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Abstract— Scalar field comparison is a fundamental task in scientific visualization. In topological data analysis, we compare topological
descriptors of scalar fields—such as persistence diagrams and merge trees—because they provide succinct and robust abstract
representations. Several similarity measures for topological descriptors seem to be both asymptotically and practically efficient with
polynomial time algorithms, but they do not scale well when handling large-scale, time-varying scientific data and ensembles. In this
paper, we propose a new framework to facilitate the comparative analysis of merge trees, inspired by tools from locality sensitive
hashing (LSH). LSH hashes similar objects into the same hash buckets with high probability. We propose two new similarity measures
for merge trees that can be computed via LSH, using new extensions to Recursive MinHash and subpath signature, respectively. Our
similarity measures are extremely efficient to compute and closely resemble the results of existing measures such as merge tree edit
distance or geometric interleaving distance. Our experiments demonstrate the utility of our LSH framework in applications such as
shape matching, clustering, key event detection, and ensemble summarization.

Index Terms—Merge trees, locality sensitive hashing, comparative analysis, topological data analysis, scientific visualization

1 INTRODUCTION

Measuring the similarity between objects is fundamental in data anal-
ysis. Particularly, it is important to quantify the proximity of objects
to one another when they are notably similar, whereas measuring the
distance between significantly dissimilar objects is often of lesser con-
cern. A measure of similarity is the key to identifying repeated patterns,
retrieving similar objects, building data clustering, and performing
nearest neighbor search. It can also be used as a generalized inner prod-
uct for kernel methods for a variety of embedding, classification, and
regression tasks. Choosing a meaningful similarity measure that can be
computed efficiently is critical for performing advanced data analysis
on any dataset, especially for visual analytics that require real-time and
interactive feedback.

The need for meaningful and efficient similarity measures is espe-
cially true for scientific data analysis and visualization. In scientific
computing, a large number of numerical simulations yield data in the
forms of scalar fields, for example, temperature and surface atmospheric
pressure from the Weather Research and Forecasting model. Moreover,
the predominate way to facilitate efficient storage, analysis, and visual-
ization of scalar fields is through various topological descriptors—from
merge trees [13] to Morse–Smale complexes [23]—that represent the
salient features of the underlying scientific phenomena.

To that end, a rich set of comparative measures is available for a
number of topological descriptors, with applications in structural biol-
ogy, climate science, combustion studies, neuroscience, computational
physics and chemistry, and ecology. A key takeaway from a survey by
Yan et al. [81] is that choosing the right similarity measure between
topological descriptors is a recurring challenge because it tends to be
both data-driven and dependent on specific applications. Rarely does a
single measure fulfill all desired criteria, including acting as a metric or
pseudometric, exhibiting stability and discriminative power, and being
easy and efficient to compute.

The issue of computational efficiency is especially important in
studying time-varying scientific data and ensembles at scale. For time-
varying scalar fields, similarity measures between successive time
steps are employed to identify periodic patterns, significant events, and
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anomalies, as well as to facilitate feature tracking (e.g. [47, 56, 62, 63]).
Computational efficiency is particularly notable, for instance, for track-
ing the evolution of extreme weather events (e.g., thunderstorms and
hurricanes) using time-varying reanalyzed data such as temperature,
wind, and moisture (e.g. [72]). For ensembles, similarity measures
aid in the identification of clusters, outliers, and distinctive ensemble
members (e.g., [34, 61, 82]). Efficient similarity measure holds partic-
ular significance in the examination of climate simulation ensembles,
where thousands of climate model simulations with slight variations in
parameter settings are utilized for climate projections. However, many
similarity measures for topological descriptors suffer from challenges
in both efficiency and scalability. While the complexity to compute the
distance between a pair of merge trees of size n is at best O(n2) [81],
in practice, these methods involve solving matching problems, resulting
in high runtime. Furthermore, in the case of ensembles or time-varying
data, any useful analysis often requires a large number of comparisons,
potentially involving all-pairs comparison in the worst case.

The broader data analysis community has turned to locality sensi-
tive hashing, or LSH [18, 38], to address these questions of efficiency
and scalability. LSH is more flexible than embedding methods which
require intermediate vector representations, and it is less specific than
clustering methods which typically force fixed groupings. LSH uses
random hash functions, not to index distinct objects, but to randomly
group together similar objects. Each object is given a set of represen-
tative signatures through a random process. These random signatures
match between objects proportionally to how similar the objects are.
This property induces a mechanism, whereby objects can be allocated
to (multiple) hash buckets according to their signatures, enabling highly
efficient probabilistic retrieval of similar objects by exploiting the ten-
dency for them to reside within the same hash bucket. Importantly,
LSH avoids comparing all objects.

Although LSH has become a fundamental tool in most large-scale
data analysis, it remains unexplored in topological data analysis and
visualization. As datasets continue to grow, it is paramount to investi-
gate how to extend LSH to comparing topological descriptors at scale.
This paper focuses on LSH for merge trees. The merge tree captures
topological relations between sublevel sets of a scalar field, and is
shown to be quite useful in symmetry detection [54], shape matching
and retrieval [62], feature tracking [56], summarization [62, 82], inter-
active exploration [49], and uncertainty visualization [82]. As most of
the LSH algorithms require labeled structures, we use labeled merge
trees [80,82]. A labeled merge tree is applicable when there is a natural
labeling for the nodes, or when a labeling may be inferred from the
data [40]. A climate simulation ensemble produces a set of slightly
varying scale fields (e.g., pressure) that give rise to slightly different
merge trees with a shared domain. We may use the indices of mesh
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nodes or the correspondences between underlying features (e.g., hur-
ricane eyes) as the labeling, which is useful for feature tracking using
merge trees (e.g., [79]). A labeled merge tree where labels encode
geometric features (e.g., Euclidean coordinates or other node attributes)
further enables geometry-aware comparisons of merge trees [80].
Contributions. In this paper, we provide a LSH framework to facilitate
the comparative analysis of labeled merge trees. Our framework is
an adaptation of existing methods like Recursive MinHash [20] and
subpath signature [78] with critical extensions to our setting. The key
contributions are as follows:

• We propose two new similarity measures for labeled merge trees
that can be computed via LSH, using new extensions to Recursive
MinHash and subpath signature, respectively.

• Our similarity measures are extremely efficient to compute and
closely resemble the results of existing measures such as merge
tree edit distance or geometric interleaving distance.

• We develop efficient and scalable algorithms for our LSH frame-
work in comparing labeled merge trees.

• Our experiments demonstrate the utility of our LSH framework
in applications such as shape matching, temporal scalar field and
ensemble summarization, and in identifying transitions between
data structures of time-varying datasets.

• We compare with existing methods in terms of accuracy and
scalability. Our methods achieve 10−30× speed-up on moderate
datasets and high speed-up on a large ensemble.

Overall, our framework is the first of its kind in integrating the notion
of LSH within topological data analysis and visualization. It demon-
strates good efficiency in comparative analysis of merge trees at scale.
Our LSH framework may be extended to handle other topological
descriptors, in particular, extremum graphs [47] and contour trees [13].

2 RELATED WORK

Merge trees. We mainly focus on merge trees and labeled merge trees;
see the surveys [37, 81] for other topological descriptors.

Merge trees capture the topology of sublevel sets of a real-valued
function. They appear as an intermediate step in constructing contour
trees [13]. In the past few decades, contour trees and merge trees have
been used in various applications such as excess topology removal
from isosurfaces [73], image analysis [45], topology controlled volume
rendering [67], flexible isosurface generation [14], seed selection for
segmentation [39], high-dimensional data analysis [48], uncertainty
data exploration [74], cavity identification in biomolecules [5], symme-
try detection [65], segmentation of volumetric data [7], and analysis
of astronomical data [53]. Multiple methods exist to compute contour
trees/merge trees in both serial and parallel; see [2,13,15,16,31–33,68].

