sec. 9.4].

Kronecker fast Johnson–Lindenstrauss transforms The second class of structured sketches im-
pose further structure on the standard fast Johnson–Lindenstrauss transform (FJLT) originally proposed
by [AC09]. This additional structure makes applying the sketch to vectors of the form (1.4) even faster.
These sketches are referred to as Kronecker fast Johnson–Lindenstrauss transforms (KFJLTs) or tensor
subsampled randomized Hadamard transforms (TensorSRHTs) by some authors in the case when the
Hadamard transform is used. The KFJLT was first proposed by [BBK18] for use in tensor decomposition
algorithms, with further theoretical and empirical work done in [JKW20; MB20; BKW21].

TensorSketch The third type of sketch is the TensorSketch. It can be viewed as a more structured
variant of the CountSketch developed in [CW17] that allow efficient application to vectors of the form
(1.4). It was developed in a series of papers [Pag13; PP13; ANW14; Dia+18].

Recursive sketches A fourth class of structured sketches rely on recursively applying the sketches
discussed above in order to achieve improved theoretical guarantees. [Ahl+20] propose two variants of
such a procedure. It first applies either an independent CountSketch [CW17] or OSNAP sketch [NN13]
to each vector ad in (1.4). In the case when D is a power of 2, the resulting sketched vectors are then
recursively combined pairwise in log2(D) steps using either TensorSketches or KFJLTs. The case when
D is not a power of 2 is handled by appropriately augmenting the product in (1.4) using the canonical
basis vector e1.

[Son+21] propose a sketch inspired by [Ahl+20] but specifically adapted for more efficient application
in the case when all vectors a1, · · · ,aD are identical. This situation comes up when computing spectral

3

approximations of the polynomial kernel. The procedure by [Ahl+20] can be illustrated using a binary
tree with each node associated with the appropriate sketch. [MS22] generalize this idea by allowing for
sketches with arbitrary graph structure, but limit the nodes to being Gaussian sketches.

Sampling-based sketches The fifth and final class of structured sketches are sampling-based. Unlike
the sketches discussed above these are non-oblivious meaning that they rely on information from the
matrix being sketched. These sketches have therefore been developed specifically for matrices with certain
structure. Methods for Kronecker product matrices are developed in [Dia+19; FGF21] and methods for
the Khatri-Rao product in [Che+16; LK20; WZ20; Mal22; WZ22; Che+20]. The papers [MB21; Mal22]
develop methods for the design matrices which arises in algorithms for tensor ring decomposition whose
columns are the sum of Kronecker products of vectors.

When µ and µd have infinite support
[D] The set {1, 2, . . . , D} for d ∈ N
µ,I product probability measure on RD and I = supp µ
µd, Id (3.1) Dimensionwise measures and domain, µ = ×dµd and I = ×dId
‖ · ‖w,p (3.6a) The w-weighted `p function for 0 ≤ p ≤ ∞
J A size-N , finite multi-index set in D dimensions, i.e., a finite subset of ND

Jw,p(K) (3.7) The 1-centered ball in ND of ‖ · ‖w,p-radius K
V, V (J) (3.5) N -dimensional subspace of functions in L2

µ(I) identified by J
aα (3.5) Product basis functions spanning V for α ∈ J

Vd, a
(d)
j (3.2) One-dimensional function spaces and functions, with aα =

∏
d
a

(d)
αd

Nd,N (3.2), (3.3) Nd = dimVd, and N = (N1, . . . , Nd)
N (3.4a) N = dimV = |J |
x∗ (2.2) V -coefficients for the least squares solution of L2

µ-projecting f onto V
τ (2.4) A finite sketch measure, intended to approximate µ for functions in V
x̃ (2.8) Solution to the τ -sketched least squares problem
ν (2.9) The (µ, V)-induced measure (used to generate a random sketch τ)
ν(d) (4.7) The univariate (µd, Vd)-induced measure

When µ and µd have finite support
y

(d)
m , w

(d)
m (3.11) The support points and weights, respectively, of µd

ym An enumeration of the finite points in I
A(d), Akr , (3.14), (3.15) Dimension-d univariate design matrix, and Kronecker product of univariate matrices

A, b (3.12), (3.16) The design matrix and right-hand side for the least squares problem

`
(d)
m = ν(d)

(
y

(d)
m

)
mth leverage score for A(d)

`m = ν (ym) mth leverage score for A

Table 1: Notation used throughout this article.

2 Preliminaries for function approximation
We describe least squares problems with unified notation that can be specialized to include projection-

based function approximation and matrix-vector least squares problems. Let D ∈ N and µ be a proba-
bility measure with closed support I ⊂ RD, defining an L2 space:

L2
µ(I) =

{
u : I → R

∣∣ ‖u‖ <∞} , ‖u‖2 := 〈u, u〉 , 〈u, v〉 =
∫
I

u(y)v(y)dµ(y).

Given an N -dimensional subspace V ⊂ L2
µ(I) with N <∞, we are abstractly interested in computing the

L2
µ(I)-best approximation from V to a given function b ∈ L2

µ(I). Equivalently, we wish to approximate
b using least squares:

v∗ = arg min
v∈V

‖v − b‖2. (2.1)

4

Let (an)n∈[N] be a(ny) basis for V . The above problem can also be written in terms of coordinates
(xn)n∈[N] in the basis an:

x∗ = arg min
x∈RN

∥∥∥∥∥∥
∑
n∈[N]

xnan − b

∥∥∥∥∥∥
2

. (2.2)

We provide two examples below to illustrate the generality of our problem setup. (See also sections
3.2 and 3.3.)

Example 2.1 (Finite-dimensional least-squares). Let A ∈ RM×N be a matrix with full column-rank,
and b ∈ RM . Then the Euclidean least squares problem

x∗ = arg min
x∈RN

‖Ax− b‖2
2, (2.3)

is a special case of the generic least squares problem Eq. (2.1)/(2.2) if we choose D = 1, I = [M],
µ the discrete uniform measure on I = [M], i.e., µ =

∑
m∈[M] wmδm with weights wm = 1/M to set

an(m) = w
−1/2
m (A)m,n and b(m) = w

−1/2
m (b)m, and use the basis (an)n∈[N] for V , so that so that

V = col(A).

Our approach generalizes to the case when A and b have an infinite number (countable or uncount-
able) of rows, in which case we view our problem as that corresponding to function approximation over
an infinite domain. Note that such problems are discussed in [SA22] using the language of quasimatrices
[TT15]; we approach the same problem here using the equivalent but more standard language of function
spaces.

Example 2.2 (1D function approximation with polynomials). Let D = 1, I = [−1, 1] and µ any
absolutely continuous measure (with respect to the Lebesgue measure), such as µ(y) = 1

2 or µ(y) =
1
π

1√
1−y2

. Let V be the space of N − 1 degree polynomials on I, and let (an) be any basis for V (such
as Legendre or Chebyshev polynomials). In this setting, the generic problem Eq. (2.1)/(2.2) could be
thought of as a least squares problem where the matrix A has an uncountable number of rows.

2.1 Randomly (row-)sketched least squares
In practical problems, the least squares formulation (2.2) (or equivalently (2.1)) cannot be directly

solved in a computationally feasible way: The domain I may be un/countably infinite, so that exactly
computing (2.2) is not possible. Even when µ is finitely supported atM points, so that we consider (2.3),
the function b can be expensive to evaluate, so that collecting data b(ym) for all m is too costly. From
an algorithmic point of view, assuming M ≥ N , direct solutions to (2.3) require O(MN2) complexity,
which one may wish to avoid if M � N .

In any of the cases above, one strategy to mitigate the cost of forming a least squares solution is
to use randomly generated sketches. We will focus in particular on row sketches defined by a random
measure τ , where τ is constructed through iid samples of a deterministic measure ν: Let ν be another
probability measure on I that is equivalent to µ (i.e., ν � µ and µ� ν). Define the following random,
finitely supported sketching measure τ , which is constructed by randomly sampling from ν:

τ =
∑
k∈[K]

vkδYk , vk = 1
K

dµ
dν (Yk), Yk

iid∼ ν. (2.4)

Above, we have fixed some positive integer K, and the weights vk are chosen so that integrating with
respect to τ is an unbiased estimator for integrating with respect to µ:

E⊗Kν
∫
I

f(y)dτ(y) = KEν (f(Yk)vk) =
∫
I

f(y)dµ(y). (2.5)

We use τ to define corresponding norms and inner products, which are random:

‖u‖2
τ := 〈u, u〉τ , 〈u, v〉τ =

∫
I

u(y)v(y)dτ(y).

5

Since K is finite, then evaluating τ -integrals and -norms are computationally feasible and, when µ is
finitely supported at M points, more tractable if K � M . In particular, we can consider a τ -sketched
approximation to our least squares problem, which form problems analogous to (2.1) and (2.2):

ṽ ∈ arg min
v∈V

‖v − b‖2
τ , x̃ ∈ arg min

x∈RN

∥∥∥∥∥∥
∑
n∈[N]

xnan − b

∥∥∥∥∥∥
2

τ

, (2.6)

where we have written “∈ arg min” to acknowledge that, when replacing µ with the random sketch τ ,
solutions to the above problem may not be unique. The remainder of this section is concerned with
determining when τ -sketched least squares solutions are of comparable quality (in terms of residual) to
the full, frequently intractable least squares problem.

Regardless of the size of the support of µ, the procedure described above involves only finite-
dimensional quantities and is hence computable. To facilitate notation, we define

(Ã)k,n =
√
vkan(Yk), (b̃)k =

√
vkb(Yk), k ∈ [K], n ∈ [N]. (2.7)

Then x̃ in (2.6) is the solution to the finite least squares problem,

x̃ ∈ arg min
x∈RN

∥∥∥Ãx− b̃∥∥∥2

2
. (2.8)

This procedure is an algorithm, shown in Algorithm 1.

Algorithm 1: Least squares procedure from Section 2.1.
Input: Sampling size K ∈ N, basis an for V , function b
Input: Measure ν, Radon-Nikodym derivative dµ

dν

1 Sample Yk
iid∼ ν for k ∈ [K].;

2 Evaluate vk = 1
K

dµ
dν (Yk) for k ∈ [K].;

3 Collect data (b̃)k = b(Yk) for k ∈ [K];
4 Construct Ã and b̃ as in (2.7) and solve (2.8).;
Output: x̃, the coordinates of ṽ in the basis an

When µ is finitely supported, as in Example 2.1, the measure τ is equivalent to constructing a
sketching operator S ∈ RK×M ; that is, sampling Yk according to ν is equivalent to randomly selecting
row indices ik ∈ [M] according to the measure ν. A sketching matrix S can be defined as,

S =


√
vi1e

T
i1√

vi2e
T
i2

...√
viKe

T
iK

 ,

where ei ∈ RM is the cardinal unit vector in direction i. Then Ã and b̃ are directly related to A and b:

Ã = SA and b̃ = Sb =⇒ x∗ ∈ arg min
x

‖SAx− Sb‖2
2.

2.2 The induced distribution: “optimal” least squares and leverage scores
The discussion in the previous section does not reveal how to appropriately choose ν or K. We first

discuss the particular choice of ν we make for the remainder of this article, the induced distribution.

Definition 2.3. Given (µ, V), with V ⊂ L2
µ(I) and N = dimV , the induced measure νµ,V on I is

defined as,

dνµ,V (y) =
supv∈V,‖v‖=1 |v(y)|2

N
dµ(y). (2.9)

6

Loosely speaking, νµ,V is biased toward locations where L2
µ-unit-norm functions from V can have large

values. While the definition of (2.9) appears somewhat opaque, a clearer expression can be derived. First,
we introduce a(ny) L2

µ(I)-orthonormal basis for V :

〈un, u`〉 = δn,`, n, ` ∈ [N], span{un}n∈[N] = V. (2.10)

The following result gives an equivalent expression for νµ,V .

Proposition 2.4. Fix µ and V . With ν = νµ,V defined through (2.9), then

dν
dµ (y) = 1

N

∑
n∈[N]

|un(y)|2. (2.11)

Proof. Since (un)n∈[N] is an orthonormal basis, then

v ∈ V, ‖v‖ = 1 ⇐⇒ ∃ x ∈ RN , ‖x‖ = 1, such that v(y) =
N∑
j=1

xjuj(y). (2.12)

Then an application of the Cauchy-Schwarz (C-S) inequality finishes the proof:

dν
dµ (y) =

supv∈V,‖v‖=1 |v(y)|2

N

(2.12)= 1
N

sup
x∈RN ,‖x‖2=1

∣∣∣∣∣∣
∑
n∈[N]

xnun(y)

∣∣∣∣∣∣
2

C−S= 1
N

∑
n∈[N]

|un(y)|2.

