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Abstract:

A common problem in simulation and experimental research involves obtaining time-consuming,
expensive, or potentially hazardous samples from an arbitrary dimension parameter space. For
example, many simulations modeled on supercomputers can take days or weeks to complete, so
it is imperative to select samples in the most informative and interesting areas of the parameter
space. In such environments, maximizing the potential gain of information is achieved through
active learning (adaptive sampling). Though the topic of active learning is well-studied, this paper
provides a new perspective on the problem. We consider topologybased batch selection strategies
for active learning which are ideal for environments where parallel or concurrent experiments
are able to be run, yet each has a heavy cost. These strategies utilize concepts derived from
computational topology to choose a collection of locally distinct, optimal samples before updating
the surrogate model. We demonstrate through experiments using a several different batch sizes
that topology-based strategies have comparable and sometimes superior performance, compared
to conventional approaches.
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Abstract

A common problem in simulation and experimental research involves obtaining
time-consuming, expensive, or potentially hazardous samples from an arbitrary
dimension parameter space. For example, many simulations modeled on super-
computers can take days or weeks to complete, so it is imperative to select samples
in the most informative and interesting areas of the parameter space. In such envi-
ronments, maximizing the potential gain of information is achieved through active
learning (adaptive sampling). Though the topic of active learning is well-studied,
this paper provides a new perspective on the problem. We consider topology-
based batch selection strategies for active learning which are ideal for environ-
ments where parallel or concurrent experiments are able to be run, yet each has
a heavy cost. These strategies utilize concepts derived from computational topol-
ogy to choose a collection of locally distinct, optimal samples before updating
the surrogate model. We demonstrate through experiments using a several dif-
ferent batch sizes that topology-based strategies have comparable and sometimes
superior performance, compared to conventional approaches.

1 Introduction

Active learning (or adaptive sampling) has been utilized in many settings to solve a variety of prob-
lems as diverse as: nuclear safety simulations [36], network queueing [40], environmental moni-
toring [24], and parameter setting in cosmological models [8]. Because samples can be expensive,
time-consuming, hazardous, or otherwise difficult to obtain, ideally one would wish to gain the most
information about the phenomenon under study with the least amount of sampled data. By utilizing
all of the information we currently know about a phenomenon, we drive the investigation toward the
most interesting or least understood areas of the simulation space.

Many such experiments exhibiting these characteristics have the advantage that samples can be ac-
quired simultaneously through the use of multiple data gathering resources (parallel computing envi-
ronment, existence of multiple sensory equipment,etc.). Thus, utilizing an active learning framework
that can select multiple informative points would yield a greater return on investment, than either
relying on space-filling designs or selecting a single point and waiting for a response until the next
single point is selected. Efforts have been made to perform such batch selection before, but we
present a novel perspective of studying the topology of the scoring function during such a selection
process. Our method does not try to redesign the scoring function, but instead relies on the topology
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of the scoring function to generate samples from informative, but distinct areas of interest. In this
way, our method is agnostic of the surrogate model and scoring function being used. We validate
our method on several test datasets where we look at two different active learning problems. The
first is an attempt to create a globally adequate fit of our surrogate model by reducing the amount of
error over the entire input parameter space, and the second problem is that of attempting to locate
an isocontour of our domain known as the limit surface.

2 Related work

2.1 Active Learning

Active learning (see [44] for a survey) has been used in many contexts and has various other names
such as adaptive sampling, sequential sampling, and optimal experimental design. The basic process
of active learning tries to converge to an acceptable fitting of the surrogate model using fewer data
points than using a standard space-filling design. Techniques for achieving this include reducing
global uncertainty [49, 9], exploiting areas of high gradient [35], and exploring areas where infor-
mation gain is optimal [32]. A slightly modified version is aimed at global optimization rather than
global accuracy of the model [38, 31]. The active search method takes a slightly different approach
by looking at the problem as attempting to sample points contained in a single class [21]. This
last case is related to our second test problem of limit surface recovery where we are interested in
defining the boundary between two classes.

2.2 Limit Surface Recovery

The limit surface recovery problem in active learning is: can one identify and characterize the lev-
elset defined by a given threshold value of the simulation output. In reliability engineering, this
problem is known as determining the limit state function and can be thought of as the point where
a system’s load exceeds its capacity where load and capacity are functions of the input parameters.
The literature in this field attempts to either converge to a single most probable point (MPP) through
nonlinear optimization methods [20, 19] or through adaptive sampling [50, 13, 52, 4].

In the statistics literature, [40] has attempted to solve this problem by defining an expected improve-
ment candidate scoring function that harnesses both a prediction’s proximity to the threshold value
and also the uncertainty associated with the prediction. In similar spirit, the machine learning com-
munity has designed similar yet simpler scoring functions that take advantage of similar information.
[8] defines a scoring function called the straddle function, and [24] introduced the ambiguity scoring
function which can be thought of as a generalized version of the straddle function. All three meth-
ods utilize a Gaussian process surrogate model, however the latter two are performed in what [44]
called the pool-based active learning setting, whereas the first uses a global optimization to select
the optimal point at each iteration.