Labeled merge trees were first defined by Gasparovic et al. [28],
followed by Yan et al. [82] and subsequently used by Yan et al. [80]
in comparing time-varying scalar fields. The nodes of a merge tree are
labeled based on their function values or geometrical properties.
Comparative analysis of topological descriptors. Comparison mea-
sures for topological descriptors such as merge trees and contour trees
have to incorporate the structure along with the information about the
scalar fields. Morozov et al. [46] introduced interleaving distance be-
tween merge trees, a stable and discriminative distance but without an
efficient algorithm to compute it. Later Beketayev et al. [6] introduced
branch decomposition distance, which considers all possible branch
decompositions. Sridharamurthy et al. [62] introduced global merge
tree edit distance for ordered and unordered trees extending tree edit
distances, and provided an efficient algorithm to compute it. Srid-
haramurthy and Natarajan further extended it to local merge tree edit
distance [63] that enables a hierarchical comparison of merge trees.

Gasparovic et al. [28] and Yan et al. [82] defined intrinsic interleav-
ing distance for labeled merge trees, provided an algorithm to compute
it with numerous applications. Pont et al. [50] introduced Wasserstein
distance between merge trees with the facility to compute barycenters
and provided applications to ensemble data. Yan et al. [80] introduced
geometry-aware interleaving distance extending the intrinsic interleav-
ing distance by incorporating geometric information to enhance its ap-

plicability to scientific data. Wetzel et al. [71] followed by Wetzel and
Garth [70] introduced branch-decomposition independent edit distance
and a deformation-based edit distance, both for comparing branch-
decomposition of merge trees. Bollen et al. [8] introduced a stable edit
distance addressing instability issues in previous edit distance-based
measures. Wetzel et al. [69] eliminated the horizontal instability of
edit distance-based measures by providing linear programming (LP)
formulation of unconstrained edit distance. Qin et al. [52] hashed
persistence diagrams into binary codes using a generative adversarial
network to speed up comparisons. While hashing is also used in our
framework, we do not need any learning-based approach to generate
representations of the merge trees. There is another set of comparison
measures (such as those based on histograms [55, 56] and the extended
branch decomposition [54]). They are not metrics by definition but are
simple, intuitive, and easy to compute.
Locality sensitive hashing. Hashing is the process of transforming
data to values, oftentimes of fixed size, via a hash function. It has been
effective in compressing data for fast access and comparison; see [21]
for a survey. Locality sensitive hashing (LSH) utilizes a family of
hash functions that map similar objects to the same hash buckets with
high probability, making it useful for clustering and nearest neighbor
search. Given a set of objects, LSH creates a sequence of discrete
representatives for each object; the more these representatives match,
the more similar the objects are deemed to be. Since the algorithm
generates more representatives, it refines the notion of similarity, at
the expense of higher computation cost. The basics of LSH were
first introduced by Indyk and Motwani [38], followed by Gionis et
al. [29]. Charikar [18] and later Chierichetti et al. [22] provided a more
theoretical foundation along with necessary conditions for the existence
of a LSH method for any similarity measure.

Wu et al. [76] provided a survey of LSH methods. These methods fo-
cus on evaluating a base measure—most commonly Jaccard similarity
(MinHash), cosine similarity (SimHash), or string edit distance (SED).
Ertl [25] provided an LSH framework for probabilistic Jaccard Similar-
ity called ProbMinHash. Many LSH frameworks for SED have been
defined, including by Zhang and Zhang [83–85], Marçais et al. [43],
Chen and Shao [19], approximating similarity search under SED by
Mccauley [44].

Coming to structured data such as sequences, trees, and graphs, Wu
and Li [75] provided a survey of existing LSH methods. We discuss
two relevant ones: hierarchical and kernel-based methods. Gollapudi
and Panigrahy [30] proposed the idea of combining two min-hashes
to enhance LSH for hierarchical structures like trees. Chi et al. [20]
provided Recursive MinHash (RMH) for hierarchical structures by
repeatedly using MinHash at each level of the hierarchy, building the
hash representations from the bottom up.

Kernel-based methods generate vectorized representations of graphs
while still being able to capture their structure. The most prominent ker-
nel method for representing graphs and trees is the Weisfeiler-Lehman
(WL) kernel by Shervashidze et al. [59]. Li et al. [41] defined Nested
Subtree Hashing (NSH) which is an improvement over WL kernels,
but still takes O(n2) time. Wu et al. [77] defined K-ary Tree Hashing
(KATH). All three methods, WL, NSH, and KATH kernels, although
applicable to trees, are more suited for general graph structures with
cycles. Aiolli et al. [3] defined the Subset Tree (SST) kernel, which also
takes O(n2) time. Tatikonda and Parthasarathy [64] defined a kernel
for trees based on pivots and least common ancestors, but the compu-
tation of the kernel takes O(n2) time. Shin and Ishikawa [60] and Xu
et al. [78] defined subpath signature for trees to capture hierarchical
relationships, providing an O(n) signature construction. Signatures
which asymptotically take O(n2) time are still useful for graphs, since
graph comparison is a difficult problem to solve; however trees require
signatures that are subquadratic to be of any use in practice. Hash-
ing techniques have been used for other applications such as graph
alignment [36] and relational graph matching [42].

In terms of LSH methods, the upper bound and lower bound proofs
for tree edit distance (TED) [26, 27] along with the LSHability re-
sults [22] showed that we cannot have an LSH method for TED. Thus,
we design an LSH method that emulates Jaccard similarity with some



hierarchical information encoded so that the tree structure can still be
incorporated. We concentrate on extending hierarchical methods by
Chi et al. [20] and some of the fast kernel methods such as subpath
signature by Xu et al. [78] for their simplicity in implementation and
potential for speed-ups.

3 BACKGROUND

3.1 Merge Trees and Labeled Merge Trees

Merge trees. Given a scalar field f : X→ R defined on a topological
space X, the merge tree of the data (X, f) captures the connectivity
of its sublevel sets f−1(−∞, t] (for some t ∈ R). Mathematically,
we identify two points x, y ∈ X to be equivalent (i.e., x ∼ y) if
f(x) = f(y) = t and they belong to the same connected components
of f−1(−∞, t]. The merge tree is the quotient space X/ ∼. The root
of a merge tree is the global maximum, the leaves are the local minima,
and the internal nodes are the merging saddles. We denote a merge tree
by T , with a set of nodes V (T ) and a set of edges E(T ).
Labeled merge tree. A labeled merge tree consists of a merge tree T
with a map π : [n]→ V (T ) that is surjective on the set of leaves [28,
Def. 2.2], that is, all leaves and some internal nodes are labeled. Here,
[n] := {1, 2, . . . , n} denotes a set of labels. Fig. 1 shows merge trees
and labeled merge trees for a 2D scalar field.

A node can have multiple labels. Labels can be added from one
labeled merge tree to another unlabeled merge tree using a variety of
methods [80]: tree mapping considers topological information captured
by how the function values differ along the path containing the least
common ancestor; Euclidean mapping considers geometric information
captured by the Euclidean distance between the critical points; and
hybrid mapping combines the two.
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Fig. 1: Illustration of merge trees. (a) A scalar field f overlaid with critical
points. (b) Merge tree. (c) Labeled merge tree with node labels [3, 4], [2],
and [1] for nodes a, b, and c, respectively. (d) Merge tree of −f .

Merge tree edit distance (dE). Given two merge trees T1 and T2, let
Q := Q(T1, T2) denote a set that contains sequences of edit operations
(insert, delete, relabel) that transform T1 to T2. γ(Q) denotes the cost
incurred over a sequence Q ∈ Q; it is the sum of the cost of individual
edit operations. Now, dE is given by dE(T1, T2) = minQ∈Q(γ(Q)).
Geometry-aware interleaving distance (dI ). For T with a labeling
π that incorporates both geometric and topological information, and
a scalar function f , its induced matrix M consists of entries defined
as Mij = f(lca(π(i), π(j))) where lca stands for the lowest common
ancestor. Given two labeled merge trees T1 and T2, dI is given by the
cophonetic metric (i.e., p-th norm) [12] between the induced matrices
M1 and M2, i.e., dI(T1, T2) = ∥M1 −M2∥p. We use p =∞.