Note that the choice of orthonormal basis in (2.11) is arbitrary, as that expression remains invariant
under any unitary transformation of (un)n∈[N]. The well-known result (2.11) is one way to see that what
we call the induced distribution above has several names in the literature. In functional analysis, the
Radon-Nikodym derivative dνµ,V

dµ is called the (inverse) normalized Christoffel function [Nev86; Xu95],
and also coincides with the normalized diagonal of the bivariate reproducing kernel for V in L2

µ(I)
[Sim08]. In pluripotential theory when V is the space of d-variate polynomials up to a fixed degree k,
then dνµ,V

dµ is called the kth Bergman function [Ber09a; Ber09b; BBN11; DMN17]. For least squares
problems, sampling from this measure is called “optimal sampling” because it optimizes (minimizes) a
matrix Chernoff bound that dictates sample complexity, see [CM17b] and also Section A.1.

When µ is finitely supported, the values of the Radon-Nikodym derivative discussed above are exactly
the statistical leverage scores of the matrix A [Woo14; Mah11].

Definition 2.5. Given A ∈ RM×N , let U ∈ col(A) be an M × r matrix, where col(A) denotes the
set of all matrices whose columns form an orthonormal basis for range(A) and r = rank(A). Then the
normalized leverage scores of A are defined as,

`m = 1
r

∑
j∈[r]

∣∣∣(U)m,j
∣∣∣2 . (2.13)

Using this definition along with Proposition 2.4, we immediately conclude the following.

Corollary 2.6. Consider the setup of Proposition 2.4. If µ is finitely supported on I = {ym}m∈[M], then
`m = dνµ,V

dµ (ym) for all m, i.e., the Radon-Nikodym derivative dνµ,V
dµ (ym) coincides with the normalized

leverage score `m of A defined in (2.13).

Thus, in this finitely supported setting, νµ,V is sometimes called the leverage distribution, since
its probability mass weights equal the leverage scores (of A). In such contexts for finite least squares
problems, generating samples with respect to ν is called leverage score sampling or natural sampling.

Finally, we note that conditions ensuring that νµ,V is equivalent to µ (required as discussed in section
2.1) can be rephrased given the formula (2.11): νµ,V is equivalent to µ if and only if µ (S) = 0, where
S = V (−1)(0) is the zero set of the subspace V , i.e., y ∈ S if v(y) = 0 for every v ∈ V . This property is
true if, e.g., µ is Lebesgue measure and V contains only real-analytic functions [Mit20]. We assume this
measure equivalence property in all that follows. However, this does exclude some cases, e.g., certain
subspaces V of Haar-type wavelets.

7

2.3 Bounds for row-sketched least squares
In this section we summarize known sufficient conditions to ensure quantitative residual bounds for

τ -sketched least squares solutions in (2.6). At their core, these sufficient conditions involve a lower bound
for the size of K to be used in Algorithm 1 that depends on a desired probability of failure δ and a target
relative accuracy tolerance ε. We present two choices for ν below (both induced distributions, but for
different subspaces) that achieve useful bounds. All these bounds are essentially well-known in different
communities, and so we present here only the statements, and leave the proofs in the appendix.

2.3.1 Sampling with ν = νµ,Vb

We typically assume V is known or can be sampled (as in either Example 2.1 or 2.2), but even in the
finite-dimensional case, it may be desirable not to know the whole target function b, such as when each
entry of b requires expensive computation. Hence our first algorithm is an idealized one, as it involves a
subspace augmented by the target function b:

Vb := span{V, b}. (2.14)

This is an idealized construction since it, naively, requires access to the full right-hand side function
b; one of the common purposes of random sketching is to avoid full sampling of b. Nevertheless, note
that if sampling is done only to reduce the flop count of the least-squares problem (when full knowledge
of b is often assumed), then this algorithm is not so impractical. Sampling according to the induced
distribution of Vb results in the following accuracy guarantees.

Theorem 2.7. Given δ ∈ (0, 1), ε ∈ (0, 1/2), and b ∈ L2
µ(I), assume that

K ≥
3 log

(
4(N+1)

δ

)
ε2

(N + 1). (2.15)

Then with probability at least 1 − δ, the solution ṽ computed from Algorithm 1 with sampling measure
ν = νµ,Vb has a unique solution, and we have the relative error bound,

‖ṽ − b‖2 ≤ (1 + 2ε) ‖v∗ − b‖2
, (2.16)

which in the finite I case is equivalent to

‖Ax̃− b‖2
2 ≤ (1 + 2ε)‖Ax∗ − b‖2

2.

For the proof, see Appendix B.

2.3.2 Sampling with ν = νµ,V

The more tractable strategy is to sample with ν = νµ,V , which does not require any a priori knowledge
about the data b. We present several known results in this section that are compiled from [Woo14; Mah11;
CM17b]. In order to be self-contained, we collect the proofs of these results in appendices C, D, and E.
The simplest result, stated below, is an instance-wise bound on the error committed by ṽ.

Theorem 2.8. Given ε, δ ∈ (0, 1) and b ∈ L2
µ(I), assume that

K ≥ N

ε
max

{
2

δ(1− ε)2 ,
3 log

(4N
δ

)
ε

}
(2.17)

Then, with probability at least 1 − δ, the solution ṽ computed from Algorithm 1 with sampling measure
ν = νµ,V has a unique solution, and with this same probability we have the relative error bound,

‖ṽ − b‖2 ≤ (1 + ε) ‖v∗ − b‖2
, (2.18)

which specializes to ‖Ax̃− b‖2
2 ≤ (1 + ε)‖Ax∗ − b‖2

2 when I is finite.

8

For the proof, see Appendix C. The result above specifies a minimal sampling requirement to guar-
antee a relative residual of the τ -sketched least squares problem with specified probability. Perhaps the
most restrictive portion of the sampling requirement (2.17) is the dependence K & 1/δ, where δ is the
failure probability. This dependence arises out of a specific use of the Markov inequality. An alternative
strategy that circumvents the Markov inequality involves expectations (with respect to the randomness
in τ) on a high-probability event. Precisely, for any ε > 0 and δ ∈ (0, 1), consider sampling

K ≥ 2N
(

1
ε

+ 3 log
(

2N
δ

))
=⇒ E

[
‖ṽ − b‖2 | C

]
≤ (1 + ε) ‖v∗ − b‖2, (2.19)

with Pr(C) ≥ 1− δ. (2.20)

That is, with high probability one achieves on average ε-relative proximity to the optimal estimator
residual. Note that the sample complexity now scales only like log(1/δ), which is much more appealing
than the 1/δ scaling required to achieve (2.18). The proof of (2.19) is in Appendix D.

Finally, one may remove the conditional event C in the expectation, but in this case one must control
the behavior of the estimator off the event C. One strategy to accomplish this involves estimates for a
truncated estimator defined in terms of a constant T exceeding the maximum value of v over the support
of µ,

vT (y) =
{

v(y), if |v(y)| ≤ T
T sign(v(y)), if |v(y)| > T,

T ≥ sup
y∈I
|b(y)|. (2.21)

Then the following result holds for any ε > 0 and δ ∈ (0, 1):

K ≥ 2N
(

1
ε

+ 3 log
(

2N
δ

))
=⇒ E‖ṽT − b‖2 ≤ (1 + ε) ‖v∗ − b‖2 + 4δT 2 (2.22)

See appendix E for the proof. Note again that in this case the truncation probability δ can be taken
very small with relatively little impact since K & log(1/δ).

2.4 Algorithmic considerations
The algorithms in Section 2.3.2 require sampling from the induced measure ν = νµ,V . Although an

explicit formula for the density (relative to µ) is given by the leverage score formula (2.11), sampling from
this measure using this formula is nontrivial since it at least requires identification of a V -orthonormal
basis, which can be prohibitively expensive even when I = suppµ is finite when the dimension D is large.
This raises the question of how one can efficiently sampling from νµ,V .

One strategy is to use an approximate sampler, ν ≈ νµ,V , but with the condition that ν satisfies the
following equivalence relation compared to νµ,V ,

inf
y∈I

dν
dνµ,V

(y) = γ ∈ (0, 1].

For example, this results in an introduction of a factor of γ in steps (A.6a) and (A.11) in our proofs.
Under this condition, one can generate τ by sampling from ν ≈ νµ,V , and pay only a price of an additional
multiplicative 1/γ factor in the sampling condition (2.17) to achieve the same guarantees. In many cases
ν, can be designed or generated in computable ways that yield tractable γ values [Dri+12; AM15; CLV17;
Rud+18], and in the function approximation context asymptotics can be used to identify a tractable ν
[NJZ17].

An alternative procedure is to devise strategies to exactly sample from νµ,V , in which case one must
make additional assumptions to avoid exponential complexity in D. The remainder of this paper is
devoted to one such strategy in the tensor product setting corresponding to when V is defined by a
monotone lower index set. In the finite-I setting, this corresponds to A being a monotone lower column
subset of a Kronecker product matrix, and our corresponding sampling algorithm scales linearly in D.

9

3 Tensor-product structure
Our main focus in this article is a specialization of the setup in the previous sections, where we assume

that µ is a product measure over D-dimensional space, and V is a certain subspace of a tensor-product
space of functions. We describe and discuss this specialized setup in this section.

We again consider D-dimensional approximation for a fixed D ∈ N as in Section 2, but with I and µ
formed from a D-fold tensor product. Precisely, we assume,

I :=
D×
d=1

Id ⊂ RD, µ :=
D⊗
d=1

µd, (3.1)

where Id ⊂ R, d ∈ [D] is a collection of sets in R, each of which may be finite, countably infinite,
or uncountably infinite. Associated to each set Id, d ∈ [D], we also assume the probability measure
µd : B(Id)→ [0, 1], where B(Id) is the σ-algebra of Borel sets on Id. With these particular constructions
for I and µ, the space L2

µ(I) is as defined in Section 2.
The subspace V will also be constructed through a type of tensorization. For each d ∈ [D], consider

a given set of Nd ∈ N functions a(d)
j , j ∈ [Nd], which are elements of L2

µd
(Id),

Vd := span
{
a

(d)
j , j ∈ [Nd]

}
, a

(d)
j ∈ L

2
µd

(Id) ∀j ∈ [Nd], d ∈ [D]. (3.2)

The tensorial space of functions is
⊗D

d=1 Vd ⊂ L2
µ(I), but we can consider a subspace of this through a

multi-index set. Our multi-indices will lie on the strictly positive integer lattice in D dimensions, ND.
Our first multi-index will be N , formed by concatenating the dimensions of the spaces Vd,

N := (N1, . . . , ND) ∈ ND. (3.3)

In what follows we use the following notation to denote the orthant in ND that is bounded by N along
with its size (N),

[N] :=
D⊗
d=1

[Nd], (N) := |[N]| =
D∏
d=1

Nd.

We will now assume that some size-N subset J of the bounded orthant [N] is given,

J ⊆ [N] ⊂ ND, N = |J |. (3.4a)

I.e., J contains multi-indices whose maximum entry in location d is at most Nd. Finally, we will require
an ordering of the multi-indices,

J = {αn}n∈[N] . (3.4b)

The subspace of functions V we consider from here onward are spanned by products of functions from
the Vd spaces,

V := span
{
aα

∣∣ α ∈ J } = span
{
an

∣∣ n ∈ [N]
}
, aα(y) :=

D∏
d=1

a
(d)
α(d)(yd), (3.5)

where α(d) is the dth index in the multi-index α. Note that we have introduced a linear ordering of the
functions aj ∈ L2

µ(I) for j ∈ N corresponding to the linear order (3.4b) of multi-indices in J .

3.1 The multi-index set J
In this section we introduce and discuss some common choices for J . To describe our choices, we

will use weighted `p functions on multi-indices α. Let w = (w1, . . . , wD) ∈ (0, 1]D denote a weight vector

10

satisfying maxd wd = 1. Then the weighted `p function is given by,

‖α‖w,p :=
[
D∑
d=1

(
α(d)

wd

)p]1/p

, 0 < p <∞, (3.6a)

‖α‖w,∞ := max
d∈[D]

α(d)

wd
, (3.6b)

‖α‖w,0 :=
∑
d∈[D]

1α(d) 6=0, (3.6c)

where 1S is the indicator function for the condition S. In our context, wj < wk indicates that dimension
k is more “important” in the sense that values of α satisfying ‖α‖w,p ≤ G for a fixed G permits larger
values of α(k) than α(j). Let 1 := (1, 1, . . . , 1) ∈ ND be a multi-index with all entries 1. When w = 1, the
functions above reduce to the standard (unweighted) `p functions, and we utilize abbreviated notation
for this case,

‖α‖p := ‖α‖1,p, 0 ≤ p ≤ ∞.