2.3 Surrogate Modeling

Neural networks. Regression modeling using neural networks goes back at least 20 years, with
notable examples being [46] and [43], and of course the book by [5].

Support vector machines. The use of support vector machines (SVMs) for regression is almost as
venerable. In theory, support vector classification and support vector regression differ only in how
the learned function is used. Whereas a classifier thresholds the value of the function, in regression
we would want to keep the entire function. The measure of loss is typically least squares, whereas
in classification different loss functions are used. See [45, 48, 47, 14] to name a few.

Regression SVMs are an obvious choice in level detection in the surrogate modeling problem, be-
cause they approximate the function under query. Classification SVMs can also be utilized, however,
by labeling sampled points according to whether they exhibit values above or below the threshold
value. Then, after the model is trained, the level set is assumed to be the decision boundary of the
model.

Bayesian methods. Not surprisingly, there are a set of Bayesian techniques that tackle the same set of
problems, but focus on inference. A prior distribution is also employed before sampling to express
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the belief about the shape of the data. There is a rich body of work that discusses these techniques,
but for an overall discussion, see [33]. For a discussion of using Gaussian process (GP) models in a
Bayesian regression framework, see [41].

2.4 Batch Sampling

We define batch sampling as the process of selecting b points, where b > 1 in an active learning
framework before querying the oracle and updating the surrogate model. [44] provides a summary
of different attempts to draw multiple candidates at a time. SVM-based approaches are explored in
[6, 51]. [23], [1], [3], and [12] use a GP in a batch sampling setting where the goal is to maximize
the GP rather than gain a global understanding. [23], [3], [12], and [24] all take advantage of the
fact that the variance estimate of the GP only relies on the location of training values and not the true
response values whereby they can greedily choose a batch set of points by updating their GP after
each point is selected and rescoring the remaining candidates. [28, 29] exploit a different measure
of uncertainty by minimizing the Fisher information matrix to achieve high quality batch samples.
[26] and [25] look at the selection process as an optimization and settle on local solutions as the full
optimization in each case is NP-hard. [2] extends the work of [1].

Many of the techniques described here are based on binary logistic regression, and are used to solve
classification problems, where this is similar to our problem of identifying the limit surface, we are
also interested in determining a global best fit. As we are utilizing a GP, we compare our methods
to that used by [23] and [24].

3 Technical Background

Test Problems. We consider two test problems on which we evaluate our methods. Both are
formulated as pool-based sampling (e.g. [44]) problems and involve the same pipeline of scoring
a candidate set of points and selecting a batch of size b locations to query our true function which
are then added to our training set, and the process is repeated on the remaining candidates. The
difference of the two methods lies in how we score the points. In the first problem considered,
the global recovery problem where the idea is to obtain an accurate surrogate over the entire input
domain, we have chosen to use the active learning McKay (ALM) algorithm which directly uses the
predicted variance from our GP as the score for any given location.

In the problem of limit surface recovery, where we would like to recover the level set of a scalar
function f(~x) at a given threshold t (i.e. the limit surface), we use a different strategy. Here, we
are less concerned with convergence of the global response surface, but rather we are interested in
characterizing a single implicit limit surface. The straddle scoring function [8, 7] (and its variation
in [24]) is specially designed to target the limit surface recovery problem, which scores points based
on a mixture of high predicted variance and a predicted mean near the threshold value. The exact
formula is: straddle(~x) = 1.96 σ̂(~x) − |µ̂(~x)− t| , where ~x is the input vector, µ̂ and σ̂ represent
the predicted mean and variance of the Gaussian process at ~x, and t represents the threshold value
of interest. We use the straddle scoring function to study the limit surface recovery problem. As
we can see, both scoring functions are based on the predicted variance of the GP which only relies
on the location of true responses and not on the true response. This allows us a fair comparison to
the technique used in [23], [3], [12], and [24]. However, we will note that our pure topology-based
method is agnostic of the scoring function and therefore more robust than these methods since it can
be used in settings where targeting the high-variance may not be ideal.

Morse-Smale Complex and its Approximations. Topological structures such as Reeb graphs
[42, 39] and Morse-Smale complexes (MSCs)[17, 16, 27] have been used to describe the topology
of scalar functions defined on point cloud data. The main idea behind the Morse-Smale complex of
a function f is that it partitions the domain of f into regions of uniform gradient behavior. Formally,
let f be a smooth function on Rn. A point in the domain is crtitial if its gradient is zero, otherwise
it is regular. At a regular point, the gradient is well-defined and integrating it traces out an integral
line. The function increases along the integral line, which begins at a local minimum and ends at a
local maximum of f . The ascending/descending manifold of a critical point x is defined as all points
whose integral lines start/end at x. The set of intersections of ascending and descending manifolds
creates the Morse-Smale complex of f , where each cell of the complex is a union of integral lines
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that all share the same origin and destination. Figure 1 illustrates a MSC for a 2D function and the
corresponding gradient behaviors.