3.2 Locality Sensitive Hashing
We define LSH and its variants that are relevant to this work. For a
more detailed introduction, see the survey by Wu et al. [76].
Locality sensitive hashing. An LSH algorithm considers a space of
objects Z and a similarity function s : Z × Z → [0, 1]. It then uses a
family of hash functionH, so that in expectation

Eh∼H[h(p) = h(q)] = s(p, q).

In other words, given the randomness in the choice of harsh func-
tions h ∼ H, the probability that h(p) = h(q) equals their similarity
s(p, q) [38]. Therefore, the greater the similarity between objects p
and q, the higher the probability that they will hash together. This is in

contrast to traditional hashing used for indexing a set, where we aim to
avoid collisions between objects.

Then we bundle a set of hashes to amplify their effect, so objects
more similar than a threshold collide with high probability. We harness
this property to compute similarity or find similar objects without
explicit comparison or search.
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(a) (b)

Fig. 2: (a) Generating MinHash: an N ×M binary matrix is generated
and then reduced to a dense q ×M signature matrix using q-MinHash.
Here, q = 4. (b) LSH: a signature is divided into bands of length r.
Here, r = 2. LSH is applied to individual bands and candidate pairs are
determined based on signature collision in any band (in red). The orange
arrows are applications of hash functions.

MinHash. A MinHash is a common mechanism to create an LSH when
each object Z ∈ Z is represented as a subset Z ⇒ W ⊂ U ; where
U = {u1, . . . , uN} is some universal set of possible objects. The
base element of a MinHash is a (random) permutation over σ : U 7→
U . However, the actual hash h returns only the minimum h(W ) =
argminw∈W σ(w). As a result, we typically do not implement this as
a full permutation (which can be expensive to store and compute), but
σ can map U → R, so the minimum object can still be retrieved.

A classic insight [10] is that for a MinHash h on two sets V,W ⊂ U ,

Eh∼H[h(V ) = h(W )] = Jac(V,W ),

where Jac(V,W ) = |V ∩W |/|V ∪W | is the Jaccard similarity.
Therefore, to use a MinHash for any family of objects Z , the key is

to represent each Z ∈ Z into sets W of potential “views” or structured
“subset-elements” of those base objects Z. Then, we can directly invoke
MinHash to define a similarity of those base objects via the Jaccard
similarity of their sub-objects.

We combine q MinHash functions h1, . . . , hq into a single hash
function called an q-MinHash. For a set W , it concatenates these q
signatures into a longer ordered set [h1(W ), h2(W ), . . . , hq(W )]; see
Fig. 2 for an illustration.
LSHability [18, 22] provides criteria for the existence of an LSH
framework for a particular similarity measure. For a similarity s to
admit an LSH framework, there are two necessary conditions:
1. 1− s must be a metric distance function;
2. 1− s must be isometrically embeddable in l1.
For an LSH algorithm to exist, both the distortion lower bound and
upper bound should be 1 according to [22]. Garofalakis and Kumar
proved that this is not the case for tree edit distance [26, 27]. Thus, in
this work, we operate with the Jaccard similarity variants.
Amplifying similarity for similarity search. A single hash that has
collisions proportional to object similarity by itself would make for a
very noisy similarity search. For objects with a very high similarity
(e.g., 0.9), they do not collide 10% of the time. To address this issue,
we use a set of k randomly chosen hash functions h1, . . . , hk ∼ H and
employ banding.

We divide the k hash functions into b bands each with r = k/b hash
functions. A band is considered to have a collision for two objects
only if all r hash functions in the band show a collision. In other
words, these r-banded hash functions are combined into a single r-
MinHash function. Such a process can be implemented efficiently by
concatenating the hash values from each hi in the band, and using a
regular hash table to increase the specificity, thereby making it harder
for objects to collide.

However, we counterbalance this increased specificity by decreasing
it through b bands, where two objects are deemed to collide if they



collide in any band. Together, these adjustments sharpen the threshold
for identifying a collision. Consequently, pairs with s(p, q) = 0.9
are much more likely to be identified as being similar, and pairs with
s(p, q) = 0.1 are much less likely to be considered similar.

For a fixed k, we can adjust the desired specificity and the similarity
threshold by changing r. In our case, we find that the hash function
design is already very specific, so we use a very small r. Fig. 2 provides
an illustration of conceptual steps of how LSH is used to identify similar
objects efficiently. Objects Wi and Wj are considered similar when
their hashed signatures collide in any band.

3.3 Subpath Signature for LSH
For graph-structured data, a common way to encode labeled graphs into
sets W from some universal set U is to consider all subpaths. Given a
parameter t, we set W as all sequences of t labels which can be formed
by a path in the graph. The representation of an object as a set W
means it can immediately be used in the MinHash framework. For
rooted trees, Xu et al. [78] showed that it is effective to consider only
directed paths from the root toward the leaves, without including the
root itself.

A rooted-tree subpath signature is of interest because it not only
is efficient but also provides theoretical bounds w.r.t. to the tree edit
distance dE with unit costs (see [78, Theorem 2]). Specifically consid-
ering dE with operations consisting of insertion, deletion, relabelling,
and subtree moves, if the subpath signatures of two trees for parameter
t are the same, i.e., St(T1) = St(T2), then

dE(T1, T2) ≤ n−min(t− 1, height(T1) + 1),

where n := |T1| (n > 2) and t > 1.

3.4 LSH for Hierarchical Data
In this section, we describe how LSH is used to specifically handle
hierarchical data such as documents and fixed-height trees.
Recursive MinHash (RMH) [20] uses q-MinHash repeatedly by fol-
lowing a bottom up approach to compare hierarchical data.
• The method recursively performs the following steps starting from

the lowest level, until the highest level is reached:
1. Apply q-MinHash to data at the current level.
2. Reorganize these q-MinHash vectors into q sets: insert the ith

term from each q-MinHash vector into the ith set.
• Finally, we apply q-MinHash again to the reorganized vectors and

concatenate the results into one single fingerprint.
Fig. 3 shows how RMH works for a toy example consisting of two

levels, with q = 4. The sets {a, b, c}, {b, e}, {d, e, a} comprise the
bottom level. First, q-MinHash is applied on these sets, and the hashes
are reorganized. Next, q-MinHash is generated for the reorganised sets
to account for the top level. The final signature is the ordered set of
these q-MinHash signatures for these reorganized sets. We describe the
hash functions in detail in the supplement.

A single fingerprint is represented as an ordered set of k values.
These values can then be split into b bands of r = k/b elements, each
within an LSH framework. The LSH parameters r and b do not need to
correspond with the signature parameter q.

Fig. 3: An illustration of RMH.

4 LSH FOR COMPARING MERGE TREES

Our LSH framework introduces two similarity measures: one based on
Recursive MinHash sR, and another based on subpath signature sS . To
compare against distance matrices in our experiments, we convert each

similarity measure to a distance, denoted as dR and dS , respectively,
where dR = 1− sR and dS = 1− sS . We present an overview of our
framework followed by a detailed description of the algorithms.

Input Data	"
Persistence
Simplification

"#

Merge Tree Labeled
Merge Tree

RMH

SS
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Similar
Pair

(24,12)
(153,4)

…
(62,47)

$%	or $&	

Signature
Generation

1

3,4
2

LSH

1

3,4 2

Fig. 4: A pipeline of LSH for comparing merge trees.

Overview. An overview of our pipeline is shown in Fig. 4. Given a
set of scalar fields as input, we generate our dR and dS matrices as
follows:

• Preprocessing. We first simplify each scalar field with a small
persistence threshold to remove noise in the data [24]. We then
compute its corresponding merge tree, followed by label assignment.