Note that when p = 0, the value of w plays no role. Very common index sets J correspond to the
1-centered ball of “order”/radius G ≥ 0 in the w-weighted `p metric:

Jw,p(G) :=
{
α ∈ ND

∣∣ ‖α− 1‖w,p ≤ G
}
, Jp(G) := J1,p(G). (3.7)

One typically chooses G ≥ 0 as an integer. We plot examples of these sets in Figure 1. The definitions

0 10 20
0

5

10

15

20

J∞(20)

0 10 20
0

5

10

15

20

J1(20)

0 10 20
0

5

10

15

20

J2(20)

10 20

5

10

15

20

J0.5(20)

10 20
0

5

10

15

20

Jw,∞(20)

10 20
0

5

10

15

20

Jw,1(20)

10 20
0

5

10

15

20

Jw,2(20)

10 20

5

10

15

20

Jw,0.5(20)

Figure 1: Examples of index sets Jw,p in D = 2 dimensions defined by (3.7). Top row: unweighted sets
(w = 1). Bottom row: weighted sets (w =

(2
3 , 1
)
).

above are somewhat more transparent if one chooses the functions a(d)
j in (3.2) to be polynomials, e.g., the

monomials a(d)
j (y) = yj−1

d . Then J1(G) (i.e., p = 1) corresponds to the space V of degree-G polynomials
in D dimensions. The choice p = 2 is associated to approximation with the “Euclidean degree” G [Tre17].
The choice p = ∞ corresponds to a tensorial space V of polynomials with maximum degree G in any
dimension. When p = 0 and G < D, then J0(G) corresponds to a set of multi-indices α where at most
G entres of α are larger than 1, and so in the polynomial context this means that functions in V are
non-constant in at most G dimensions.

For 1 ≤ p ≤ ∞, then ‖ · ‖p is a norm, so that Jp(G) in this case is a convex set.2 Smaller values
of p, say p � 1, diminish the presence of basis functions corresponding to multi-indices α where all

2More precisely, the polytope whose vertices are given by Jp(G) is equal to conv(Jp(G)).

11

components αd are larger than 1. This is commonly interpreted as diminishing the basis functions with
D-dimensional interactions. A more aggressive pruning of such high-dimensional interactions is furnished
by the hyperbolic cross space,

Jw,HC(G) :=
{
α ∈ ND

∣∣ ‖ logα‖w,1 ≤ log(G+ 1)
}

where α 7→ logα is componentwise. Hyperbolic cross spaces have ties to function spaces of certain
smoothness in high dimensions [DG16; DTU18], and are natural spaces for sparse/compressive approxi-
mations [ABW22].

In all the above cases, takingw 6= 1 yields anisotropic multi-index sets: wj < wk implies that Jw,p(G)
allows larger multi-indices in dimension k compared to dimension j. Utilizing such spaces is typical in
high-dimensional approximation of parametric PDEs where often one has a priori information about the
relative importance of each dimension.

There is one common property that is shared by all the index sets we have discussed.

Definition 3.1. We say that the set of multi-indices J is a monotone lower set if the lexicographic
multi-index version of J is a monotone lower set, i.e., if J satisfies,

α ∈ J =⇒ β ∈ J ∀ 1 ≤ β ≤ α, (3.8)

where ≤ is interpreted componentwise.

All the multi-index sets we have introduced before are monotone lower.

Proposition 3.2. For any p ≥ 0, G ≥ 0, and weight vector w, then the multi-index sets Jw,p(G) and
Jw,HC(G) are all monotone lower, and we have

Jw,p(G) ⊆ [N], Jw,HC(G) ⊆ [N], (3.9)

where the components of N are defined by identifying the smallest bounding box for J :

With J = Jw,p(G) or J = Jw,HC(G), then Nd = bGwdc = max
α∈J

αd. (3.10)

We omit the proof; the main idea is to show that for any α ∈ J , then α− ed for any d ∈ [D] also lies
in J , where ed is the canonical unit vector in direction d. Monotone lower sets are precisely the types
of column subsets of a Kronecker product least-squares problem that we will consider. In particular,
we will show that even though least squares problems on a Kronecker product column subset do not
have Kronecker structure, if the column subset is monotone lower, then we can still compute accurate,
approximate solutions with formal O(D) complexity.3

Finally, we remark that more generally we only require that our multi-index sets J are monotone
lower after a dimensionwise permutation. For example, with D = 2, the index set,

J =

 (1, 1), (1, 2), (1, 3), (1, 4)
(2, 1), (2, 4)
(3, 1), (3, 2), (3, 3), (3, 4)

 ,

is clearly not monotone lower, but if we define a 2-dimensional permutation π via dimensionwise permu-
tations π1 and π2,

π((α1, α2)) := (π1(α1), π2(α2)),
π1 :[3]→ [3], π1({1, 2, 3}) = {1, 3, 2},
π2 :[4]→ [4], π2({1, 2, 3, 4}) = {1, 4, 3, 2},

then π(J) is a monotone lower set, and all our theory and algorithms apply by simply exercising this
permutation map. We visualize two more sets in Figure 2 that are not monotone lower, but become
monotone lower under appropriate dimensionwise permutations.

3Of course, the complexity will depend on N , which could grow exponentially in D.

12

0 10 20
0

5

10

15

20

J

0 10 20
0

5

10

15

20

π(J)

0 10 20
0

5

10

15

20

J̃

0 10 20
0

5

10

15

20

π̃(J̃)

Figure 2: Two index sets J and J̃ (first and third plots) that are not monotone lower, but appropriate
dimensionwise permutation maps π and π̃ make them monotone lower (second and fourth plots). Because
of this, our algorithms apply to least squares approximations on sets J and J̃ by initially applying the
permutations, applying our algorithms, and finally by exercising the inverse permutations.

3.2 Example: Polynomial approximation on tensorial domains
This section pairs with Example 2.2. For each d ∈ [D], let Id be an interval (possibly infinite) on

the real line R, and let µd be some probability measure on Id. For example, if Id is bounded, µd can be
chosen as the uniform measure on Id. We choose monomials as our univariate basis functions,

a
(d)
j (y) = yj−1

d ,

in which case the least squares problem (2.2) corresponds to a µ-weighted best-L2 approximation with
polynomials from the multi-index set J :

x∗ = arg min
x∈R|J |

∫
I

(
f(y)−

N∑
n=1

xny
αn

)2

dµ(y),

where αn is an enumeration of the multi-indices as introduced in (3.4b), and yαn is the standard monomial
multi-index notation,

yαn =
D∏
d=1

y
α(d)
n

d .

3.3 Example: Matrix-vector least squares problems
This section pairs with Example 2.1. Our formalism in the previous sections specializes to familiar

vector and matrix realizations when each domain is finite. Choose each µd in (3.1) as a discrete measure
over Md ≥ 1 points, with support

Id = suppµd =
{
y

(d)
1 , . . . y

(d)
Md

}
, µd =

Md∑
m=1

w(d)
m δ

y
(d)
m
, (3.11)

for some non-negative weights w(d)
m where δy is the Dirac mass centered at y. Then the algebraic problem

(2.2) is equivalent to solving the following standard least squares problem,

x∗ = arg min
x∈RN

‖Ax− b‖2
, (3.12)

where

(A)m,n = √wm an(ym), (b)m = √wm b(ym), (m,n) ∈ [(M)]× [N]. (3.13)

where wi, i ∈ [(M)] are a lexicographic reordering of the weights
∏D
d=1 w

(d)
β(d) over all multi-indices

β ∈ [M] = [(M1, . . . ,MD)]. Thus, our formalism in a very simple setting is standard linear algebraic
least-squares.

13

In particular, this setup demonstrates the Kronecker product structure of our problem. For each
d ∈ [D], define the following Md ×Nd matrix:(

A(d)
)
m,n

=
√
w

(d)
m a(d)

n

(
y(d)
m

)
, (m,n) ∈ [Md]× [Nd] (3.14)

The Kronecker product of these “univariate” matrices is an (M)× (N) matrix,

Akr = A(1) ⊗ · · · ⊗A(D). (3.15)

The matrix A in (3.13) is a column subset of Akr . In particular, write (Akr):,α for some α ∈ [N] to mean
the column of Akr whose linear index corresponds to the linear index of α in a lexicographic ordering of
[N]. Then,

A = (Akr):,J . (3.16)

Hence, the least squares problem (3.12) is a column subset of the corresponding full Kronecker product
problem,

arg min
x∈R(N)

‖Akrx− b‖
2
.

Our main goal is to describe an efficient procedure for sampling from the induced distribution νµ,V
so that we can exercise Theorem 2.8 to compute solutions to (3.11) efficiently. Equivalently, we seek to
efficiently sample the rows of A according to its leverage scores, exploiting the fact that A is a column
subset of Akr . It is fairly straightforward to establish that the leverage scores of Akr are simply products
of the leverage scores of A(d), and hence can be efficiently sampled (see Section 4.3.1). However, our
proposed algorithm in Section 4.3.3 can also efficiently sample rows according to the leverage scores of A
when J is monotone lower. This monotone lower subset property is in particular what distinguishes our
setup (and approach) from similar least squares problems involving Kronecker products [FF94; FFH97;
Ses17; MMV19; FH20].

4 Sampling algorithms for νµ,V
We have seen that in order efficiently solve least squares problems using the procedures outlined in

Section 2.3, we require the ability to draw samples from the induced distribution ν defined in Section
2.2. This section discusses two algorithms for (exactly) sampling from this distribution, which amounts
to computing and sampling according to leverage scores of A when µ is finitely supported.

The goal of this section is to discuss algorithms that sample from the induced/leverage score dis-
tribution ν in (2.9). Our discussion will leverage a sequence of univariate orthonormal basis functions,
along with some univariate induced distributions. In particular, we will identify an algorithm that can
quickly and exactly sample from the D-dimensional measure ν leveraging only 1-dimensional sampling
methods. In all that follows, we assume that J is a finite set of multi-indices.

4.1 Direct sampling of ν
The most direct way to sample from the measure ν is to explicitly compute its density with respect

to µ as given in (2.11), and then to use some method to sample from this D-dimensional measure. More
explicitly, we have,

dν(y) = 1
N

N∑
j=1
|uj(y)|2dµ(y). (4.1)

Therefore, a direct way to sample from ν is:

1. Given the original basis functions an, compute the orthonormal basis {un}Nj=n.

2. Sample from the D-dimensional density in (4.1).

14

However, the above approach is computationally expensive or even infeasible in general. First, computing
the un requires integration over D-dimensional space according to the measure µ. Second, sampling from
general multidimensional measures, such as (4.1), is itself an expensive undertaking, regardless of if one
uses exact samplers (such as rejection sampling) or approximate samplers (such as Markov Chain Monte
Carlo).

In the finitely-supported measure case, we can more precisely quantify the required cost. The steps
in this case are to

1. Compute some element U ∈ col(A). Using, for example, the QR decomposition, requires O(MN2)
complexity and O(MN) storage.

2. Compute and sample according to the (normalized) leverage scores in (2.13). Computing the
scores requires O(MN) effort and O(M) storage. The actual sampling from the size-M discrete
distribution requires a relatively negligible O(M) initialization cost with a subsequent O(1) cost
per sample [Vos91].

We see that there is a rather explicit dependence on both M and N for both steps. Recall that when
D � 1, both M and N can be so large that even forming and storing the full matrix A can be
computationally infeasible. Thus, even in the finite-supported case, this direct approach is not appealing.

The purpose of the next sections is to identify algorithms for sampling that entirely circumvent
dependence on M and N . The essential ingredient to accomplish this is the ability to sample from
certain one-dimensional measures.

4.2 Sampling from univariate measures
Before discussing how one can more efficiently sample from the D-dimensional measure ν, we in-

troduce some needed concepts for one-dimensional sampling. Recall from (3.2) that to each dimension
d ∈ [D] we have a collection of basis functions (a(d)

j), j ∈ [Nd]. We require identification of a(ny)
L2
µd

(Id)-set of orthonormal basis functions q(d)
k ,

a
(d)
j =

∑
k∈[Nd]

R
(d)
k,jq

(d)
k ,

∫
Id

q
(d)
k (y(d))q(d)

j (y(d))dµd(y(d)) = δj,k, (4.2)

where R(d) ∈ RNd×Nd is an invertible matrix. A common strategy to accomplish this is via a Gram-
Schmidt-like triangular factorization, i.e.,

k > j =⇒
(
R(d)

)
k,j

= 0 =⇒ R(d) is upper triangular.