The MSC is useful in this context as it helps us understand the topology of a scoring function, which
is a scalar function, under the active learning setting. Computing the MSC associated with a scoring
function identifies the local maxima of the function, that is, the points which have zero gradient and
whose corresponding function values are higher than their neighbors. Another important property
associated with MSC is that we could associate an importance measure, referred to as the persis-
tence, to each critical points of f . The persistence of a critical point, in a nutshell, indicates the
importance of its associated topological features. We therefore could use the notion of persistence
simplification [18], whereby less salient (important) features are merged with neighboring, more
significant features. Such a procedure is illustrated in 1(d)-(e).

We use a particular variation of MSC developed in [22] that approximate MSC in high-dimensions
based on point cloud data. The main idea is to impose a neighborhood graph (e.g. relaxed Gabriel
graph [10]) on the point cloud and represent the gradient at each point by its adjacent, steepest
ascending edge, based on function values of its neighboring points in the graph. Such an approxi-
mation has been used previously in active learning setting, through the design of scoring functions
[35]. An initial study of limit surface recovery based on MSC has appeared in [36].

(a) (b) (c)

(d)

(e)
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Figure 1: (Figure reproduced from [37].) For a height function defined on a 2D domain (where
maxima, minima and saddles are colored red, blue and green respectively): (a) Descending mani-
fold: gradient flow (white arrow) ends at the same maximum; (b) Ascending manifold: gradient flow
starts at the same minimum; (c) For each Morse-Smale cell, the gradient flow begins and ends at the
same maximum-minimum pair. Persistence simplification: In (d), the left peak at the maximum
x is less important topologically than its nearby peak at maximum z, since x is lower. We convert
this feature to a single peak, as shown in (e), by redirecting gradient flow (white arrow) from x to z.
This simplifies the function by canceling the local maximum x with its nearby saddle y.

4 Method

4.1 Batch Selection for Active Learning: General Pipeline

The general pipeline of batch selection begins with a given set of training data with true response
values. First, a response surface surrogate model is fit to the training data. Second, a set of candidate
points is chosen in the domain based on a certain sampling technique, and the surrogate model is
evaluated at these locations, obtaining a set of approximated values. Third, each candidate point
is assigned a score based on some scoring function. Finally, a number of candidates (i.e. up to
the batch size) with the highest scores are selected, evaluated (to obtain true response values), and
added to the training data to begin a new around of fitting. This pipeline is given in Algorithm 1,
where we replace SELECT with various selection strategies. We use the sparse online Gaussian
process [11] as the surrogate model. For a given candidate, such a Gaussian process model gives a
(mean) prediction value and a variance associated with the prediction. The set of candidate points
and the initial training data are selected using a Centroidal Voronoi Tessellations (CVT) sampling
strategy [15]. A CVT sampling strategy gives high-quality samples without the biases introduced
by a uniform grid sampling, although it is cost prohibitive in high dimensions. A Latin hypercube
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sampling (LHS) [30] strategy can be used for high-dimensional examples. For each dataset, we
measure the accuracy of our global or local fitting by comparing to the ground truth at each iteration,
under different metrics (e.g. root-mean-square error, Hausdorff distance, F1-score).

For the global surface recovery problem, we utilize the active learning McKay (ALM) scoring func-
tion [34] that uses the predicted variance from the surrogate model as the score for a candidate point.
In this way, we reduce the overall uncertainty of the surrogate model by placing samples in the areas
of the highest variance.

For the limit surface recovery problem, we utilize the straddle scoring function [8]. For a given
candidate point, its score is formulated as a linear combination of the distance between its predicted
value and the limit surface threshold value, and the variance. In other words, a candidate will have a
high score if its predicted value is near the limit surface threshold and/or it exhibits a large prediction
variance.

Algorithm 1 Batch selection for active learning
INPUT: a set of training points, T

a set of candidate points, C
real-valued scoring function, S(M,x), where M is a surrogate model, x is a point
real-valued true response function, f(x), where x is a point
batch size, b

OUTPUT: A surrogate model, M(x), that evaluates at any point x

while C 6= ∅ and not converged do
M ← [T, f(T )] . Build a surrogate M with the training data
R← SELECT(C, S, M , b) . This is the step we will be augmenting
C ← C \ R . Remove selected candidates
T ← T ∪ R . Add candidates to the training data

end while

4.2 Batch Selection Strategies

Naive Batch Selection. Batch selection is simple and straightforward when the batch size b = 1,
where the point with the highest score is selected. When b > 1, it is not clear whether selecting
the top b highest scoring candidates is desirable. For example, if the scoring function is based
on predicted variance (e.g. Active Learning McKay, a.k.a., ALM), the selected candidates may
be clustered in a single area of high variance. However, evaluating the function value at a single
location in that area would suffice to reduce the uncertainty for the whole area. Nonetheless, we use
this naive strategy as a baseline and its corresponding algorithm is given in Algorithm 2.