• Signature generation. We take the labeled merge trees as the input
and generate their signatures using either RMH or subpath signature
(SS) algorithms.
– SS signature: For each labeled merge tree, we can identify the

elements W of a universal set U of subpaths. Then, we directly
use MinHash to obtain signatures.

– RMH signature: We combine RMH with a hierarchy of trees, and
apply it to labeled merge trees to generate signatures.

• LSH. We divide signatures into b bands each with r rows. If two
objects collide in any band, then we mark these two objects as a
similar pair. For empirical comparison, we generate our distance
matrices dR and dS by collecting all similar pairs from the LSH.

4.1 Subpath Signature for Labeled Merge Trees
We extend the rooted-tree subpath signature method to labeled merge
trees. Given labeled merge trees and a parameter t that denotes subpath
length, we generate all subpaths of length t and collect them in a
multiset. We include a path containing t− 1 dummy nodes leading to
the root node. This ensures that all the subpaths would be of length t,
even in the extreme case where the tree consists of only one node.

Fig. 5 shows an example on generating subpath signatures for a
labeled merge tree with t = 3 and q = 2. After adding two dummy
nodes, we start collecting all the subpaths of length three from the new
root and traverse down the tree until every node has been visited. We
then apply 2-MinHash to each merge tree to get a collection of vectors.
Finally, we take these vectors as input for LSH.
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Fig. 5: Illustration of subpath signature for a labeled MT.
We design a simple modification of depth-first search (DFS) to

generate subpaths. Intuitively, a traditional DFS returns a subpath
of length 1. To modify it to return a subpath of length t, we do the
following steps: whenever a node is flagged as visited in a traditional
DFS, it is popped and returned. Instead of a single node, we implement



a (t, t− 1) pop-push operation that pops t elements to provide us with
the subpath and immediately pushes back t− 1 elements that have not
been flagged as being visited.

In practice, if we implement the stack using an array, then we need
not explicitly perform (t, t−1) pop-push operations since we can access
the elements that are not at the top of the stack. Thus, we generate
the multiset containing all the subpaths of length t. The supplement
provides the pseudocode. Algorithm 4 generates the subpath multiset.
Algorithm 3 is the modified DFS that is used internally by Algorithm 4.
It modifies traditional DFS with the extra step POP−PUSH(t, t− 1),
which takes O(t) time. Thus, the running time is given by O(n × t)
where n is the size of the tree. Since t≪ n, and t < 10 is a constant
in practice for most cases, the running time is linear in the size of the
trees.

4.2 RMH for Labeled Merge Trees
Our starting point is RMH, as described in Sec. 3.4. RMH provides a
hash signature for hierarchical structures. It was originally designed for
documents where the hierarchy is fixed, consisting of words, sentences,
paragraphs, and so on. However, for merge trees, the hierarchy (the tree
structure) can be different for each object as it depends on the topology
of the sublevel sets.

We first make the new observation that the RMH framework can be
applied to any hierarchical object. Every reorganization step results in
q sets. Then, in the next recursive step, q sets always lead to q different
q-MinHash signatures. This is true no matter how many iterations of the
hierarchy have been processed. Hence, the final concatenated signature
is always of length k = q2. Since the above process is independent of
the height or structure of the tree, the signature can be compared across
trees of different topology.

Second, unlike the traditional RMH where all nodes at a particular
level are of the same type, in the case of merge trees, the nodes can be
of different combinations. At a particular level, the nodes can be all
extrema, a mixture of extrema and saddles, all saddles, or the root node.
To address the combination of different nodes, we apply a recursion
based on the type of the nodes rather than the level. This ensures that
the MinHash of subtree rooted at a and the MinHash of subtree rooted
at b will be subjected to reorganization only at the level corresponding
to their lowest common ancestor, lca(a, b). We modify the RMH to
reflect this small but crucial difference so that it can be applied to merge
trees; see Algorithm 2 in the supplement for the pseudocode.

In Fig. 6, we provide a toy example illustrating how RMH with
2-MinHash works for labeled merge trees. First, we apply 2-MinHash
to all the labels of leaf nodes in our merge tree. Second, we reorganize
the hash vectors of leaf nodes that share the lowest common ancestor,
leaf nodes a and b, and their parent node d. Third, we truncate the tree
to move one level up. We perform the three steps above recursively
until we only have one node left, which is the root. Then, we apply
2-MinHash again to obtain the hash vectors and concatenate them into
a single RMH signature as the input for LSH.
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Fig. 6: An illustration of RMH on a labeled MT.
Using our observation that each recursive round always generates at

most q sets, we provide a simplified analysis of the runtime compared
to [20]. We say a node is an exposed leaf node if it has not yet been
truncated in the recursive process, and it has no child nodes in the
truncated tree. In each round, each exposed leaf node needs to convert
from at most q sets, each of size at most q2, to q MinHash signatures.
This process takes O(q4) time. For binary trees of height L with n

nodes, there are at most min (2L, n) exposed leaf nodes. Since the
height decreases by one each round, the total runtime is

L∑
z=1

O(min (2L−z+1, n)q4)) = O(Lnq4).

Therefore, if q is a small constant (we typically use q = 2 or 4), then the
runtime is near-linear in the size of the tree unless it is very unbalanced
and the height L is super-logarithmic in the tree size.

4.3 Design Choices and Implementation Details
Labeled merge trees may contain nodes with multiple labels. To ensure
that we do not miss any similar pairs, we incorporate multiple labels
into our subpath, i.e., if node a has l labels then we generate a subpath
which contains a, b, and c as ((a1, . . . , al), b, c).

We follow the traditional LSH method that the signatures are divided
into b bands of r rows each. A “match” between merge trees requires
that for at least one band, all its rows have to match. Therefore, if r is
larger, we require a closer match, and if b is larger, it is more forgiving
as there are more chances to find a instance of all-rows correspondence.
Since the relationship k = r × b is fixed, then for a specified k, we
can tune the similarity threshold to define a “close pair” to be more
specific by increasing r; so adjusting r is like adjusting a threshold for
similarity with any other distance. As we have observed, small r values
(often r = 1) provide useful matches already.

We can also adjust the value of k: the larger the parameter k, the
less variance in the matches found in this randomized process, but the
more expensive the computation. We discover via experiments that a
fairly moderate value of k (e.g., k = 20) works quite well.

If we have a very large number of trees, an additional hash function
can be applied to report collisions within a single band. However,
given the scale of our experiments (not involving millions of trees), it
is feasible to calculate and report all collisions directly. This approach
enhances the precision of our reporting for this paper.
Implementation details. We use the implementation in [80] to generate
merge tree labels. We implement both dR and dS in Python. We also
implement the algorithm to generate subpaths of length t required for
dS . We implement the MinHash first introduced by Broder [9].

5 EXPERIMENTS AND RESULTS

We experimentally validate the effectiveness of our LSH framework, in
terms of utility and efficiency:
• We demonstrate that our new similarity measures are effective on a

wide variety of examples, in recovering results from existing merge
tree distances, and in some cases uncovering new scientific structures.

• We illustrate that our framework is significantly more efficient
than standard distance measures. It achieves 10-30× speed-up on
moderately-sized datasets, and (estimated) 800× on large ones.

Comparison with edit and interleaving distances. Our framework
introduces two similarity measures: one based on Recursive MinHash
sR and another based on subpath signature sS . We convert each simi-
larity measure to a distance, denoted as dR and dS , respectively, where
dR = 1− sR and dS = 1− sS .

We compare our results with the merge tree edit distance [62] (re-
ferred to as edit distance for short, denoted as dE) and the geometry-
based interleaving distance [80] (denoted as dI ). We choose these
two distances as they are both applicable to labeled merge trees but
represent different types of similarity measures. dE provides the best
theoretical runtime among comparative measures that internally solve
matching problems, whereas dI decouples the computation externally
into a labeling step and a comparison step.