Associated to the basis functions q(d)
k we construct univariate measures,

dν(d)
k (y(d)) =

∣∣∣q(d)
k (y(d))

∣∣∣2 dµd(y(d)), k ∈ [Nd], d ∈ [D], (4.3)

which are all probability measures over Id since the q(d)
k functions have unit L2

µd
norms. We require the

ability to sample from ν
(d)
k for each (k, d).

Assumption 4.1. For any k and d, drawing a sample from ν
(d)
k defined in (4.3) is computationally

feasible and cheap, e.g., O(1) complexity.

Since these are all univariate distributions, one concrete way to sample is via inverse transform
sampling, i.e., to compute,

Y
(d)
k = F−1

ν
(d)
k

(U), U ∼ U [0, 1] =⇒ Y
(d)
k ∼ ν(d)

k , (4.4)

where F
ν

(d)
k

(·) is the cumulative distibution function of ν(d)
k and F−1

ν
(d)
k

is its function inverse. For example,
for polynomial subspaces there are computational strategies to efficiently compute this for fairly general
µd [Nar18].

15

Again, we can write all the above in somewhat more transparent form by specializing to our finite
setup of Section 3.3. In that setup, assume for simplicity that each matrix A(d) has full column rank, so
that each A(d) has a full-rank QR decomposition, i.e.,

A(d) = Q(d)R(d), Q(d) ∈ RMd×Nd , R(d) ∈ RNd×Nd , (4.5)

with each R(d) upper triangular and invertible. We assume availability of Q(d), which is a one-time
(“offline”) computation for each d ∈ [D] requiring a cumulative O(DMmaxN

2
max) complexity with

O(DMmaxNmax) storage, where Mmax = maxd∈[D] Md and Nmax = maxd∈[D] Nd. In particular, we
will assume the ability to access the columns of Q(d) for each d:

Q(d) =
[
q

(d)
1 , . . . , q

(d)
Nd

]
.

In this finite setup, we have Id =
{
y

(d)
1 , . . . , y

(d)
Md

}
, the mass weights for µd are w(d)

m , and so ν
(d)
k is

explicitly given as the discrete measure,

ν
(d)
k =

∑
m∈[Md]

w(d)
m

∣∣∣(q(d)
k

)
m

∣∣∣2 δy(d)
m
,

suggesting the following definition of the (normalized) (k, d) one-dimensional leverage scores:

`
(d)
k,m = w(d)

m

∣∣∣(q(d)
k

)
m

∣∣∣2 , m ∈ [Md]. (4.6)

The quantities `(d)
k,m are leverage scores associated to the vector q(d)

k . Sampling from ν
(d)
k is equivalent to

sampling from the discrete set {y(d)
1 , . . . , y

(d)
Md
} according to the (k, d) leverage scores defined above. An

algorithm and cost summarization is given in Algorithm 2.

Algorithm 2: Sampling from ν
(d)
k in (4.3) for all k ∈ [Nd] when µ is finitely supported.

1 Initialization;
Input: d ∈ [D], Nd ∈ N

2 Compute A(d) in (3.14). [O(MdNd) cost + storage];
3 Compute Q(d) in (4.5). [O(MdN

2
d) cost, O(MdNd) storage];

4 Compute the normalized (k, d) leverage scores `(d)
k,m in (4.6) for all k ∈ [Nd]. [O(MdNd) cost

and storage];
5 Initialization for sampling from {y(d)

1 , . . . , y
(d)
Md
} according to the (k, d) leverage scores.

[O(Md) cost per sample] ;
6 Sampling;
Input: k ∈ [Nd]

7 Sample Y from {y(d)
1 , . . . , y

(d)
Md
} according to the (k, d) leverage scores. [O(1) cost per sample];

Output: Y

For sampling from such discrete measures, computationally effective, O(1)-per sample approaches
exist with a one-time O(Md) initialization cost [Vos91]. Thus, in the finitely-supported measure case,
Assumption 4.1 is always satisfied with reasonable Md- and Nd-dependent initialization costs.

4.3 Sampling algorithms
Having completed the requisite setup, we can now describe several sampling algorithms under certain

structural assumptions on A. Section 4.3.1 discusses sampling when A is an actual Kronecker product
matrix. Section 4.3.2 discusses sampling when the columns of A are orthogonal. Finally, Section 4.3.3
discusses a more interesting setting when the index set J defining the columns of A is monotone lower.

16

4.3.1 Tensor product spaces

In this section we make the assumption that J = Jw,∞(K) = ×d∈[D][Nd]. In practice one is not
frequently interested in this case due to the large size of J when D is large. Nevertheless, the ideas from
this situation are ingredients for our strategy in the general monotone lower case.

First we observe that the dimension-d (µd, Vd)-induced distribution, ν(d), is a uniform mixture of the
measures ν(d)

k ,

ν(d) = 1
Nd

∑
k∈[Nd]

ν
(d)
k , (4.7)

which is a direct consequence of (4.3) and the computation (2.11). Therefore, ν(d) is a uniform mixture
of measures ν(d)

k , and under Assumption 4.1 is therefore easily sampled from.
Unsurprisingly, the induced distribution under the tensor-product space assumption of this section is

a product measure.

Proposition 4.2. If J = ×d∈[D][Nd], then the (µ, V)-induced distribution ν in (2.9) is given by,

ν = ×
d∈[D]

ν(d),

where ν(d) for each d is the (µd, Vd) univariate induced distribution in (4.7).

Proof. In this tensor-product setup, then with the univariate orthonormal functions q(d)
k introduced in

the previous section, it is straightforward to show that the collection of functions,

qα(y) :=
∏
d∈[D]

q
(d)
α(d)(y(d)), α ∈ J = [N], (4.8)

is an orthonormal basis for J . Thus, according to (2.11),

dν(y) = 1∏
d∈[D] Nd

∑
α∈[N]

|qα(y)|2dµ(y)

(4.8)= 1∏
d∈[D] Nd

∑
α∈[N]

∏
d∈[D]

∣∣∣q(d)
α(d)(y(d))

∣∣∣2 dµ(y)

= 1∏
d∈[D] Nd

N1∑
α(d)=1

· · ·
ND∑

α(D)=1

∏
d∈[D]

∣∣∣q(d)
α(d)(y(d))

∣∣∣2 dµ1(y(1)) · · · dµD(y(D))

= 1∏
d∈[D] Nd

∏
d∈[D]

(
Nd∑

α(d)=1

∣∣∣q(d)
α(d)(y(d))

∣∣∣2 dµd(y(d))
)

(4.7)=
∏
d∈[D]

dν(d).

The result above shows that at least in some specialized cases, the somewhat opaque D-dimensional
measure ν is actually a tensor-product measure, and hence easily sampled from since one need only
sample ν(d).

When µ is finitely supported, the result above specializes to the statement that leverage scores for a
Kronecker product matrix are products of the leverage scores from the individual matrices forming the
product:

J = ×Dd=1[Nd] and U (d) ∈ col(A(d)) =⇒ U (1) ⊗ · · · ⊗U (D) ∈ col(A)

=⇒ `α(A) = `α

(
D⊗
d=1

A(d)

)
=

D∏
d=1

`αd(A(d)), (4.9)

17

where `α(A) is the leverage score associated to row of A formed from the row αd of A(d) for d ∈ [D]. In
this finitely supported µ case, Algorithm 3 describes how to sample from ν when J is a hypercube on
the lattice, and summarizes the corresponding complexity.

Algorithm 3: Algorithm from Section 4.3.1 when µ is finitely supported and J is a product
set.

1 Initialization;
Input: One-dimensional sizes (N1, . . . , ND)

2 For each d ∈ [D], perform Initialization step in Algorithm 2. [O(
∑D
d=1 MdN

2
d) cost and

O(
∑D
d=1 Md) storage];

3 Sampling;
4 for d = 1, . . . , D do
5 Select k uniformly at random from [Nd]. [O(1) cost + storage];
6 Generate sample Y (d) from Sampling step in Algorithm 2 with input (k, d). [O(1) cost +

storage];
7 end
8 Return Y = (Y (1), . . . , Y (D));

Note that while Algorithm 3 samples from ν(d) by using the mixture property (4.7), one can equiva-
lently replace steps 5 and 6 in Algorithm 3 by a single step that samples from the (µd, Vd) one-dimensional
leverage scores associated with A(d). This simpler strategy utilizes the Kronecker product leverage score
property (4.9).

4.3.2 Orthogonal basis functions

Another relatively simple case when exactly sampling from ν is fairly straightforward occurs when
the one-dimensional functions a(d)

j for j ∈ [Nd] are L2
µd

(Id)-orthogonal. In this case, the one-dimensional
orthonormal functions q(d)

j in (4.2) are simply scaled versions of a(d)
j . The following result is then

straightforward to establish.
Proposition 4.3. Assume that for every d we have the property,〈

a
(d)
j , a

(d)
k

〉
µd

= 0, j, k ∈ [Nd], j 6= k. (4.10)

Then,

q
(d)
j =

a
(d)
j

‖a(d)
j ‖µd

, (4.11)

and given any J = {α1, . . . , αN}, an orthonormal basis un, n ∈ [N] for V is given by,

uj(y) =
D∏
d=1

q
(d)
α

(d)
j

(y(d)), J = {α1, . . . , αN}. (4.12)

The normalization property (4.11) is immediate from (4.10), and (4.12) follows by the product prop-
erty (3.5) of the aα functions that span V .

Thus, if Assumption 4.1 holds, then combining (4.12) with (2.11) shows that we can sample efficiently
from ν by (i) uniformly at random choosing some αn ∈ J , and (ii) sampling Y (d) according to ν(d)

α
(d)
n

for
each d, forming the multivariate sample Y = (Y (1), . . . , Y (d)) that is distributed according to ν.

When µ is finitely supported, then the assumption (4.10) is equivalent to A(d) having orthogonal
columns, and therefore the columns of A are orthogonal, hence the leverage scores are easily computed
directly from A by appropriately normalizing the columns from matrices A(d), in particular by comput-
ing,

q
(d)
k = a

(d)
k

‖a(d)
k ‖

, k ∈ [Nd], d ∈ [D]. (4.13)

18

An algorithm that achieves this type of sampling is described in Algorithm 4.

Algorithm 4: Algorithm from Section 4.3.2 under the orthogonal columns assumption (4.10)
when µ is finitely supported.

1 Initialization;
Input: Index set J

2 Compute Nd for d ∈ [D] using (3.10). [O(DN) cost];
3 For each d ∈ [D] compute individual columns of Q(d) in (4.5) via (4.13). [O(

∑D
d=1 MdNd)

cost + storage];
4 Compute the one-dimensional (k, d) leverage scores `(d)

k,m in (4.6) for m ∈ [Md]
[O(
∑D
d=1 MdNd) cost + storage];

5 Sampling;
6 Choose α uniformly at random from J . [O(1) cost];
7 For d ∈ [D], sample Y (d) according to ν(d)

α(d) , accomplished using the Sampling step in
Algorithm 2. [O(D) cost];
Output: Y = (Y (1), . . . , Y (D))

4.3.3 Monotone lower J

The most general case we consider in this paper is when J is a monotone lower set of indices as
defined in Definition 3.1. The sets Jw,p(K) introduced in Section 3.1 are examples of such subsets, but
are not comprehensive (e.g., the JHC sets and the set π(J) in the second column of Figure 2 are other
examples).

The main result we require to establish fast sampling is the following identification of an orthonormal
basis for V .

Proposition 4.4. Assume J = {α1, . . . , αN} is monotone lower, and define,

qj(y) :=
∏
d∈[D]

q
(d)
α

(d)
j

(y(d)), αj = (α(1)
j , . . . , α

(D)
j). (4.14)

Then {qj}j∈[N] is an L2
µ(I)-orthonormal basis for V .

Proof. The N = dimV functions qn, n ∈ [N] are L2
µ(I)-orthonormal by construction, and therefore we

need only show that the functions aj that span V lie in span{qn}n∈[N]. We have:

aj(y) (3.5)=
∏
d∈[D]

a
α

(d)
j

(y(d))(4.2)=
∏
d∈[D]

∑
k∈[Nd]

R
(d)
k,α

(d)
j

q
(d)
k (y(d))

=
∏
d∈[D]

∑
β(d)∈[Nd]

R
(d)
β(d),α

(d)
j

q
(d)
β(d)(y(d))

=
∑
β≤αj

 ∏
d∈[D]

R
(d)
β(d),α

(d)
j

 ∏
d∈[D]

q
(d)
β(d)(y(d))


(3.8)=

∑
β∈J

cαj ,β

 ∏
d∈[D]

q
(d)
β(d)(y(d))


=

N∑
n=1

cαj ,αnqn(y),

proving the result.