Algorithm 2 Naive batch selection
procedure NAIVE-SELECT(C, S,M, b)

R← ∅
while |R| 6= b do

C̃ = C \ R
p∗ = argmax

p∈C̃
S(M,p)

R← R ∪ p∗

end while
return R

end procedure

Surrogate Believer Batch Selection. This strategy is inspired by the Kriging Believer strategy
[23, 24]. It takes advantage of the scoring function’s reliance on the uncertainty of the surrogate
model. The main idea is that temporarily adding a point and its model-predicted response value to
refit (update) the surrogate model will not drastically alter the response surface, but it will reduce
the variance in the area surrounding this point. As both scoring functions used are variance-based,
re-scoring the candidates based on the updated surrogate model would likely cause the new highest
scoring candidate to be farther away from the last selected point. Formally, this process is described
in Algorithm 3, where M(x) returns the predicted response value using the surrogate model at
point(s) x.

Topology-Based Batch Selection: Points with Maximum Persistence. We now utilize the topo-
logical method described earlier to study the topology of the scoring function. Scoring function S
is a real-valued function that takes as input a surrogate model M and a point x, and returns a real
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Algorithm 3 Believer batch selection
procedure BELIEVER-SELECT(C, S,M, b)

R← ∅
while |R| 6= b do

C̃ = C \ R
M̃ ←M + [R,M(R)]
. Build a temporary surrogate model that treats R and M(R) as part of the training set
p∗ = argmax

p∈C̃
S(M̃, p)

R← R ∪ p∗

end while
return R

end procedure

number based on properties of M , the predicted value M(x), the variance of the prediction, etc.
When b = 1, the naive strategy always select the highest scoring candidate, which topologically,
corresponds to the global maximum of the scoring function. When b > 1, the naive strategy selects
b points with the highest scores, and does not guarantee well-spacing among the selected candidates
since these points may cluster around the global maxima. If we would like to guarantee some level
of spatial separation among the chosen candidates, then perhaps a simple topology-based strategy
would select the top b local maxima of the scoring function. However, as the example illustrated in
Figure 2, a 1D scoring function could contain two local maxima that are close to each another in
the domain but have very different persistence. Such an observation has inspired our first topology-
based batch selection strategy, based on the persistence of the candidate points. Since regular points
have zero persistence, such a strategy selects points among the local maxima. That is, we select the
top b candidates with the highest persistence. This strategy is detailed in Algorithm 4.

Algorithm 4 Maximum persistence batch selection
procedure MAXP-SELECT(C, S,M, b)

R← ∅
X ← EXTRACT-LOCAL-MAXIMA(C, S,M )
. Extract all local maxima from the scoring function of the surrogate model
while |X| < b do

. While loop is only used if we do not have b unselected local maxima
C̃ = C \X
p∗ = argmax

p∈C̃
S(M,p)

X ← X ∪ p∗

end while
R← R ∪ TOP(X, b) . Get only the top b maxima (according to persistence)
return R

end procedure

Since we would like to generalize our batch selection process to any arbitrary dimension, we com-
pute an approximated Morse-Smale complex [22] of the scoring function to estimate the location of
its local maxima and their corresponding persistence.

Figure 2: A simple 1D function with 4 maxima showing a selection strategy that chooses the 2
highest-valued maxima (left) and the strategy we employ in MaxP which selects the 2 highest per-
sistence maxima.

Topology-Based Batch Selection: Maximum Persistence and Believer Hybrid. Our final strat-
egy creates a hybrid between the maximum persistence strategy and the Surrogate Believer strategy.
That is, we proceed with the believer strategy by temporarily adding points with the highest persis-
tence. We introduce one extra parameter m that indicates how many points we add temporarily at
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the same time. Equivalently, m means the number of maxima to chose before refitting the surrogate.
When m = 1, this corresponds to the original believer strategy. When m = b, this corresponds to
the maximum persistence strategy. When 1 < m < b, we have our hybrid strategy. The process is
detailed in Algorithm 5.