In our comparison, we report dE and dI , and use a color scale to
visually observe the thresholds when useful structures become apparent.
We then demonstrate that our LSH framework could approximately
match these structures as follows: for each fixed k, we adjust r so
that the matched merge trees approximately correspond with those
from the other distances. We visualize this optimal choice of r as a



Table 1: Detailed descriptions of all datasets and parameters used in all experiments. ε stands for persistence threshold.

Dataset Dimensions # Instances/Time steps ε Size of Merge Tree k r
Vortex Street 192× 64× 48 102 0.01 10 - 104 nodes 20, 40, 60, 80 1, 2

Shape Matching varies 132 0.01 10 - 52 nodes 20, 40, 60, 80 1, 2, 4
Corner Flow 450× 150 1500 0.01 12 - 78 nodes 20, 40, 60, 80 1, 2
Heated Flow 150× 450 2000 0.01 2 - 148 nodes 20, 40, 60, 80 1, 2

Viscous Finger 100× 100× 100 5746 5 64 - 232 nodes 20, 40, 60, 80 1, 2

symmetric binary matrix. In some cases, the other distances do not find
an interesting structure, but our LSH-based measures do.

We use the Topology Toolkit (TTK) [66] to visualize scalar fields and
generate merge trees. We compute dE and dI using implementations
provided in [62] and [80], respectively. We use a hybrid mapping strat-
egy from [80] to generate labels for all datasets, since it encodes both
geometric and topological information from the input. We perform our
experiments on a standard laptop with i7 processor with 20 threads run-
ning at 3.5 GHz, with 32 GB memory. We use Moving Gaussian, a toy
dataset from [80], TOSCA shape dataset from [58], Corner flow [4] and
Heated flow [35] datasets from [51] (available at [17]), 3D vortex street
dataset from [11] (available at [1]) and Viscous Fingers dataset [57].

5.1 An Illustrative Example
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Fig. 7: Moving Gaussian dataset. Top: 12 time steps are visualized with
embedded merge trees. Bottom: comparing merge trees with binary
matrices for dR and dS , together with an interleaving distance dI matrix.

We first consider a toy dataset, called Moving Gaussian, generated
by placing a mixture of three Gaussian functions on a plane. The dataset
consists of 12 time steps, where one of the three Gaussian functions
moves counterclockwise around two fixed Gaussian functions [80]. We
compute the merge trees of the inverse, which capture the relationships
between local extrema and saddles. Fig. 7 (top) illustrate the set of
scalar fields along with the merge trees.

This dataset contains natural clusters by design. Yan et al. [80] re-
ported three clusters formed by time steps {2, 3, 4, 8, 9, 10}, {5, 6, 7},
and {1, 11, 12}, respectively; see Fig. 7 (bottom right).

We compare our LSH framework against the results generated with
the interleaving distance in [80]. We apply a persistence threshold
ε = 0.02 to separate features from noise in the scalar fields. We then

generate merge trees and labels for all 12 time steps and apply our
LSH-based similarity measures.

To visualize our results, we mark an entry in a 12×12 binary matrix
to be 1 if there exists a candidate pair by an LSH collision, otherwise 0.
The binary matrices for both dR and dS are shown in Fig. 7 (bottom),
along with a 12 × 12 interleaving distance dI matrix from [80]. We
observe similar clustering results from both dR and dS , confirming that
our framework can be a good alternative to the interleaving distance.

We experiment with different values of k, b, and r. Our results match
exactly the results in [80], when k = 4, r = 4, and b = 1 for dR and
k = 8, r = 4, and b = 2 for dS . For subsequent experiments, Tab. 1
shows all datasets and parameters used in the experiments.

5.2 Shape Matching
Shape matching involves detecting similarities between shapes. Even
though geometric methods have been very powerful in shape matching,
we could still use topological descriptors to get reasonable results.

We use a TOSCA shape dataset, which contains various nonrigid
shapes in different poses. Fig. 8 shows 10 classes of shapes with ground
truth labels, where each class contains multiple poses of the same
shape. We aim to classify similar shapes correctly using merge trees,
irrespective of their poses.

Cat Centaur David Dog Gorilla

Horse Michael Seahorse Victoria Wolf

M
in

M
ax

Fig. 8: TOSCA shape dataset contains 10 classes of shapes. One pose
is selected to represent each class. Each mesh is colored by the average
geodesic distance from a set of anchor points.

(a) (b) (c)

Fig. 9: TOSCA shape dataset: precision and recall in shape matching.
(a)-(b): Precision and recall plot for dR and dS , by varying r w.r.t k. (c):
Exploring parameter configurations for dS .

We define the scalar field f to be the average geodesic distance from
a set of anchor points on the mesh. We then generate merge trees of
−f and their node labels. We use this dataset to demonstrate the utility
of our LSH framework in finding exact matching pairs. We also use it
to illustrate parameter choices.

We first investigate how the choices of parameters k and r (so
b = k/r) can affect the outcome of dR and dS in the context of shape
matching where we have labled ground truth. The same strategy extends
to other datasets. Note that the primary computational cost of a LSH
algorithm is computing the hash function for each data object, where
k indeed can be used as a representation of runtime. In Fig. 16, we
explicitly investigate the relationship between k and runtime.

Fig. 9 plots the average precision and recall as we vary r and k. For
each shape x, a precision is computed as a ratio of the matched instances



with the same label over all matched instances. A pointwise recall is
computed as a ratio between the matched instances with the same label
versus all instances with that label. As r increases, precision increases,
but recall decreases (as with any distance and similarity threshold). We
see this for dR and dS in this plot considering k ∈ [20, 40, 60, 80] and
r ∈ [1, 2, 4]. We observe k does not affect precision and recall much
and so we often opt for a smaller k = 20. We also favor a smaller
r = 1, since this gives much better recall. We can always filter mis-
matches (because of not as good precision) with a direct computation
of a slower distance over a smaller number of matched objects.
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Fig. 10: TOSCA shape dataset. Binary matrices of dR and dS are shown
with red squares which contain instances with the same ground truth
class label. dE and dI distance matrices are provided for context.

Fig. 9 also varies subpath length t. We choose t = 4 to maintain a
good precision without the subpath being too long, depending on the
height of the merge trees.

We perform experiments on different parameter settings provided
in Tab. 1. Fig. 10 shows the binary matrices for both dR and dS , with
k = 20 and r = 1. Each binary matrix shows clear block structures
along its diagonal, for example, in Cat, David, Horse, Michael, Sea-
horse, and Victoria classes. The results show that we obtain reasonable
classification of some classes.

On the other hand, dR and dS (to some extent) perform imperfect
classification between Gorilla, Horse, and Michael classes. For instance,
we observe off diagonal blocks showing similarities between Horse and
Cat. The reason is two-fold. First, merge trees have similar structures
among these classes of shapes, and the merge tree itself is not always
a good descriptor for capturing all the geometric details of a shape.
Second, the labeling strategy, which currently labels only the leaf nodes,
might also contribute toward the imperfect results. The LSH framework
intuitively captures a variation of Jaccard similarity (based on hash
buckets). Since the Jaccard similarity generally ignores hierarchy, dR
applies Jaccard similarity at multiple levels to alleviate this issue.

In Fig. 10, dE and dI matrices are also provided for context. In
comparison, dI captures less information as fewer classes are classified
correctly by dI . We observe that dE gives good classification results
for only some of the classes. For instance, dE also exhibit off diagonal
blocks showing similarities between Gorilla and Michael, David and
Michael, and so on. The small discrepancies between dE and our
framework probably arise from modeling shapes with merge trees, not
the similarity measures we employ.

5.3 Time-Varying and Ensemble Data Summarization
We demonstrate via experiments the utility of our LSH framework in
summarizing time-varying scalar fields and ensembles.