19

Therefore, if J is a monotone lower set, then there is an efficiently computable orthonormal basis
(4.14) for V that is formed from products of univariate functions. The mixture property (2.11) of ν with
un = qn then yields the following formula for ν:

J = {α1, . . . , αN} monotone lower =⇒ ν = 1
N

∑
n∈[N]

∏
d∈[D]

ν
(d)
α

(d)
n

.

I.e., ν is a uniform mixture of product measures, revealing the following algorithm for quickly sampling
from ν when J is monotone lower: (1) Uniformly at random select α ∈ J , (2) for each d ∈ [D],
sample Y (d) ∼ ν

(d)
α(d) , and return Y = (Y (1), . . . , Y (D)). Under Assumption 4.1 that univariate sampling

according to ν(d)
k is efficient, this results in an exact fast sampling algorithm from ν.

When µ is finitely supported, the conclusion of Proposition 4.4 regarding the construction of qj in
(4.14) is equivalent to the result that the size-M vectors,

qj = ⊗d∈[D]q
(d)
α

(d)
j

, j ∈ [N],

are columns vectors for a matrixQ that is an element of col(A). In this finitely supported case, Algorithm
5 formalizes the algorithm steps and cost for sampling from ν when J is monotone lower.

Algorithm 5: Algorithm from Section 4.3.3 when µ is finitely supported and J is a monotone
lower set.

1 Initialization;
Input: Multi-index set J

2 Compute Nd for d ∈ [D] using (3.10). [O(DN) cost];
3 For each d ∈ [D], perform Initialization step in Algorithm 2. [O(

∑D
d=1 MdN

2
d) cost and

O(
∑D
d=1 MdNd) storage];

4 Sampling;
5 Choose α uniformly at random from J . [O(1) cost];
6 For d ∈ [D], sample Y (d) according to ν(d)

α(d) , accomplished using the Sampling step in
Algorithm 2. [O(D) cost];
Output: Y = (Y (1), . . . , Y (D))

5 Experiment results
In this section we demonstrate that the exact leverage score sampling proposed in Algorithm 5 results

in increased accuracy compared to sketches where we sample rows uniformly at random, or compared
to an approximate leverage score sampling method. Although our algorithm and theory apply to the
case when the D-dimensional domain has infinitely many points (under assumption 4.1), for simplicity
we consider a finite domain. In particular, we consider the setup of Section 3.3: each Id contains Md

points {y(d)
m }m∈[Md] and corresponding weights {w(d)

m }m∈[Md] which define the matrices A(d) in (3.14).
Given an index set J , the least squares matrix A is formed as the J -column subset, given in (3.16),
and hence has M =

∏D
d=1 Md rows. We assume that J is monotone lower in the sense of Definition 3.1.

We will describe how the data b is defined in each example that follows, and we perform row-sketched
least squares as described in Algorithm 1, which involves defining the sketching measure ν in (2.4). We
compare results from the following 3 sampling strategies:

Uniform: Sampling uniformly at random from the M rows of A, i.e.,

ν = 1
M

∑
m∈[(M1,...,Md)]

δ(
y

(1)
m1 ,y

(2)
m2 ,...,y

(D)
mD

).
The sampling cost is linear in D, and O(1) in both Md and Nd.

20

TP sampling: We sample according to the leverage scores of the tensor product (TP) Akr =
⊗dA(d), described in Algorithm 3. Note that this implicitly assumes that J ≈ [N],
so that the (difficult to compute) leverage scores of former are approximately those
of the (easily computed) latter. The sampling cost is linear in D and Md, and
quadratic in Nd.

Leverage sampling: We efficiently sample according to the exact leverage scores using Algorithm 5. The
sampling cost is linear in D and Md, and quadratic in Nd.

For each method above, we compute the relative residual of the sketched least squares solution x̃, along
with the optimal relative error from the full least-squares solution:

Relative error = ‖Ax̃− b‖2

‖b‖2
,

Optimal relative error = ‖Ax
∗ − b‖2

‖b‖2
.

Since “Relative error” is random, we will report its empirical distribution using 100 trials. Our examples
are taken from polynomial approximation, specifically from parametric uncertainty quantification using
polynomial chaos expansions (PCE). We assume that the nodes and weights {y(d)

m , w
(d)
m } are identical for

each dimension d, and are given as the Md-point Gauss-Legendre quadrature rule on [−1, 1].
Here we test the empirical results of three different sampling methods involving three numerical

examples. We construct the Legendre PCE grid with tensor structure for all examples. In the first one,
we investigate the Duffing oscillator under free vibration. Next, the Ishigami function is considered.
Lastly, we work on the prediction of the remaining useful life of a Lithium-ion battery. The first two
examples are three-dimension problems with larger value of N , while the last example is a high-dimension
problem (d = 7) with smaller N . Our empirical results show that our proposed algorithm works in both
cases.4

5.1 Nonlinear Duffing oscillator
The first problem is to study the uncertainty of the displacement solution u(y, t) for a nonlinear

single-degree-of-freedom Duffing oscillator [MS15] under free vibration. The system is described by,

ü(y, t) + 2ω1ω2u̇(y, t) + ω2
1(u(y, t) + ω3u

3(y, t)) = 0,
u(y, 0) = 1, u̇(y, 0) = 0,

(5.1)

where the uncertain parameters {ωi}3
i=1 are

ω1 = 2π (1 + 0.2y(1)), ω2 = 0.05 (1 + 0.05y(2)), ω3 = −0.5 (1 + 0.5y(3)), (5.2)

with {y(d)}3
d=1 being three different uncertain input parameters. We sample Md = 20 Gauss-Legendre

nodes values of y(d) between −1 and 1. The QoI we choose is u(y, 4). The dimension D of the problem
is 3, and the degrees of polynomial K are considered as 9, 12 for total degree space, 15, 18 for hyperbolic
cross space. The reason for different degrees of different polynomials is because total degree space
has smaller number of PC basis compared to hyperbolic cross space. The sample size is four times of
polynomial subspace size (4J1(K) for total degree and 4JHC(K) for hyperbolic cross). Figure 3 shows
the empirical cumulative distribution function (CDF) for the relative error of 100 independent trials for
the total degree space and the hyperbolic cross space.

4The codes of our sampling method for Duffing oscillator and Ishigami function are available at https://github.com/CU-
UQ/monotone-lower-set.

21

https://github.com/CU-UQ/monotone-lower-set
https://github.com/CU-UQ/monotone-lower-set

0.028 0.03 0.032 0.034 0.036

Relative Error

0

0.5

1

C
D

F
K=7; Total Degree

3.2 3.4 3.6 3.8 4 4.2 4.4

Relative Error 10
-3

0

0.5

1

C
D

F

K=9; Total Degree

0.075 0.08 0.085 0.09 0.095 0.1

Relative Error

0

0.5

1

C
D

F

K=15; Hyperbolic Cross

0.034 0.036 0.038 0.04 0.042 0.044 0.046

Relative Error

0

0.5

1

C
D

F

K=18; Hyperbolic Cross

Uniform Sampling

TP Sampling

Leverage Sampling

Figure 3: Distribution of relative error in estimating the displacement u(y, 4) with a K = 7 (top left)
and K = 9 (top right) order total degree PCE with optimal relative errors 2.6×10−2 and 2.9×10−3, and
a K = 15 (bottom left) and K = 18 (bottom right) order hyperbolic cross PCE with optimal relative
errors 6.9× 10−2 and 3.2× 10−2.

The Figure 3 shows that leverage sampling has superior performance compared with uniform sam-
pling. As we discussed in Section 4.3.3, leverage sampling algorithm has the same computation complex-
ity with uniform sampling algorithm under the assumption of monotone lower set J . Additionally, the
leverage sampling leads to a better result than TP sampling. The reason is that TP sampling use the
approximate leverage scores as sampling weights while leverage sampling uses exact leverage scores. The
empirical result validates our theoretical proof that leverage sampling algorithm can give us a higher
accuracy without increasing the complexity.

5.2 Ishigami function
The second example we consider is the Ishigami function. It is a 3-dimensional, nonlinear, and non-

monotonic function with a rich history in PC expansion studies [IH90; DDH18]. The formula is given
as

f(y) = sin
(
πy(1)

)
+ a sin2(πy(2)) + b(πy(3))4 sin

(
πy(1)

)
, (5.3)

where y(d) are different variables sampled as Gauss-Legendre nodes between −1 and 1, Md = 20 for all
d. In this example we fix the parameters a = 7 and b = 0.1. For the total degree space, we choose
K = 7, 9 with J1 = 120, 220 respectively. For the hyperbolic cross space, K is set to be 15 and 18, with
respective subspace basis size JHC being 110 and 134. Same with the nonlinear Duffing example, we let
sample size be 4 times the subspace basis size.

22

0.075 0.08 0.085 0.09 0.095 0.1

Relative Error

0

0.5

1

C
D

F
K=7; Total Degree

0.0106 0.0108 0.011 0.0112 0.0114 0.0116 0.0118 0.012 0.0122

Relative Error

0

0.5

1

C
D

F

K=9; Total Degree

0.1 0.105 0.11 0.115 0.12 0.125

Relative Error

0

0.5

1

C
D

F

K=15; Hyperbolic Cross

0.085 0.09 0.095 0.1

Relative Error

0

0.5

1

C
D

F

K=18; Hyperbolic Cross

Uniform Sampling

TP Sampling

Leverage Sampling

Figure 4: Distribution of the relative error in estimating the Ishigami function f(y) with a K = 7 (top
left) and K = 9 (top right) order total degree PCE with optimal relative errors 7.0×10−3 and 9.5×10−4,
and K = 15 (bottom left) and K = 18 (bottom right) order hyperbolic cross PCE with optimal relative
errors 9.0× 10−2 and 7.7× 10−2.

From Figure 4, we can find that both TP sampling and leverage sampling have better performance
than uniform sampling. The observation we have from Section 5.1 still holds for the Ishigami function.

5.3 Prediction of remaining useful life of batteries
The last example is a high-dimensional problem focusing on model-based estimation of the remaining

useful life (RUL) of a Lithium-ion battery (LIB) [SG13; SDG14; San15]. RUL of LIB means the amount
of time a battery takes to reach a defined health threshold.

We assume the system model is given by the following equations,

ż(t) = f(t, z(t),θ(t),ν(t),vp(t)), (5.4)
w(t) = h(t, z(t),θ(t),ν(t),vm(t)), (5.5)

where z(t) is the state vector, f is the state equation, θ(t) the model parameter vector, ν(t) the input
vector, vp(t) the process noise vector, w(t) the output vector, h the output equation, and vm(t) the
measurement noise vector.

In this example, we let the battery be discharged at a constant current represented as a beta random
variable with α = 21.2 and β = 31.8. Also, there are three state variables determining the final RUL. We
let their state estimations and process noise terms be other uncertain parameters. As a result, the total
dimension of this model D is 7. We construct linear transformations mapping the input parameters from
intervals between -1 and 1 to their corresponding ranges, and sample the linear map inputs as Gauss-
Legendre points between -1 and 1. The degree of polynomials K is fixed to be 3. More details about this
model as well as its governing equations are discussed in [SG13; SDG14; San15]. Our numerical results
are presented in Figure 5.

23

7.2 7.4 7.6 7.8 8 8.2 8.4

Relative Error 10
-4

0

0.5

1

C
D

F
M

d
=4; Total Degree

1.02 1.04 1.06 1.08 1.1 1.12 1.14 1.16

Relative Error 10
-3

0

0.5

1

C
D

F

M
d
=5; Total Degree

2.3 2.4 2.5 2.6 2.7 2.8 2.9

Relative Error 10
-3

0

0.5

1

C
D

F

M
d
=4; Hyperbolic Cross

2.25 2.3 2.35 2.4 2.45 2.5 2.55 2.6 2.65

Relative Error 10
-3

0

0.5

1

C
D

F

M
d
=5; Hyperbolic Cross

Uniform Sampling

TP Sampling

Leverage Sampling

Figure 5: Distribution of relative error in estimating the RUL with Md = 4 (top left) and Md = 5 (top
right) under total degree space with optimal relative errors 6.6 × 10−4 and 9.3 × 10−4, and Md = 4
(bottom left) and Md = 5 (bottom right) under hyperbolic cross space with optimal relative errors
2.2× 10−3 and 1.1× 10−3.