Algorithm 5 Maximum persistence and Believer hybrid selection
procedure MAXP+BELIEVE-SELECT(C, S,M, b, (optional) m)

R← ∅
while |R| 6= b do

C̃ = C \ R
M̃ ←M ∪ [R,M(R)]

X ← EXTRACT-LOCAL-MAXIMA(C̃, S, M̃ )
. Extract all local maxima from the scoring function of the temporary surrogate model
X ← X \ R
. Remove any local maxima that have already been selected
while |X| < m do

. While loop is only used if we do not have m unselected local maxima
C̃ = C̃ \X
p∗ = argmax

p∈C̃
S(M̃, p)

X ← X ∪ p∗

end while
R← R ∪ TOP(X,m) . Get only the top m maxima (according to persistence)

end while
return R

end procedure

5 Experiments and Results

We compare our active learning strategies for both global surface recovery and limit surface recov-
ery problems. We use a collection of 2D test functions and measure the minimum number of sample
points required (to be added to the training set) for the surrogate model to reach a chosen approxi-
mation quality with respect to the ground truth, measured by some metric. For each test function,
we report the mean, median, and standard deviation of this number across 10 trails with randomly
selected initial training data.

5.1 Metrics for Evaluation

For the global surface recovery problem, we compute the root-mean-square error (RMSE) over a
validation set V of the domain between the surrogate model response surface and the true response
surface. The validation set V for our 2D test functions is a uniform grid of resolution 100× 100.

For the limit surface recovery problem, we use two different metrics to try to quantify the quality
of the approximations. The Hausdorff distance between the true limit surface and the approximated
limit surface based on the surrogate model is computed to measure curve similarity. This metric
represents the maximum separation of the two limit surfaces represented as point set samples X and
Y . It is defined as:

dH(X,Y ) = max

(
sup
x∈X

inf
y∈Y

d(x, y), sup
y∈Y

inf
x∈X

d(x, y)

)
.

In addition, we treat our model as a binary classifier with the limit surface being the boundary and
compute the F1-score. The F1-score demonstrates the surrogate model’s ability to correctly classify
points as being either above or below the threshold value. It is evaluated on the validation grid of
resolution 100× 100.

The Hausdorff distance focuses on the approximation quality of the limit surface itself. Consider
a small component of the limit surface that is yet to be recovered, the F1-score may still report a
high-value (corresponding to good approximation quality) since the missing component encloses
only a small area of the domain space, but the Hausdorff distance may be very large (corresponding
to a low approximation quality) as not all components in the limit surface have been recovered. In
other words, the Hausdorff distance metric complements the F1-score metric, as the former is a
shape-matching criteria and the latter focuses on classification accuracy.
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5.2 Test Functions

We first use a collection of 2D synthetic functions (with closed-form expressions) as test functions.
As these functions are simple, smooth and continuous, the surrogate models on them converge very
quickly during the active learning process. We demonstrate that our methods remain competitive on
these functions, where intuitively they are not expected to perform as well since the main features
will be recovered quickly and will benefit more from exploitation rather than exploration. In addi-
tion, these functions have well-defined, smooth limit surfaces that could be recovered accurately and
efficiently, ensuring good convergence qualities of all methods. We include three test functions here,
we omit their close-form expressions but illustrate the smooth functions (true response surfaces) in
Figure 3(a)-(c). Their corresponding limit surfaces (marked by yellow curves) are shown in Fig-
ure 3(d)-(f). The GMM corresponds to the surface of a 2D Gaussian mixture model. The GMM
has three limit surface components with one designed to be smaller and less likely to be found
immediately. The limit surface of the Salomon function contains three concentric rings, while the
outermost ring is split into four components due to boundary limitations. The Sinusoidal function
has a relatively complex limit surface with multiple components, but spans a large portion of the
domain.

(a) (b) (c) (d) (e) (f)

Figure 3: Synthetic test functions and their designated limit surfaces. (a)-(c): True response surfaces
for (a) GMM, (b) Salomon and (c) Sinusoidal. (d)-(f): True limit surfaces for (d) GMM, (e) Salomon
and (f) Sinusoidal.

To demonstrate that our proposed topology-based active learning methods could potentially be more
advantageous with functions that have complex topology, we use a set of greyscale images as our
real-world test functions. We treat each image as a 2D function, where its domain is defined by
the pixel locations and its range is the luminosity ranging between 0 (black) to 255 (white). The
images we have selected contain irregular shapes, discontinuities, and noisy features, which are
more indicative of real-world data. They are shown with superimposed limit surfaces in Figure
4. The limit surfaces are highly irregular with many small components, and their corresponding
threshold values are 125, 30, 80, and 100, respectively.

(a) (b) (c) (d)
Figure 4: Test images. True limit surfaces are marked with yellow curves. (a) Face (greyscale image
removed to preserve author anonymity). (b) Butterfly nebula (image courtesy of NASA, ESA and
the Hubble SM4 ERO Team, in public domain, via Wikimedia Commons). (c) Tiger (image courtesy
of Wikimedia Commons). (d) Valve (image courtesy of Wikimedia Commons).