5.3.1 Vortex Street
We first demonstrate temporal summarization using a 3D Bénard von
Kárman vortex street dataset. We consider the magnitude of velocity
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Fig. 11: Vortex Street dataset. Binary matrices for dR and dS are
presented with selected time steps from different clusters. Distance
matrices for dI and dE are provided for comparison.

as the scalar field. We generate the binary matrices according to the
parameters provide in Tab. 1.

Fig. 11 (left) visualizes three instances with different structures
along the time-varying dataset. This dataset contains a set of clusters
capturing different phases of the flow behavior [62]. During the 1st
phase, the flow evolves slowly, and the first 30 time steps are highly
similar to one another, and time step 24 is selected as a representative.
During the 2nd phase, the flow is transitioning toward a more periodic
behavior, and time step 38 marks a transition to the next phase. During
the 3rd phase, the vortex shedding phenomena (i.e., an oscillating flow
behind a bluff body at certain velocities) become clearly visible, and
time step 55 is selected as a representative.

Fig. 11 (right) includes binary matrices dR (k = 60, r = 1) and dS
(k = 20, r = 1, t = 4). We observe that dE clearly identifies the three
phases as three clusters (blocks). In particular, it shows periodicity in
the 3rd block that corresponds to vortex shedding. In the dS matrix, we
identify the 1st major cluster clearly, but the 2nd minor cluster and the
3rd cluster are not as obvious as those from dI . In the dR matrix, the
vortex shedding is vaguely visible as periodic block patterns, similar to
what is shown in the dI matrix.

5.3.2 Viscous Finger
We use a Viscous Finger dataset to demonstrate the scalability of our
LSH method in summarizing a large-scale ensemble dataset and un-
cover similarity between particular runs.

The ensemble is composed of 3D transient fluid flow obtained by
a simulation with stochastic effects, formulating a special behavior
named as viscous finger. We choose the ensemble with 0.44 as the
resolution level. This ensemble contains 48 runs, each contains ≈ 120
time steps. To compare equally among different runs, we generate
binary matrices across all runs with parameters in Tab. 1.

Fig. 12 (top) shows binary matrices dS (with k = 60 and r = 1) and
dR (k = 20 and r = 1) across 48 runs. For this large dataset, both dE
and dI become intractable; therefore, we compute only a submatrix of
dI for comparison. The binary matrix dR has a lighter color compared
to dS as dR shows less similarities than dS .

We observe that most runs are similar due to a similar simulation
process, except the end instance and the beginning instance connecting
two runs where straight line patterns separate the entire matrix into
blocks. From the zoomed-in dI matrix, we also observe such block-
wise pattern.

Our binary matrices identify two runs that perform differently, runs
44 and 48. We also observe similar patterns in the dI matrix, where run
44 forms a clear diagonal block, meaning that instances inside the run
are more similar internally than externally.

We select time step 120 from each of the runs 43, 44, 45, and 48, and
render their isosurfaces respectively, shown in Fig. 13. We observe that
runs 44 and 48 behave similarly with each other. These visualizations
match the observations from the binary matrices in Fig. 12.

Given a large ensemble, our LSH framework manages to capture
the global behavior due to its efficiency and scalability, whereas dE



Fig. 12: Viscous Finger dataset. Top: binary matrices for dR and dS .
Bottom: the zoom-in matrices are from run 43 to run 49.

Run 43 Run 44 Run 45 Run 48

Fig. 13: Viscous Finger dataset. Isosurface rendering of time step 120
from runs 43, 44, 45, and 48, respectively.

and dI fail to do so. In particular, both dS and dR allow us to discover
similarities among the runs.

5.4 Identification of Clusters and Data Transitions
Here we show the utility of our framework in identifying clusters and
structural transitions in large flow datasets.

5.4.1 Heated Flow Dataset
The Heated Flow dataset is a time-varying 2D dataset generated by
flow around a heated cylinder using Boussinesq approximation where
the flow contains many small vortices. We use the magnitude of the
flow as the scalar field f . We compute merge trees of f and node labels.
The binary matrices are generated based on the parameters in Tab. 1.

Fig. 14 shows binary matrices of dS (k = 60, r = 1) and dR
(k = 20 and r = 1). Our framework helps to identify six clusters,
highlighted as colored blocks: cluster 1 (grey), time steps 70 - 300;
cluster 2 (grey), time steps 485 - 814; cluster 3 (orange), time steps 815
- 1180; cluster 4 (green), time steps 1181 - 1450; cluster 5 (grey), time
steps 1451 - 1690; and cluster 6 (magenta), time steps 1691 - 2000.

We select two time steps, 867 and 897, 1200 and 1230, and 1700
and 1730, from each of the three clusters (orange, green, and magenta)
to show their similarity within the cluster and dissimilarity outside the
cluster. The colors on the labels correspond to different clusters.

dE matrix visibly captures only the 1st cluster, but fails to show
noticeable clusters for the rest of the dataset. dI matrix, on the other
hand, groups most time steps into one big cluster. Therefore, our LSH
framework provides clearer clustering structure.

5.4.2 Corner Flow Dataset
The Corner Flow is a 2D dataset generated by flow around two cylinders.
The flow is bound by walls with corners around which vortices form
due to the presence of the cylinders. We use the velocity magnitude as
the scalar field f . We generate the binary matrices using parameters
in Tab. 1. We demonstrate the ability of our framework in capturing
structural transitions of time-varying scalar fields.
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Fig. 14: Heated Flow dataset. Top: time steps from different clusters.
Bottom: dR and dS . Different colored boxes represent different clusters.

Fig. 15 shows the binary matrices of dR (k = 20, r = 1) and
dS (t = 4). We observe three pairs of time steps showing structural
transitions, highlighted as arrows in dS and dR. From time step 773
to 774 (orange filled arrow), there is a structural transition. As fluid
flows, the contour line expands and two max-saddle pairs disappear in
774. The critical points are highlighted in the white dashed box. From
time step 1095 to 1096 (orange filled double arrow), there is another
structural transition where a new min-saddle pair appears. From time
step 1359 to 1360 (orange double arrow), a min-saddle pair disappears.

dR matrix shows similar patterns as dE matrix, where a small cluster
connects to a large cluster for the 2nd half of the time-varying dataset.
dR matrix also presents similar patterns (i.e., two clusters) as the dI
matrix at the beginning of the time steps. The binary matrices of both
dR and dS can capture transitions, whereas dS provides a more precise
structural detection. In conclusion, our LSH framework serves as a
good alternative to existing distance measures.

Table 2: Runtime analysis of dS and dR. Each entry represents the LSH
runtime with a corresponding k. All times are in seconds.

Dataset
Labeling time Method k = 20 k = 40 k = 60 k = 80

Vortex Street
37.9

dS 0.18 0.21 0.23 0.27
dR 1.26 4.19 10.55 21.82

TOSCA
11.45

dS 0.27 0.30 0.34 0.38
dR 1.28 4.03 10.07 20.77

Corner Flow
360.07

dS 3.85 4.51 5.09 5.71
dR 37.49 121.17 307.22 637.55

Heated Flow
2659.2

dS 1.5 1.72 2.03 2.31
dR 76.9 254 663.2 1357.2

Viscous Fingers
13779.9

dS 45.1 55.18 65.45 72.18
dR 374 1156 2843 5636
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Fig. 15: Corner Flow dataset. dS and dR: binary matrices with visualized
scalar fields to show structural transitions. dE and dI are also provided.
Table 3: Runtime analysis across datasets: columns dS and dR represent
the total runtime (the sum of LSH time and labeling time) for k = 20.
The improved runtime are highlighted in bold. All times are in seconds.
Numbers with asterisk are estimated.