It is noticeable that the performance of uniform sampling is similar with (even outperforms) TP
sampling in the top left part of Figure 5. It is because when Md = K + 1, Q becomes a square matrix,
which makes TP sampling degenerates into uniform sampling. To avoid this situation, the leverage
sampling based on our purposed algorithm (Algorithm 5) is clearly a better option. With the exclusion
of it, the result of RUL problem in general matches with our previous observations from Section 5.1 and
Section 5.2.

6 Conclusion
The notion of leverage scores for row sketches in least squares problems allows one to accurately

compute approximate solutions in an efficient, randomized fashion. This same idea appears as the
induced measure in the function approximation setting. We have presented a unified view of these
ideas, and surveyed various accuracy guarantees from both communities when using leverage score-like
sampling.

Leverage scores are relatively expensive to compute for large matrices in general, but can be ac-
complished much more quickly when matrices have special structure. In this paper we have exploited
non-trivial Kronecker product-like structure, corresponding to matrices that are a “monotone lower”
column subset of a Kronecker product matrix, to devise algorithms for efficiently row-sampling from
the full matrix. In this case the cost of sampling is substantially reduced, and one can exactly sample
according to the leverage scores with tractable computational effort.

Acknowledgments
This work was supported by the AFOSR awards FA9550-20-1-0138 and FA9550-20-1-0188 with Dr.

Fariba Fahroo as the program manager. The views expressed in the article do not necessarily represent
the views of the AFOSR or the U.S. Government.

References
[ABW22] B. Adcock, S. Brugiapaglia, and C. G. Webster. Sparse Polynomial Approximation of High-Dimensional

Functions. SIAM, 2022. isbn: 978-1-61197-688-5.

24

[Ahl+20] T. D. Ahle, M. Kapralov, J. B. Knudsen, R. Pagh, A. Velingker, D. P. Woodruff, and A. Zandieh.
“Oblivious Sketching of High-Degree Polynomial Kernels”. In: Proceedings of the Fourteenth Annual
ACM-SIAM Symposium on Discrete Algorithms. SIAM, 2020, pp. 141–160.

[AC09] N. Ailon and B. Chazelle. “The Fast Johnson–Lindenstrauss Transform and Approximate Nearest
Neighbors”. In: SIAM Journal on Computing 39.1 (2009), pp. 302–322.

[AM15] A. Alaoui and M. W. Mahoney. “Fast Randomized Kernel Ridge Regression with Statistical Guar-
antees”. In: Advances in Neural Information Processing Systems. Vol. 28. Curran Associates, Inc.,
2015.

[ANW14] H. Avron, H. L. Nguyen, and D. P. Woodruff. “Subspace Embeddings for the Polynomial Kernel”. In:
Proceedings of the 27th International Conference on Neural Information Processing Systems - Volume
2. Cambridge, MA, USA: MIT Press, 2014, pp. 2258–2266.

[BKW21] S. Bamberger, F. Krahmer, and R. Ward. “Johnson-Lindenstrauss Embeddings with Kronecker Struc-
ture”. In: arXiv preprint arXiv:2106.13349 (2021). arXiv: 2106.13349.

[BBK18] C. Battaglino, G. Ballard, and T. G. Kolda. “A Practical Randomized CP Tensor Decomposition”.
In: SIAM Journal on Matrix Analysis and Applications 39.2 (2018), pp. 876–901.

[BBN11] R. Berman, S. Boucksom, and D. Nyström. “Fekete points and convergence towards equilibrium
measures on complex manifolds”. In: Acta Mathematica 207.1 (2011), pp. 1–27. issn: 0001-5962. doi:
10.1007/s11511-011-0067-x.

[Ber09a] R. J. Berman. “Bergman kernels and equilibrium measures for line bundles over projective manifolds”.
In: American Journal of Mathematics 131.5 (2009), pp. 1485–1524. issn: 1080-6377. doi: 10.1353/
ajm.0.0077.

[Ber09b] R. J. Berman. “Bergman kernels for weighted polynomials and weighted equilibrium measures of Cn”.
In: Indiana University Mathematics Journal 58.4 (2009), pp. 1921–1946. issn: 0022-2518.

[BBB15] D. J. Biagioni, D. Beylkin, and G. Beylkin. “Randomized Interpolative Decomposition of Separated
Representations”. In: Journal of Computational Physics 281.C (Jan. 2015), pp. 116–134. issn: 0021-
9991. doi: 10.1016/j.jcp.2014.10.009.

[CLV17] D. Calandriello, A. Lazaric, and M. Valko. “Distributed Adaptive Sampling for Kernel Matrix Ap-
proximation”. In: Proceedings of the 20th International Conference on Artificial Intelligence and
Statistics. ISSN: 2640-3498. PMLR, 2017, pp. 1421–1429.

[Che+20] K. Chen, Q. Li, K. Newton, and S. J. Wright. “Structured Random Sketching for PDE Inverse
Problems”. In: SIAM Journal on Matrix Analysis and Applications 41.4 (2020), pp. 1742–1770. doi:
10.1137/20M1310497. eprint: https://doi.org/10.1137/20M1310497.

[Che+16] D. Cheng, R. Peng, Y. Liu, and I. Perros. “SPALS: Fast Alternating Least Squares via Implicit
Leverage Scores Sampling”. In: Advances In Neural Information Processing Systems. 2016, pp. 721–
729.

[CW17] K. L. Clarkson and D. P. Woodruff. “Low-Rank Approximation and Regression in Input Sparsity
Time”. In: Journal of the ACM 63.6 (Feb. 2017), 54:1–54:45. issn: 0004-5411. doi: 10.1145/3019134.

[CM17a] A. Cohen and G. Migliorati. “Optimal weighted least-squares methods”. In: SMAI J. Comput. Math.
3 (2017), pp. 181–203. issn: 2426-8399. doi: 10.5802/smai-jcm.24.

[CM17b] A. Cohen and G. Migliorati. “Optimal weighted least-squares methods”. In: SMAI Journal of Com-
putational Mathematics 3 (2017). arxiv:1608.00512 [math.NA], pp. 181–203. issn: 2426-8399. doi:
10.5802/smai-jcm.24.

[Dia+19] H. Diao, R. Jayaram, Z. Song, W. Sun, and D. P. Woodruff. “Optimal Sketching for Kronecker
Product Regression and Low Rank Approximation”. In: arXiv preprint arXiv:1909.13384 (2019).
arXiv: 1909.13384.

[Dia+18] H. Diao, Z. Song, W. Sun, and D. Woodruff. “Sketching for Kronecker Product Regression and
P-Splines”. en. In: Proceedings of the 21st International Conference on Artificial Intelligence and
Statistics. 2018, pp. 1299–1308.

[DDH18] P. Diaz, A. Doostan, and J. Hampton. “Sparse polynomial chaos expansions via compressed sensing
and D-optimal design”. In: Computer Methods in Applied Mechanics and Engineering 336 (July 2018),
pp. 640–666. issn: 00457825. doi: 10.1016/j.cma.2018.03.020.

[DMN17] T.-C. Dinh, X. Ma, and V.-A. Nguyên. “On the asymptotic behavior of Bergman kernels for positive
line bundles”. In: Pacific Journal of Mathematics 289.1 (2017), pp. 71–89. issn: 0030-8730. doi:
10.2140/pjm.2017.289.71.

25

https://arxiv.org/abs/2106.13349
https://doi.org/10.1007/s11511-011-0067-x
https://doi.org/10.1353/ajm.0.0077
https://doi.org/10.1353/ajm.0.0077
https://doi.org/10.1016/j.jcp.2014.10.009
https://doi.org/10.1137/20M1310497
https://doi.org/10.1137/20M1310497
https://doi.org/10.1145/3019134
https://doi.org/10.5802/smai-jcm.24
https://doi.org/10.5802/smai-jcm.24
https://arxiv.org/abs/1909.13384
https://doi.org/10.1016/j.cma.2018.03.020
https://doi.org/10.2140/pjm.2017.289.71

[Dri+12] P. Drineas, M. Magdon-Ismail, M. W. Mahoney, and D. P. Woodruff. “Fast Approximation of Matrix
Coherence and Statistical Leverage”. In: The Journal of Machine Learning Research 13.1 (2012),
pp. 3475–3506.

[DG16] D. Dũng and M. Griebel. “Hyperbolic cross approximation in infinite dimensions”. In: Journal of
Complexity 33 (2016), pp. 55–88. issn: 0885-064X. doi: 10.1016/j.jco.2015.09.006.

[DTU18] D. Dũng, V. Temlyakov, and T. Ullrich. Hyperbolic Cross Approximation. Springer, 2018. isbn: 978-
3-319-92240-9.

[FGF21] M. Fahrbach, M. Ghadiri, and T. Fu. “Fast Low-Rank Tensor Decomposition by Ridge Leverage
Score Sampling”. In: arXiv preprint arXiv:2107.10654 (2021). arXiv: 2107.10654.

[FH20] D. W. Fausett and H. Hashish. “Overview of QR Methods for Large Least Squares Problems In-
volving Kronecker Products”. In: Overview of QR Methods for Large Least Squares Problems In-
volving Kronecker Products. De Gruyter, 2020, pp. 71–80. isbn: 978-3-11-231409-8. doi: 10.1515/
9783112314098-009.

[FF94] D. W. Fausett and C. T. Fulton. “Large Least Squares Problems Involving Kronecker Products”. In:
SIAM Journal on Matrix Analysis and Applications 15.1 (1994), pp. 219–227. issn: 0895-4798. doi:
10.1137/S0895479891222106.

[FFH97] D. W. Fausett, C. T. Fulton, and H. Hashish. “Improved parallel QR method for large least squares
problems involving Kronecker products”. en. In: Journal of Computational and Applied Mathematics
78.1 (1997), pp. 63–78. issn: 0377-0427. doi: 10.1016/S0377-0427(96)00109-4.

[HD15] J. Hampton and A. Doostan. “Coherence motivated sampling and convergence analysis of least
squares polynomial Chaos regression”. In: Computer Methods in Applied Mechanics and Engineering
290 (2015), pp. 73–97. issn: 0045-7825. doi: 10.1016/j.cma.2015.02.006.

[IH90] T Ishigami and T Homma. “An importance quantification technique in uncertainty analysis for com-
puter models”. eng. In: [1990] Proceedings. First International Symposium on Uncertainty Modeling
and Analysis. IEEE Comput. Soc. Press, 1990, pp. 398–403. isbn: 9780818621079.

[Iwe+21] M. A. Iwen, D. Needell, E. Rebrova, and A. Zare. “Lower Memory Oblivious (Tensor) Subspace
Embeddings with Fewer Random Bits: Modewise Methods for Least Squares”. In: SIAM Journal
on Matrix Analysis and Applications 42.1 (2021), pp. 376–416. doi: 10.1137/19M1308116. eprint:
https://doi.org/10.1137/19M1308116.

[JKW20] R. Jin, T. G. Kolda, and R. Ward. “Faster Johnson-Lindenstrauss Transforms via Kronecker Prod-
ucts”. In: Information and Inference: A Journal of the IMA (Oct. 2020). issn: 2049-8772. doi:
10 . 1093 / imaiai / iaaa028. eprint: https : / / academic . oup . com / imaiai / advance - article -
pdf/doi/10.1093/imaiai/iaaa028/34904656/iaaa028.pdf.

[LK20] B. W. Larsen and T. G. Kolda. “Practical Leverage-Based Sampling for Low-Rank Tensor Decom-
position”. In: arXiv preprint arXiv:2006.16438 (2020). arXiv: 2006.16438.

[MS22] L. Ma and E. Solomonik. “Cost-Efficient Gaussian Tensor Network Embeddings for Tensor-structured
Inputs”. In: arXiv preprint arXiv:2205.13163 (2022). arXiv: 2205.13163.

[Mah11] M. W. Mahoney. “Randomized Algorithms for Matrices and Data”. In: Foundations and Trends in
Machine Learning 3.2 (2011), pp. 123–224.

[MS15] C. V. Mai and B. Sudret. “Polynomial Chaos Expansions For Damped Oscillators”. In: 12th Inter-
national Conference on Applications of Statistics and Probability in Civil Engineering. Vancouver,
Canada, July 2015.

[Mal22] O. A. Malik. “More Efficient Sampling for Tensor Decomposition With Worst-Case Guarantees”.
In: Proceedings of the 39th International Conference on Machine Learning. Vol. 162. Proceedings of
Machine Learning Research. PMLR, July 2022, pp. 14887–14917.

[MB20] O. A. Malik and S. Becker. “Guarantees for the Kronecker Fast Johnson–Lindenstrauss Transform
Using a Coherence and Sampling Argument”. en. In: Linear Algebra and its Applications 602 (Oct.
2020), pp. 120–137. issn: 0024-3795. doi: 10.1016/j.laa.2020.05.004.