5.3 Results for Global Surface Recovery

RMSE Convergence Results. Table 1 summarizes the number of points necessary to reduce the
global RMSE under a given threshold for each test function. The threshold value is chosen by
examining the RMSE convergence across all trials, e.g. we stop the active learning process when
RMSE falls below 0.07818 for the GMM dataset. We report the mean number of points required
as well as the standard deviation for each strategy across 10 trials. The maximum number of points
added for the synthetic test functions is capped at 256 and for the image datasets, at 1024. We
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experiment with three different batch sizes, for b equals to 8, 16 and 32, respectively. The strategy
names are pretty self-explainatory, for example, 2-MaxP+Believe means the hybrid strategy where
the parameter m = 2. The strategy with the best performance for each dataset is highlighted in bold
font. If the best strategy is topology-based, it is colored in red.

GMM Salomon Sinusoidal
(≤ 0.07818 ) (≤ 0.07169 ) (≤ 0.04674 )

(b = 8)
Naive 120.8± 28.72 (108) 152.8± 13.12 (152) 132.0± 8.198 (128)
Believe 52.8± 9.6 (52) 91.2± 3.919 (88) 68.0± 4.0 (68)
MaxP 56.0± 8.0 (56) 93.6± 3.666 (96) 75.2± 5.307 (76)
2-MaxP + Believe 52.0± 9.633 (48) 93.6± 5.122 (96) 68.8± 3.919 (72)
4-MaxP + Believe 56.8± 15.37 (52) 94.4± 3.2 (96) 70.4± 4.8 (72)
(b = 16)
Naive 169.6± 36.63 (160) 203.2± 12.5 (200) 190.4± 16.7 (192)
Believe 59.2± 14.4 (56) 96.0± 0 (96) 72.0± 8.0 (72)
MaxP 60.8± 9.6 (64) 105.6± 7.838 (112) 84.8± 7.332 (80)
2-MaxP + Believe 57.6± 14.66 (48) 97.6± 4.8 (96) 73.6± 7.838 (80)
4-MaxP + Believe 60.8± 15.68 (56) 96.0± 0 (96) 75.2± 7.332 (80)
(b = 32)
Naive 192.0± 28.62 (192) 243.2± 15.68 (256) 249.6± 12.8 (256)
Believe 67.2± 9.6 (64) 96.0± 0 (96) 80.0± 16.0 (80)
MaxP 99.2± 17.23 (96) 140.8± 15.68 (128) 124.8± 9.6 (128)
2-MaxP + Believe 67.2± 9.6 (64) 99.2± 9.6 (96) 83.2± 15.68 (96)
4-MaxP + Believe 70.4± 12.8 (64) 96.0± 0 (96) 86.4± 14.66 (96)

Table 1: RMSE convergence results for synthetic test functions.

Increasing the batch size b decreases the rate of convergence, since refitting the surrogate more
frequently with small batch sizes would likely select more informative samples. The naive method
typically gives a baseline performance that is much worse than all other methods, but it shows
the range of performance values and illustrates that the Believe, MaxP, and their hybrid strategies
are competitive with one another. On these smooth, relatively simple surfaces, the results shown
here slightly favor the Believe strategy, in most cases. The MaxP strategy degrades poorly when
increasing the batch size from 16 to 32, most likely due to the fact that there are likely less than
32 local maxima extracted from the ALM scoring function. When all the local maxima have been
selected, the remaining candidates are chosen based inn the naive method. By coupling the MaxP
strategy with the Believe strategy, we see relatively good performances across many scenarios, since
such a hybrid strategy takes advantage of exploiting the topology of the scoring functions.

Face Nebula Tiger Valve
(≤ 29.83 ) (≤ 19.8 ) (≤ 51.94 ) (≤ 38.52 )