Dataset dS dR dI dE
Vortex Street 38.08 39.26 65.5 48.0

TOSCA 11.72 12.72 24.9 109.7
Corner Flow 363.92 397.56 3456.0 6203.1
Heated Flow 2660.7 2736.1 23686 211688

Viscous Fingers 13825 14154 ≈455388∗ ≈15965520∗

5.5 Quantification of Runtime Improvements
Tab. 2 and Tab. 3 provide a runtime analysis of our LSH framework,
which depends on two main factors. The first is the creation of k
signatures, and the use of hash buckets to identify matchings. The
second is the labeling of the merge trees following a hybrid strategy
in [80]. Tab. 2 reports LSH runtime, for both dS and dR along with the
labeling time in bold. For both dS and dR, the LSH runtime increases
as k increases. We also observe that dS is faster than dR for all datasets.

From Tab. 2, we can see that as the size of the data grows, the
LSH process has a very small runtime, and the runtime bottleneck
is indeed the labeling process. We argue that this is acceptable in
certain scenarios. For instance, assuming we are performing interactive
analysis in real time over a fixed dataset, the labeling process can be
precomputed (once), and only the LSH process needs to run multiple
times on-the-fly.

For comparison, we report runtime for both dE and dI along with
the total runtime for dS and dR for k = 20 in Tab. 3. The total runtime
is the sum of LSH time and the labeling time. For the Vortex Street
dataset, we have a similar runtime for most cases compared to dE
and dI , where dR gives slightly higher runtime when k = 60 and
k = 80. For the TOSCA dataset, dR gets slightly higher runtime
compared to dI , when k = 80; otherwise our LSH measures are faster
to compute. We obtain approximately 3× speed-up for dR (k = 80)
compared to dE . Our LSH framework has approximately 1.5× speed-
up compared to dI , and approximately 9× speed-up compared to dE
for dS . Our LSH framework takes less time for TOSCA than Vortex
Street. Despite TOSCA containing more instances, the merge trees are
generally smaller.

We observe a larger speedup for Corner Flow and Heated Flow. For
both datasets, we have (approximately) 9× speedup for dS and 6×
speed-up for dR compared to dI . For Corner Flow, we have 17× and
6× speed-up compared to dE for dS and dR, respectively. For Heated

Flow, we have 80× for dS and 5× speed-up for dR compared to dE .
For Viscous Finger, the runtime is significantly improved. We com-

pute dI for only a subset of the data, since computing the entire dI
matrix is estimated to take 5 days; this runtime is estimated based on
the recorded runtime for the first 40, 000 comparisons.

We obtain 33× (dS) and 23× (dR) speed-up compared to dI , even
for k = 80. We are not able to compute dE for the full dataset com-
prising of 5746 instances, due to its lack of scalability in computation.
Therefore, we run dE on one single run that contains 120 instances,
and report a runtime of ≈ 6929 seconds, close to 2 hours. We estimate
the runtime of dE for the entire dataset, estimating across all 48 runs,
which takes roughly 482×6929 ≈ 185 days! Thus, our LSH approach
is estimated to be about 822× faster than dE computation.

As data grow larger, we observe larger improvements, compared to
dE and dI . dE suffers from poor scalability due to two reasons. First,
all pairs comparisons need to be explicitly performed. Second, each
comparison involves solving a set of matching problems, which leads
to high runtime in practice. Even for the Viscous Finger dataset, dE
and dI distance matrices become impractical to compute, and our LSH
framework becomes a necessity.

In addition, we perform an ablation runtime analysis as we vary k
in Fig. 16. Our analysis shows the LSH runtime excluding the labeling
process, with different k. dS presents nearly linear behavior and dR
shows nearly quadratic behavior as a function of k. There are other
costs associated with retrieving the query, but they are lower-order terms
and do not depend on the size of the data object. Fig. 16 demonstrates
that k is a good representation of runtime.

Fig. 16: Runtime analysis of dS and dR, excluding the labeling process.
Left: k vs. runtime for dS , t = 4. Right: k vs. runtime for dR.

6 DISCUSSION AND LIMITATIONS

Our LSH framework using dS and dR, as expected, is efficient and
scalable, in comparison with existing distance methods such as dE and
dI . In fact, our framework is efficient on large datasets when dE and dI
become intractable to compute. Furthermore, the dS and dR we propose
offer enormous advantages in scalability, often replicate results of dE
and dI , and sometimes capture new cluster features that dE and dI do
not. Therefore, they could be used as efficient, alternative measures
for comparing scalar fields at scale. As a preprocessing step, LSH can
eliminate unnecessary candidates for comparative analysis, therefore
reducing the size of input data for other distance computations.

A limitation of our LSH framework is that it does not recover the
nearest-neighbor exactly as does dE . With any LSH approach, we need
to adjust parameters k and r, which control the trade-off between preci-
sion and recall. We find that even small values k = 20, r = 1 provide
decent results, and recommend these parameters for similar problems
to the ones we consider. Another factor affecting LSH is the labeling
strategy. While the requirement for labeled merge tree seems like a
limitation, the labels can be used to incorporate geometric information
which is crucial in many applications [14, 61, 80]. We conjecture that
our LSH results would improve with more stable labeling strategies for
internal nodes. Making the labeling process more efficient will also
benefit the overall runtime, which is left for future work.
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A PSEUDOCODE

We provide pseudocode for the relevant algorithms described in the
paper. Algorithm 1 presents the pseudocode for the recursive MinHash.
Algorithm 2 presents the pseudocode for the modified recursive Min-
Hash for merge trees. Algorithm 3 presents the pseudocode for storing
subpaths using modified DFS. Algorithm 4 presents the pseudocode
for generating subpath signatures for merge trees.

Algorithm 1: RMH

Data: Nested set W (r) at rth level, k hash functions at rth
level, {σ(r)

i }
R,k
r=1,i=1

Result: h(r), fingerprint of W (r)

1 begin
// Level 1

2 if r = 1 then
3 h(r) ← MinHash(W (r), {(σ(r)

i )}ki=1)
4 end
5 else
6 for W

(r−1)

(∗) ∈W (r) do
// Higher levels

7 h(r)
∗ ← RMH(W

(r−1)

(∗) , {(σ(r)
i )}R,k

r=1,i=1)

8 end
9 M ← |W (r)|

10 L = dim(h(r−1)
∗ )

// Reorganize
11 for l← 1 to L do
12 W

(r)

(l) = {hr−1
m,(l)}

M
m=1

13 h(r)

(l) ← MinHash(W
(r)

(l) , {(σ
(r)
i )}ki=1)

14 end
15 end

// Concatenate

16 h(r) = [h(r)

(1); h(r)

(2); . . . ; h(r)

(L)]

17 end

B HASH FUNCTIONS

We provide a brief description of how hashes used in Fig. 3 are gen-
erated using random permutations. The illustrative example in Fig. 3
shows that RMH can be constructed as follows.

Assume a universal set U = {a, b, c, . . . , j} which can be indexed
by a set I = {1, 2, 3, . . . , 10}. Now the sets S1 = {a, b, c}, S2 =
{b, e}, S3 = {d, e, a} can be represented using a 0-1 encoding as
shown in Tab. 4.

We generate four random permutations π1, π2, π3, π4 on the index
set I as follows,

π1{I} = {3, 2, 4, 1, 5, 6, 7, 8, 9, 10},

π2{I} = {4, 5, 3, 6, 8, 9, 10, 2, 1, 7},
π3{I} = {1, 3, 5, 2, 4, 7, 9, 6, 8, 10},
π4{I} = {1, 4, 7, 6, 5, 3, 8, 2, 9, 10}.

These permutations provide us four hash functions h1, h2, h3, and h4.
We show results for h1, the rest of the results are similar.

MinHash stores the index of the first occurrence of 1 in the particular
permutation for each of the sets. Tab. 5 shows the permutation π1 which
is used to derive h1. For S1 we see that the first 1 occurs for the index
3. Therefore, we have

h1(S1) = 3, h1(S2) = 2, h1(S3) = 4.

h2(S1) = 3, h2(S2) = 5, h2(S3) = 1,

h3(S1) = 1, h3(S2) = 5, h3(S3) = 1,

h4(S1) = 1, h4(S2) = 5, h4(S3) = 1.