[MB21] O. A. Malik and S. Becker. “A Sampling-Based Method for Tensor Ring Decomposition”. In: Pro-
ceedings of the 38th International Conference on Machine Learning. Vol. 139. Proceedings of Machine
Learning Research. PMLR, July 2021, pp. 7400–7411.

[MMV19] A. Marco, J.-J. Martínez, and R. Viaña. “Least squares problems involving generalized Kronecker
products and application to bivariate polynomial regression | SpringerLink”. In: Numerical Algorithms
(2019), pp. 21–39.

26

https://doi.org/10.1016/j.jco.2015.09.006
https://arxiv.org/abs/2107.10654
https://doi.org/10.1515/9783112314098-009
https://doi.org/10.1515/9783112314098-009
https://doi.org/10.1137/S0895479891222106
https://doi.org/10.1016/S0377-0427(96)00109-4
https://doi.org/10.1016/j.cma.2015.02.006
https://doi.org/10.1137/19M1308116
https://doi.org/10.1137/19M1308116
https://doi.org/10.1093/imaiai/iaaa028
https://academic.oup.com/imaiai/advance-article-pdf/doi/10.1093/imaiai/iaaa028/34904656/iaaa028.pdf
https://academic.oup.com/imaiai/advance-article-pdf/doi/10.1093/imaiai/iaaa028/34904656/iaaa028.pdf
https://arxiv.org/abs/2006.16438
https://arxiv.org/abs/2205.13163
https://doi.org/10.1016/j.laa.2020.05.004

[MT20] P.-G. Martinsson and J. Tropp. “Randomized Numerical Linear Algebra: Foundations & Algorithms”.
In: arXiv preprint arXiv:2002.01387 (2020). arXiv: 2002.01387.

[Mit20] B. S. Mityagin. “The Zero Set of a Real Analytic Function”. In: Mathematical Notes 107.3-4 (Mar.
2020), pp. 529–530. doi: 10.1134/s0001434620030189.

[Nar18] A. Narayan. “Computation of induced orthogonal polynomial distributions”. In: Electronic Trans-
actions on Numerical Analysis 50 (2018). arXiv:1704.08465 [math], pp. 71–97. doi: 10.1553/etna_
vol50s71.

[NJZ17] A. Narayan, J. Jakeman, and T. Zhou. “A Christoffel function weighted least squares algorithm
for collocation approximations”. In: Mathematics of Computation 86.306 (2017). arXiv: 1412.4305
[math.NA], pp. 1913–1947. issn: 0025-5718, 1088-6842. doi: 10.1090/mcom/3192.

[NN13] J. Nelson and H. L. Nguyên. “OSNAP: Faster Numerical Linear Algebra Algorithms via Sparser
Subspace Embeddings”. In: 2013 IEEE 54th Annual Symposium on Foundations of Computer Science.
2013, pp. 117–126. doi: 10.1109/FOCS.2013.21.

[Nev86] P. Nevai. “Géza Freud, orthogonal polynomials and Christoffel functions. A case study”. In: Journal of
Approximation Theory 48.1 (1986), pp. 3–167. issn: 0021-9045. doi: 10.1016/0021-9045(86)90016-
X.

[Pag13] R. Pagh. “Compressed Matrix Multiplication”. In: ACM Transactions on Computation Theory 5.3
(Aug. 2013), 9:1–9:17. issn: 1942-3454. doi: 10.1145/2493252.2493254.

[PP13] N. Pham and R. Pagh. “Fast and Scalable Polynomial Kernels via Explicit Feature Maps”. In:
Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining. KDD ’13. New York, NY, USA: ACM, 2013, pp. 239–247. isbn: 978-1-4503-2174-7. doi:
10.1145/2487575.2487591.

[RR20] B. Rakhshan and G. Rabusseau. “Tensorized Random Projections”. In: Proceedings of the Twenty
Third International Conference on Artificial Intelligence and Statistics. Ed. by S. Chiappa and R.
Calandra. Vol. 108. Proceedings of Machine Learning Research. PMLR, Aug. 2020, pp. 3306–3316.

[RR21] B. T. Rakhshan and G. Rabusseau. “Rademacher Random Projections with Tensor Networks”. In:
NeurIPS Workshop on Quantum Tensor Networks in Machine Learning. 2021.

[Rud+18] A. Rudi, D. Calandriello, L. Carratino, and L. Rosasco. “On Fast Leverage Score Sampling and Opti-
mal Learning”. In: Advances in Neural Information Processing Systems. Vol. 31. Curran Associates,
Inc., 2018.

[San15] S. Sankararaman. “Significance, interpretation, and quantification of uncertainty in prognostics and
remaining useful life prediction”. In:Mechanical Systems and Signal Processing 52-53 (2015), pp. 228–
247. issn: 0888-3270. doi: https://doi.org/10.1016/j.ymssp.2014.05.029.

[SDG14] S. Sankararaman, M. Daigle, and K. Goebel. “Uncertainty Quantification in Remaining Useful Life
Prediction Using First-Order Reliability Methods”. In: Reliability, IEEE Transactions on 63 (June
2014), pp. 603–619. doi: 10.1109/TR.2014.2313801.

[SG13] S. Sankararaman and K. Goebel. “Uncertainty Quantification in Remaining Useful Life of Aerospace
Components using State Space Models and Inverse FORM”. In: 2013.

[Sar06] T. Sarlos. “Improved Approximation Algorithms for Large Matrices via Random Projections”. In:
2006 47th Annual IEEE Symposium on Foundations of Computer Science (FOCS’06). ISSN: 0272-
5428. 2006, pp. 143–152. doi: 10.1109/FOCS.2006.37.

[Ses17] P. Seshadri. Kronecker Product Least Squares. arXiv:1705.08731 [math]. 2017. doi: 10.48550/arXiv.
1705.08731.

[SA22] P. F. Shustin and H. Avron. “Semi-Infinite Linear Regression and Its Applications”. In: SIAM Jour-
nal on Matrix Analysis and Applications 43.1 (2022), pp. 479–511. issn: 0895-4798. doi: 10.1137/
21M1411950.

[Sim08] B. Simon. “The Christoffel-Darboux Kernel”. In: Perspectives in Partial Differential Equations, Har-
monic Analysis and Applications. Ed. by D. Mitrea and M. Mitrea. Vol. 79. Proceedings of Symposia
in Pure Mathematics. arXiv:0806.1528 [math]. American Mathematical Society, 2008.

[Son+21] Z. Song, D. Woodruff, Z. Yu, and L. Zhang. “Fast Sketching of Polynomial Kernels of Polynomial
Degree”. In: Proceedings of the 38th International Conference on Machine Learning. Vol. 139. Pro-
ceedings of Machine Learning Research. PMLR, 2021, pp. 9812–9823.

[Sun+18] Y. Sun, Y. Guo, J. A. Tropp, and M. Udell. “Tensor Random Projection for Low Memory Dimension
Reduction”. In: NeurIPS Workshop on Relational Representation Learning. 2018.

27

https://arxiv.org/abs/2002.01387
https://doi.org/10.1134/s0001434620030189
https://doi.org/10.1553/etna_vol50s71
https://doi.org/10.1553/etna_vol50s71
https://doi.org/10.1090/mcom/3192
https://doi.org/10.1109/FOCS.2013.21
https://doi.org/10.1016/0021-9045(86)90016-X
https://doi.org/10.1016/0021-9045(86)90016-X
https://doi.org/10.1145/2493252.2493254
https://doi.org/10.1145/2487575.2487591
https://doi.org/https://doi.org/10.1016/j.ymssp.2014.05.029
https://doi.org/10.1109/TR.2014.2313801
https://doi.org/10.1109/FOCS.2006.37
https://doi.org/10.48550/arXiv.1705.08731
https://doi.org/10.48550/arXiv.1705.08731
https://doi.org/10.1137/21M1411950
https://doi.org/10.1137/21M1411950

[TT15] A. Townsend and L. N. Trefethen. “Continuous analogues of matrix factorizations”. In: Proc. R. Soc.
A 471.2173 (2015), p. 20140585. issn: 1364-5021, 1471-2946. doi: 10.1098/rspa.2014.0585.

[Tre17] L. Trefethen. “Multivariate polynomial approximation in the hypercube”. In: Proceedings of the Amer-
ican Mathematical Society 145.11 (2017), pp. 4837–4844. issn: 0002-9939, 1088-6826. doi: 10.1090/
proc/13623.

[Vos91] M. Vose. “A linear algorithm for generating random numbers with a given distribution”. In: IEEE
Transactions on Software Engineering 17.9 (1991). Conference Name: IEEE Transactions on Software
Engineering, pp. 972–975. issn: 1939-3520. doi: 10.1109/32.92917.

[WZ20] D. Woodruff and A. Zandieh. “Near Input Sparsity Time Kernel Embeddings via Adaptive Sampling”.
In: Proceedings of the 37th International Conference on Machine Learning. Vol. 119. Proceedings of
Machine Learning Research. PMLR, 2020, pp. 10324–10333.

[WZ22] D. Woodruff and A. Zandieh. “Leverage Score Sampling for Tensor Product Matrices in Input Spar-
sity Time”. In: Proceedings of the 39th International Conference on Machine Learning. Vol. 162.
Proceedings of Machine Learning Research. PMLR, 2022, pp. 23933–23964.

[Woo14] D. P. Woodruff. “Sketching as a Tool for Numerical Linear Algebra”. In: Foundations and Trends in
Theoretical Computer Science 10.1-2 (2014), pp. 1–157.

[Xu95] Y. Xu. “Christoffel Functions and Fourier Series for Multivariate Orthogonal Polynomials”. In: Jour-
nal of Approximation Theory 82.2 (1995), pp. 205–239. issn: 0021-9045. doi: 10.1006/jath.1995.
1075.

28

https://doi.org/10.1098/rspa.2014.0585
https://doi.org/10.1090/proc/13623
https://doi.org/10.1090/proc/13623
https://doi.org/10.1109/32.92917
https://doi.org/10.1006/jath.1995.1075
https://doi.org/10.1006/jath.1995.1075

A “Structural” conditions
We present two main results in this section that are well-known conditions for row-sketched least

squares solutions. These conditions are often referred to as “structural conditions” for sketched least
squares procedures that enable convergence statements.

A.1 The ε-embedding condition
This section seeks to prove the following subspace embedding result via randomization. The first

result we are aware of in this direction is [Sar06], although our presentation below more closely follows
[Woo14; CM17a].

Lemma A.1. Fix δ, ε ∈ (0, 1). With τ constructed as in (2.4), suppose that

K ≥
3 log

(4N
δ

)
ε2

N. (A.1)

Then with probability at least 1− δ
2 , we have

(1− ε)‖v‖2 ≤‖v‖2
τ ≤ (1 + ε)‖v‖2, ∀ v ∈ V. (A.2)

This result ensures that the µ-norm ‖ · ‖ and the (randomly generated) τ -norm ‖ · ‖τ are equivalent
with respect to the constant ε. Due to the unbiasedness condition (2.5), this asymptotic equivalence
is expected, and the Lemma makes this equivalence statement quantitative in the finite-sample regime
using a concentration inequality.

Proof. The main tool is a matrix Chernoff bound, but first we require some notation. Define the N ×N
Gram matrices involving µ and τ inner products,

(Gµ)n,k = 〈un, uk〉µ = δn,k, (Gτ)n,k = 〈un, uk〉τ , (A.3)

where we recall from (2.10) that un is an L2
µ-orthonormal basis for V so that Gµ = I. With these Gram

matrices, define the probabilistic event,

C = {‖Gτ −Gµ‖ ≤ ε} = {‖Gτ − I‖ ≤ ε} ,

where ‖ · ‖ on vectors is the standard induced `2 (spectral) norm. By using the fact that,

v =
∑
n∈[N]

xnun =⇒ ‖v‖2
µ = xTGµx, ‖v‖2

τ = xTGτx,

then we have that the event C implies our desired embedding (A.2). Thus, to complete the proof we
need only prove,

Pr(C) ≥ 1− δ

2 . (A.4)

To analyze this probability, note from (2.4) that Gτ is equal to,

Gτ = 1
K

∑
k∈[K]

gkg
T
k , (A.5)

where gk, k ∈ [K] are iid vectors in RN given by,

gk =
√

dµ
dν (zk)u(zk), u(z) = (u1(z), . . . , uN (z))T , zk ∼ ν

From (2.11), we have that dµ/dν(z) = N/‖u(z)‖2
2, and so,

E‖gkgTk ‖2 = E‖gk‖2
2 =

∫
I

‖u(z)‖2
2

dµ
dνf

(z)dνf (z) =
∫
I

Ndνf (z) = N,

E(gkgTk) =
∫
I

u(z)u(z)T dµ
dνf

(z)dνf (z) =
∫
I

u(z)u(z)Tdµ(z) = I

29

Armed with these expectations, we can exercise the matrix Chernoff bound on the iid sum (A.5), which
states:

Pr (‖Gτ − I‖ > ε) = Pr (‖KGτ −KI‖ > Kε) ≤ 2N
[

eε

(1 + ε)1+ε

]K/N
. (A.6a)

We have,

N

[
eε

(1 + ε)(1+ε)

]K/N
≤ δ

4 ⇐⇒ K ≥
N log

(4N
δ

)
(1 + ε) log(1 + ε)− ε , (A.6b)

and

(1 + ε) log(1 + ε)− ε ≥ log
(

4
e

)
ε2 ≥ 1

3ε
2, ε ∈ (0, 1) (A.6c)

Combining the three results (A.6) shows that (2.15) implies (A.4).