(b = 8)
Naive 776.0± 69.47 (768) 770.4± 96.8 (748) 766.4± 48.77 (768) 683.2± 71.3 (680)
Believe 755.2± 56.02 (772) 626.4± 112.7 (640) 732.0± 97.6 (728) 619.2± 99.1 (604)
MaxP 796.0± 51.75 (800) 624.0± 109.5 (596) 721.6± 125.9 (704) 628.8± 72.99 (632)
2-MaxP + Believe 749.6± 54.73 (744) 680.0± 49.19 (676) 792.8± 113.1 (816) 581.6± 97.33 (588)
4-MaxP + Believe 756.8± 50.87 (764) 603.2± 106.7 (616) 777.6± 90.85 (780) 608.8± 94.42 (620)
(b = 16)
Naive 832.0± 91.63 (816) 872.0± 98.95 (864) 772.8± 121.4 (792) 756.8± 58.15 (760)
Believe 756.8± 58.15 (776) 630.4± 111.1 (640) 732.8± 90.45 (712) 630.4± 98.16 (632)
MaxP 820.8± 20.3 (816) 656.0± 115.2 (648) 737.6± 149.3 (800) 595.2± 87.87 (576)
2-MaxP + Believe 779.2± 70.85 (768) 688.0± 66.74 (680) 788.8± 109.5 (784) 600.0± 93.91 (592)
4-MaxP + Believe 768.0± 73.67 (776) 617.6± 85.33 (680) 737.6± 97.97 (736) 590.4± 98.49 (592)
(b = 32)
Naive 918.4± 84.72 (944) 953.6± 69.82 (992) 825.6± 112.5 (800) 838.4± 86.81 (848)
Believe 768.0± 68.63 (784) 608.0± 108.0 (640) 761.6± 99.97 (768) 640.0± 90.51 (640)
MaxP 828.8± 36.35 (832) 742.4± 104.0 (736) 832.0± 91.63 (832) 617.6± 111.8 (576)
2-MaxP + Believe 787.2± 32.63 (784) 739.2± 103.6 (704) 806.4± 129.4 (784) 617.6± 116.3 (608)
4-MaxP + Believe 761.6± 49.16 (768) 656.0± 90.79 (608) 803.2± 84.0 (800) 630.4± 79.74 (640)

Table 2: RMSE convergence results for image datasets.

The results for the image datasets are shown in Table 2. These datasets exhibit more complicated
convergence behaviors. They require more relaxed RMSE convergence thresholds and a larger num-
ber of samples to reach modest levels of approximations. In the case of the butterfly nebula image
and the tiger image when b = 8, the MaxP method outperforms the Believe strategy. In many other
cases, the hybrid strategies have the best performance in terms of mean values.
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5.4 Results for Limit Surface Recovery

We discuss results for limit surface recovery in this section. First, to understand the difference
between the believe strategy and the topology-based MaxP strategy, we show some snapshots of the
predicted response surfaces, as well as the corresponding scoring functions (i.e. straddle) during the
active learning process in Figure 5, when 152 candidates have already been added to the original
100 training points. The yellow contours denote the predicted limit surface. The blue points are
the training data (the same for both trials) and the red points are the adaptively selected points.
The green points represent the next batch of 8 selected points. The most important observation
is that the Believe strategy can still select points clustered in a single region, potentially limiting
the amount of information gain from a single batch, as illustrated by point enclosed in the white
circles in Figure 5(a)-(b). This is due in part to the straddle function encoding both uncertainty (in
the form of variance) and closeness between the predicted value and the limiting surface threshold.
Recall the advantage of an adaptive sampling strategy over a space-filling design is that samples
can be sequentially chosen in a proportionately small area of interest. However, we emphasize that
our purpose of using batch selection is to explore different areas simultaneously. We believe our
topology-based designs are more advantageous in such a context, as illustrated in Figure 5(c)-(d)
where the (green) points selected are well-spaced from one another, capturing structural information
from different areas of the domain.

(a) (b) (c) (d)
Figure 5: (a)-(b): (a) Predicted response surface based on surrogate model using the Believe strategy
and (b) its corresponding scoring function. (c)-(d): (c) Predicted response surface based on MaxP
strategy and (d) its corresponding scoring function.

F1-Score Convergence Results. Treating the limit surface recovery problem as a binary classifi-
cation, the F1-score can be used to understand our model’s ability to correctly classify points. Table
3 presents the convergence results. For these synthetic functions, the majority of tests favor the
Believe strategy. This is most likely due to the fact that on such simple and smooth examples, there
is little need to explore the global space after a few rounds of sampling, and exploiting around the
identified limit surface areas is more advantageous. As the topology-based methods are believed to
be more judicious about not placing samples very close to one another, they will not converge as
quickly as the pure Believe strategy, which can select clusters of points.

The results for image datasets (Table 4) indicates that utilizing the topology of the scoring function
in the active learning process is advantageous. With a more complicated response surface, the corre-
sponding scoring function also has complicated topology, which is believed to favor topology-based
techniques. For a fixed dataset (e.g. Face, Nebula), the topology-based methods could perform better
than the Believe strategy as b creases. This is because the topology of the scoring function is com-
plex enough that even after 32 samples, we can still find additional candidates that are structurally
informative.