Algorithm 2: RMH Signatures for Merge Trees

Data: Set of nodes at rth level i.e T (r) , K hash functions at
rth level, i.e., {σ(r)

k }
R,K
r=1,k=1

Result: h(r), fingerprint of T (r)

1 begin
2 for T

(r)

(∗) ∈ T (r) do
// Extrema

3 if deg(T (r)

(∗) ) = 1 then
4 h(r)

∗ ← MinHash(T
(r)

(∗) , {(σ
(r)
k )}Kk=1)

5 end
6 else

// Saddles recursive call

7 h(r)
∗ ← RMH(T

(r)

(∗) , {(σ
(r)
k )}R,K

r=1,k=1)

8 end
9 end

10 M ← |T (r)|
11 L = dim(h(r−1)

∗ )
// Reorganize

12 for l← 1 to L do
13 T

(r)

(l) = {hr−1
m,(l)}

M
m=1

14 h(r)

(l) ← MinHash(T
(r)

(l) , {(σ
(r)
k )}Kk=1)

15 end
// Concatenate

16 h(r) = [h(r)

(1); h(r)

(2); . . . ; h(r)

(L)]

17 end

After reorganization, we get four sets given by

S4 = {3, 2, 4}, S5 = {3, 5, 1}, S6 = {1, 5, 1}, S7 = {1, 5, 1}.

Now Tab. 6 shows 0-1 encoding for sets S4, S5, S6, and S7. We
again apply the same hash functions for these sets to obtain the follow-
ing hashes:

h1(S4) = 3, h1(S5) = 3, h1(S6) = 1, h1(S7) = 1,

h2(S4) = 4, h2(S5) = 5, h2(S6) = 5, h2(S7) = 5,

h3(S4) = 3, h3(S5) = 1, h3(S6) = 1, h3(S7) = 1,

h4(S4) = 4, h4(S5) = 1, h4(S6) = 1, h4(S7) = 1.

We finally concatenate them to get the recursive MinHash signature
of the three input sets S1, S2, and S3:

[3, 4, 3, 4, 3, 5, 1, 1, 1, 5, 1, 1, 1, 5, 1, 1].

Algorithm 3: SS-VISIT
Data: u ∈ T , multiset SP to store subpaths
Result: Builds SP

1 begin
2 PUSH(S, u)
3 color[u]← gray
4 for v ∈ children(u) do
5 if color[v] = white then
6 SS− VISIT(v)
7 end
8 end
9 color[u]← black

10 sp← POP− PUSH(t, t− 1)
11 sp← REVERSE(sp)
12 SP ← SP + sp
13 end



Algorithm 4: SS Signatures for Merge Trees
Data: Tree T , subpath length t
Result: Multiset SP containing all subpaths of length t.

1 begin
2 D ← {d1, d2, . . . , dt−1}

T ′ ← ConcatenateDummyNodes(D,T)
3 S ← ∅
4 for u ∈ V (T ′) do
5 color[u]← white
6 end
7 SS− VISIT(root(T′))
8 return SP
9 end

U I S1 S2 S3

a 1 1 0 1
b 2 1 1 0
c 3 1 0 0
d 4 0 0 1
e 5 0 1 1
f 6 0 0 0
g 7 0 0 0
h 8 0 0 0
i 9 0 0 0
j 10 0 0 0

Table 4: Sets S1, S2, S3 represented using a 0-1 encoding along with the
universal set U and the index set I.

While we use permutations to generate hashes here, permutations
are costly operations to be used in practice. Instead, other hashes such
as MD5 can be used in practice. In addition, the permutations used in
this example were not generated randomly. They are used to define and
illustrate the techniques.

C QUANTITATIVE EVALUATION

We provide additional quantitative evaluation results, including a com-
parison to a clustering algorithm, a comparison of precision and recall
to runtime, and the runtime analysis as a function of LSH parameters r
and k.

C.1 Comparison to Clustering Algorithm
In this section, we provide additional quantitative evaluation on com-
parison to a clustering algorithm, k-medoids. Unlike k-means, which
requires a well-defined notion of the mean, the k-medoids algorithm
uses actual data points as the cluster centers. We use the TOSCA shape
dataset to compare the precision and recall of each cluster with our
results obtained using the LSH methods. We use the merge tree edit
distance matrix as input to the k-medoids algorithm. Fig. 17 shows an
evaluation of the number of clusters, n, and the precision and recall
scores using k-medoids.

The precision generally increases as n increases because we would
get a higher ratio of correctly predicted labels to all the labels in the
cluster. Conversely, the recall generally decreases as n increases be-
cause the ratio of correctly predicted labels in the same cluster becomes
smaller. When n = 10, which is the ground truth clustering number in
the TOSCA dataset (since we have 10 different shapes), both precision
and recall are below 0.5. These values are at the same level as both
dS and dR when r = 2, and they are below the scores obtained when
r = 1.

C.2 Runtime Analysis
We perform additional analysis on how runtime directly affects the
performance of the LSH methods and the relationship between runtime
and LSH parameters, r and k.

We investigate the relationship between k and runtime, demonstrat-
ing that k can be a representation of runtime, and showing that the

U I S1 S2 S3

c 3 1 0 0
b 2 1 1 0
d 4 0 0 1
a 1 1 0 1
e 5 0 1 1
f 6 0 0 0
g 7 0 0 0
h 8 0 0 0
i 9 0 0 0
j 10 0 0 0

Table 5: permutation π1 resulting in hash function h1.

U S4 S5 S6 S7

1 0 1 1 1
2 1 0 0 0
3 1 1 0 0
4 1 0 0 0
5 0 1 1 1
6 0 0 0 0
7 0 0 0 0
8 0 0 0 0
9 0 0 0 0
10 0 0 0 0

Table 6: Sets S4, S5, S6, S7 represented using 0− 1 encoding, we take
the universal set U and the index set I to be the same since they are
numbers
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Fig. 17: TOSCA shape dataset: precision and recall using K-Medoids
clustering. Number of clusters vary from 1 to 100.

Fig. 18: TOSCA shape dataset: runtime vs. precision and recall for both
dS and dr .



trends of runtime vs. precision and recall are similar to those of k vs.
precision and recall. In this section, we explicitly provide an evaluation
of runtime vs. precision and recall for both dS and dR (see Fig. 18).

The primary computational cost is computing the number of hash
functions of each data object, but there are other lower-order terms that
do not depend on the size of each object. For instance, the number
of rows, r, is a lower-order term that does not noticeably affect the
runtime. We provide Tab. 7 and Tab. 8 to demonstrate that changing
r has little affect on the runtime with the same k, for both dS and dR,
respectively. The runtime remains dominated by k.

r k = 20 k = 40 k = 60 k = 80
1 0.17375625 0.25166304 0.32877218 0.37872514
2 0.17633292 0.24426496 0.34348022 0.43249424
4 0.17529604 0.24204648 0.32700760 0.38517716

Table 7: dS for TOSCA shape dataset: r vs. All times are in seconds.

r k = 20 k = 40 k = 60 k = 80
1 1.24099221 4.07319212 10.06167383 20.63537765
2 1.22652745 4.02467799 10.03928399 20.58727741
4 1.26209531 4.05044847 10.08340383 20.80203819

Table 8: dR for TOSCA shape dataset: r vs. Runtime. All times are in
seconds.

C.3 Additional Visualization Results
We provide additional visualization results of the Heated Flow dataset,
showing the original binary matrices without any annotation in Fig. 19.
The clusters are still visible without the annotated boxes.

Fig. 19: Heated Flow dataset: dS (top) and dR (bottom) binary matrices
with (right) and without (left) annotated boxes surrounding the clusters.
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