A.2 τ-Sketches of b⊥
Lemma A.2. Define b⊥ := f − v∗, where v∗ is the true least squares solution in (2.1). Given c > 0,
δ ∈ (0, 2), let τ be randomly constructed by sampling zk ∼ ν as described above with

K ≥ 2N
cδ
, (A.7)

With (un)n∈[N] an L2
µ-orthonormal basis for V , then,

∑
n∈[N]

E |〈b⊥, un〉τ |
2 = N

K
‖b⊥‖2, (A.8)

Pr

 ∑
n∈[N]

|〈b⊥, un〉τ |
2
> c‖b⊥‖2

2

 ≤ δ

2 . (A.9)

Proof. The main tool is Markov’s inequality applied to the non-negative random variable
∑
n∈[N] |〈b⊥, un〉τ |

2,
stating that for any c > 0, then

Pr

 ∑
n∈[N]

|〈b⊥, un〉τ |
2
> c‖b⊥‖2

2

 ≤ 1
c‖b⊥‖2E

∑
n∈[N]

|〈b⊥, un〉τ |
2
. (A.10)

To compute the right-hand side, note that

|〈b⊥, un〉τ |
2 = 1

K2

∣∣∣∣∣∣
∑
k∈[K]

An,k

∣∣∣∣∣∣
2

, An,k := dµ
dν (zk)un(zk)b⊥(zk).

Since zk are iid, then for each n we have,

EAn,k = 0 and {An,k}k∈[K] iid =⇒ E

∣∣∣∣∣∣
∑
k∈[K]

An,k

∣∣∣∣∣∣
2

=
∑
k∈[K]

varAn,k = KvarAn,1.

The variance of An,1 is given by,

varAn,1 =
∫
|un(y)|2 |b⊥(y)|2

(
dµ
dν (y)

)2
dν(y) =

∫
|un(y)|2 |b⊥(y)|2 dµ

dν (y)dµ(y). (A.11)

30

Therefore, we have,

E
∑
n∈[N]

|〈b⊥, un〉τ |
2 = 1

K

∑
n∈[N]

∫
|un(y)|2 |b⊥(y)|2 dµ

dν (y)dµ(y)

= 1
K

∫ dµ
dν (y)

∑
n∈[N]

|un(y)|2
 |b⊥(y)|2dµ(y)

(2.11)= N

K

∫
|b⊥(y)|2dµ(y) = N

K
‖b⊥‖2

(A.7)
≤ 1

2cδ‖b⊥‖
2,

and using this in (A.10) proves (A.8).

The quantity (A.8) is a bound on how b⊥, which is L2
µ-orthogonal to V , projects onto V according

to the measure τ . Since τ 6= ν, this projection is generally not zero; in other contexts this projection is
called aliasing error.

B Proof of Theorem 2.7
We assume that b 6∈ V so that dimVb = N + 1. The same result holds if b ∈ V by replacing N + 1

by N and (νµ,Vb , Vb) by (µµ,V , V) in what follows.
First we note that the first-order optimality conditions for the optimization problems (2.1) and (2.6)

defining v∗ and ṽ, respectively, imply that for v ∈ V we have the orthogonality relations,

〈v∗ − f, v〉µ = 0, 〈ṽ − f, v〉τ = 0. (B.1)

The main idea for the proof is to show and leverage an ε-embedding property for the sketching measure
τ relative to µ. This sketching property is the condition:

(1− ε)‖v‖2 ≤‖v‖2
τ ≤ (1 + ε)‖v‖2, ∀ v ∈ Vf . (B.2)

This property holds with some probability since τ is randomly generated. Assuming (B.2) is true, then
we have

‖ṽ − f‖2 (∗)= ‖v∗ − f‖2 + ‖ṽ − v∗‖2

(B.2)
≤ ‖v∗ − f‖2 + 1

1− ε ‖ṽ − v
∗‖2
τ

(∗)= ‖v∗ − f‖2 + 1
1− ε

(
‖v∗ − f‖2

τ − ‖ṽ − f‖
2
τ

)
(B.2)
≤ ‖v∗ − f‖2 + 1 + ε

1− ε ‖v
∗ − f‖2 − ‖ṽ − f‖2

,

where the equalities marked (∗) utilize (B.1) and the Pythagorean theorem. Rearranging the inequality
above and using ε < 1/2 yields the desired result (2.16). Thus, the proof will be completed by showing
(B.2) is an event that occurs with probability at least 1−δ; Lemma A.1 applied to the dimension-(N+1)
space Vb shows that (2.15) ensures this property.

C Proof of Theorem 2.8
We first prove a more general result, which holds for any δ, ε ∈ (0, 1) and c > 0, namely that if

K ≥ N max
{

3 log
(4N
δ

)
ε2

,
2
cδ

}
, (C.1)

then

‖ṽ − b‖2 ≤
(

1 + c

(1− ε)2

)
‖v∗ − b‖2 w/ prob. ≥ 1− δ. (C.2)

31

Note that Theorem 2.8 is simply (C.1) and (C.2) with the replacement c = ε(1− ε)2. Therefore, we focus
on proving (C.2). By the Pythagorean theorem, we have,

‖ṽ − b‖2 = ‖v∗ − b‖2 + ‖v∗ − ṽ‖2
,

so that the result is proven if we can show,

(2.17) =⇒ ‖v∗ − ṽ‖2 ≤ c

(1− ε)2 ‖v
∗ − b‖2 w/ prob. at least 1− δ.

We express ṽ, v∗ ∈ V through their coordinates w̃,w∗, respectively, in the L2
µ-orthonormal basis un:

ṽ =
∑
n∈[N]

w̃nun, v∗ =
∑
n∈[N]

w∗nun, ⇒ ‖ṽ − v∗‖ = ‖w̃ −w∗‖2

Define the K ×N matrix U as,

(U)k,n = √vkun(zk),

so that by (A.3), Gτ = UTU . Then we have,

(2.17) Lemma A.1=======⇒ ‖Gτ − I‖ ≤ ε w/ prob. at least 1− δ/2 =⇒ ‖G−1
τ ‖ ≤

1
1− ε wp 1− δ/2,

and in particular Gτ is invertible with this same probability. Under this event, both w̃ and w∗ are given
by unique solutions to finite least squares problems:

w∗ = arg min
w

‖Uw − v∗‖ , w̃ = arg min
w

∥∥Uw − b̃∥∥ , (C.3)

where (v∗)k =
√
vkv
∗(zk) and b̃ =

√
vkb(zk). Under the event that Gτ is invertible, then the normal

equations imply,

‖w̃ −w∗‖2 ≤
∥∥G−1

τ

∥∥
2

∥∥UT
(
b̃− v∗

)∥∥
2 ≤

1
1− ε

∥∥UT
(
b̃− v∗

)∥∥
2 w/ prob. at least 1− δ/2. (C.4)

In addition, note that,

(C.1) Lemma A.2=======⇒
∥∥UT (b− v∗)

∥∥2
2 ≤ c‖b⊥‖

2 = c‖v∗ − b‖2,

which proves (C.2).

D Proof of (2.19)
The proof is similar to the proof of Theorem 2.8 in Section C, so we omit some details. Given ε > 0,

choose

ε̃ =
√

3(1− δ)ε log(2N/δ)
1 +

√
3(1− δ)ε log(2N/δ)

∈ (0, 1), (D.1)

and assume the sampling requirement

K ≥
3 log

(2N
δ

)
ε̃2

N, (D.2)

then Lemma A.1 ensures that

Pr(C) ≥ 1− δ, C =
{
‖G−1

τ ‖2 ≤
1

1− ε̃

}
. (D.3)

32

By the Pythagorean Theorem, we have

E[‖ṽ − b‖2 | C] = ‖v∗ − b‖2 + E[‖v∗ − ṽ‖2 | C] (D.4)

Since for any measurable event C and non-negative random variable X, we have,

E[X|C] ≤ EX
Pr(C) , (D.5)

then the second term on the right-hand side of (D.4) can be bounded as,

E[‖v∗ − ṽ‖2 | C] (C.3)= E[‖w∗ − w̃‖2 | C]
(C.4)
≤ 1

(1− ε̃)2E[‖U∗(b− v∗)‖2 | C]

(D.5)
≤ 1

Pr(C)(1− ε̃)2E[‖U∗(b− v∗)‖2]

(A.8),(D.3)
≤ N

K(1− δ)(1− ε̃)2 ‖v
∗ − b‖2.

Combining these facts along with (D.2) yields,

E‖ṽ − b‖2 ≤

(
1 +

(
ε̃

1− ε̃

)2 1
3(1− δ) log(2N/δ)

)
‖v∗ − b‖2 (D.1)= (1 + ε) ‖v∗ − b‖2,

which corresponds to the sampling requirement

K ≥
3 log

(2N
δ

)
ε̃2

N
(D.1)= N

ε

(
1 +

√
3(1− δ)ε log

(
2N
δ

))2

.

The proof is finished by noting that the sampling requirement in (2.19) is stronger than the above since
(a+ b)2 ≤ 2a2 + 2b2 for all real a, b, and with the removal of the 1− δ term, and so implies the above.

E Proof of (2.22)
The proof adds one ingredient to the proof of (2.19) in appendix D. Note in particular that our

sampling requirement is identical to that of (2.19). Recall from (2.21) that T ≥ 0 is any bound on the
pointwise value of b, and vT is the pointwise T -truncation of the least squares solution v. Let the event
C be as in (D.3), and write,

E‖ṽT − b‖2 = Pr(C)E[‖ṽT − b‖2 | C] + Pr(Cc)E[‖ṽT − b‖ | Cc].

Since |b(y)| ≤ T , then |ṽT (y)− b(y)| ≤ 2T , for any y ∈ I, and we also have,

|ṽT (y)− b(y)| ≤ |ṽ(y)− b(y)|, (E.1)

with probability 1. Thus by the law of total expectation,

E‖ṽT − b‖2 = Pr(C)E[‖ṽT − b‖2 | C] + Pr(Cc)E[‖ṽT − b‖2 | Cc]
(D.3)
≤ Pr(C)E[‖ṽT − b‖2 | C] + 4δT 2

(E.1)
≤ Pr(C)E[‖ṽ − b‖2 | C] + 4δT 2

≤ E[‖ṽ − b‖2 | C] + 4δT 2

(2.19),(D.3)
≤ (1 + ε)‖v∗ − b‖2 + 4δT 2,

completing the proof.

33

	1 Introduction
	1.1 Contributions of this article
	1.2 Related work on structured matrix sketching

	2 Preliminaries for function approximation
	2.1 Randomly (row-)sketched least squares
	2.2 The induced distribution: ``optimal'' least squares and leverage scores
	2.3 Bounds for row-sketched least squares
	2.3.1 Sampling with nu = nu_mu,V_b
	2.3.2 Sampling with nu=nu_mu,V

	2.4 Algorithmic considerations

	3 Tensor-product structure
	3.1 The multi-index set J
	3.2 Example: Polynomial approximation on tensorial domains
	3.3 Example: Matrix-vector least squares problems

	4 Sampling algorithms for nu_mu,V
	4.1 Direct sampling of nu
	4.2 Sampling from univariate measures
	4.3 Sampling algorithms
	4.3.1 Tensor product spaces
	4.3.2 Orthogonal basis functions
	4.3.3 Monotone lower J

	5 Experiment results
	5.1 Nonlinear Duffing oscillator
	5.2 Ishigami function
	5.3 Prediction of remaining useful life of batteries

	6 Conclusion
	A ``Structural'' conditions
	A.1 The eps-embedding condition
	A.2 tau-sketches of b_perp

	B Proof of Theorem 2.7
	C Proof of Theorem 2.8
	D Proof of (2.19)
	E Proof of (2.22)