Hausdorff Distance Convergence Results. Finally, we report the Hausdorff distance metric con-
vergence results in Table 5, computed between the true limit surfaces and the predicted limit sur-
faces. We omit the image datasets as the Hausdorff distances did not converge on these tests, most
likely due to the many small components of the true limit surfaces. As stated earlier, the Hasudorff
distance is a measure of the maximum minimum distance between two datasets, therefore failing to
capture even a single small component will cause the reported distance to be fairly large. Thus, this
metric is better suited for the synthetic functions that have larger, simple limit surface components.
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GMM Salomon Sinusoidal
(≤ 0.9871 ) (≤ 0.988 ) (≤ 0.9942 )

(b = 8)
Naive 114.4± 12.42 (112) 158.4± 16.7 (156) 148.0± 26.59 (140)
Believe 60.0± 9.633 (64) 120.8± 14.51 (120) 104.0± 13.86 (96)
MaxP 69.6± 10.15 (64) 142.4± 18.52 (140) 116.8± 18.66 (116)
2-MaxP + Believe 60.0± 8.198 (60) 142.4± 14.22 (148) 116.0± 19.02 (112)
4-MaxP + Believe 67.2± 5.307 (68) 144.0± 14.31 (144) 125.6± 19.61 (128)
(b = 16)
Naive 168.0± 21.76 (168) 195.2± 15.68 (192) 176.0± 25.8 (176)
Believe 67.2± 6.4 (64) 126.4± 15.09 (128) 107.2± 26.82 (96)
MaxP 81.6± 11.2 (80) 137.6± 10.61 (136) 116.8± 17.6 (112)
2-MaxP + Believe 64.0± 7.155 (64) 129.6± 8.616 (128) 108.8± 17.23 (112)
4-MaxP + Believe 70.4± 7.838 (64) 137.6± 16.32 (128) 116.8± 14.4 (112)
(b = 32)
Naive 224.0± 32.0 (224) 243.2± 15.68 (256) 208.0± 25.8 (192)
Believe 80.0± 16.0 (80) 140.8± 15.68 (128) 131.2± 33.41 (128)
MaxP 118.4± 28.8 (112) 169.6± 14.66 (160) 144.0± 21.47 (128)
2-MaxP + Believe 86.4± 20.49 (96) 147.2± 15.68 (160) 131.2± 22.4 (128)
4-MaxP + Believe 86.4± 14.66 (96) 134.4± 12.8 (128) 128.0± 14.31 (128)

Table 3: F1-Score convergence results for synthetic datasets.

Face Nebula Tiger Valve
(≤ 0.9281 ) (≤ 0.9387 ) (≤ 0.6933 ) (≤ 0.8547 )

(b = 8)
Naive 38.4± 14.22 (32) 110.4± 39.65 (120) 149.6± 103.5 (116) 165.6± 81.04 (184)
Believe 41.6± 19.2 (32) 107.2± 39.22 (112) 144.8± 89.33 (112) 132.0± 58.38 (144)
MaxP 60.0± 15.7 (60) 95.2± 39.43 (104) 143.2± 100.0 (124) 153.6± 82.97 (136*)
2-MaxP + Believe 57.6± 16.7 (56) 100.0± 39.56 (112) 192.0± 198.7 (124) 132.8± 59.24 (144)
4-MaxP + Believe 58.4± 16.41 (60) 97.6± 40.6 (96*) 174.4± 202.2 (84*) 169.6± 91.83 (164)
(b = 16)
Naive 48.0± 18.93 (48) 121.6± 44.22 (128) 168.0± 134.1 (104*) 139.2± 85.58 (136*)
Believe 49.6± 19.53 (48) 128.0± 45.25 (136) 163.2± 135.9 (104*) 137.6± 96.32 (152)
MaxP 52.8± 17.6 (48) 112.0± 42.33 (120) 160.0± 89.94 (152) 180.8± 116.7 (152)
2-MaxP + Believe 54.4± 16.32 (48) 108.8± 39.06 (120) 153.6± 93.35 (144) 161.6± 104.3 (160)
4-MaxP + Believe 52.8± 17.6 (48) 108.8± 39.06 (120) 155.2± 89.1 (136) 155.2± 99.16 (160)
(b = 32)
Naive 67.2± 17.23 (64) 150.4± 47.57 (160) 195.2± 111.3 (176) 240.0± 150.9 (224)
Believe 67.2± 17.23 (64) 140.8± 40.98 (160) 208.0± 117.4 (192) 233.6± 137.3 (224)
MaxP 64.0± 14.31 (64) 121.6± 39.97 (128) 169.6± 129.6 (128*) 160.0± 72.97 (160)
2-MaxP + Believe 60.8± 17.23 (64) 118.4± 38.0 (128) 166.4± 103.0 (144) 198.4± 104.0 (192)
4-MaxP + Believe 60.8± 17.23 (64) 118.4± 38.0 (128) 169.6± 103.2 (160) 198.4± 104.0 (192)

Table 4: F1-Score convergence results for image datasets. *Denotes where the fastest median con-
vergence differs from the fastest mean convergence.

The Hausdorff distance metric shows even for the more simple test cases that the topology-based
methods perform relatively well. This is most likely due to the fact that topology-based methods
tend to select well-spaced candidates while still target interesting regions. Spreading candidate
points along the estimated limit surface is more likely to reduce the Hausdorff distance computation.
Selecting points that are bundled in one area may improve the local fit, but are not likely to reduce
the maximum distance computed.
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