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SUMMARY

Block-structured adaptive mesh refinement (BSAMR) is widely used within simulation software because
it improves the utilization of computing resources by refining the mesh only where necessary. For BSAMR
to scale onto existing petascale and eventually exascale computers all portions of the simulation need to
weak scale ideally. Any portions of the simulation that do not will become a bottleneck at larger numbers
of cores. The challenge is to design algorithms that will make it possible to avoid these bottlenecks on
exascale computers. One step of existing BSAMR algorithms involves determining where to create new
patches of refinement. The Berger–Rigoutsos algorithm is commonly used to perform this task. This paper
provides a detailed analysis of the performance of two existing parallel implementations of the Berger–
Rigoutsos algorithm and develops a new parallel implementation of the Berger–Rigoutsos algorithm and
a tiled algorithm that exhibits ideal scalability. The analysis and computational results up to 98 304 cores
are used to design performance models which are then used to predict how these algorithms will perform
on 100 M cores. Copyright � 2011 John Wiley & Sons, Ltd.

Received 21 June 2010; Revised 18 November 2010; Accepted 29 January 2011

KEY WORDS: adaptive mesh refinement; regridding; remeshing; scalability

1. INTRODUCTION

Large-scale adaptive mesh refined (AMR) simulations are increasingly being used throughout the
scientific community. AMR simulations provide an advantage over fixed mesh simulations by
refining the computational mesh in portions of the domain that have significant error and thereby
reducing the error in those regions. This allows simulations to produce results that are as accurate
as fine-scale fixed mesh computations but at a greatly reduced computational cost. The meshes
used within AMR algorithms can either be structured (SAMR) or unstructured (UAMR). Both
methods have their advantages and disadvantages as discussed in [1].

A method for block-structured AMR (BSAMR) was originally presented by Berger and Oliger in
[2] and then by Berger and Colella in [3]. This algorithm used various approaches to flag portions
of the domain that require more refinement. The algorithm then adds patches of refinement on
top of the refinement flags through a process commonly referred to as remeshing or regridding.
The process is repeated until a desired resolution is reached producing a dynamic multi-level grid
where each finer level is nested within the coarser level as shown in Figure 1.

The next advance was a commonly used regridding method which is known as the Berger–
Rigoutsos algorithm [4]. This algorithm uses edge detection algorithms from image processing to
generate a tight-fitting axis-aligned patch-set with relatively few patches. This algorithm was later
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Figure 1. A multi-level grid of nested levels used within BSAMR.

parallelized in [5, 6] but both relied substantially on global communication which limited scalability
on large numbers of cores [7]. Improvements to this algorithm which focused on reducing the
amount of global communication were later presented in [7] and showed scalability to 16 K cores.

To change the grid in response to a solution evolving in time, a number of steps must occur
that would not occur in a fixed mesh calculation. These steps generally include the creation of
the new grid (regridding), the assignment of the new grid to cores (load balancing), and updating
the computation and communication algorithms (scheduling). In many adaptive simulations these
changes can occur as often as every few timesteps. This necessitates that these algorithms run
efficiently in parallel. Poor performance within any of these algorithms can lead to performance
problems at large scales [6, 8, 9].

Octree-structured AMR (OSAMR) is an alterative to BSAMR that builds the mesh using an
octree. This method combines elements of UAMR with SAMR and has shown promising results
[10–12], by scaling to over 200 K cores. This method offers a fundamentally different approach to
that considered here. The challenge considered here is to analyze and extend the BSAMR method
to similar scalability and beyond.

Achieving large-scale parallelism, especially for AMR applications, is a challenging task. This
has led to the development BSAMR frameworks like Uintah [9, 13], SAMRAI [8], Chombo
[14], and AMROC [15] along with OSAMR frameworks such as Paramesh [16], Flash [17], and
ALPS [18].

These frameworks simplify the development of large-scale adaptive simulations by compart-
mentalizing the AMR algorithms allowing them to be developed and optimized separately [13, 19]
and also allow for code reuse. Scalability onto today’s largest machines has been shown for some
of these frameworks [10–12, 14, 20].

The first exascale machine is expected to arrive within the next decade and it is estimated that it
may contain on the order of 100M cores. Achieving scalability onto machines of this size will be
a challenging task. As we move toward exascale computers, the scalability of these frameworks
and the algorithms they use will need to be improved. This paper analyzes the performance of
two existing parallelizations of the Berger–Rigoutsos algorithm, develops a new parallelization
of the Berger–Rigoutsos algorithm, and develops an alternative regridding algorithm that exhibits
ideal scalability. The scalability characteristics of this algorithm make it a candidate for exascale
computers at some point in the future.

The situation is summarized by Solomonik and Kale [21] in the context of quite different
algorithms but similar architectures: ‘However newer and much larger architectures have changed
the problem statement further. Therefore traditional approaches. . .require re-evaluation and
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improvement’ in undertaking an investigation of this type, but for AMR, the regridding algorithms
are described in Section 2, the characteristics of patch-sets generated is analyzed in Section 3,
Section 4 uses the analysis along with experimental results using up to 98 304 cores to derive and
validate performance models, and finally Section 5 predicts the performance of these regridding
algorithms on 100 M cores. Throughout this paper we will use the term core to refer to a single
processing unit on which distributed memory processes are executed.

2. REGRIDDING ALGORITHMS

In this section, existing BSAMR algorithms are evaluated with regard to their parallel performance.
The Berger–Rigoutsos regridding algorithm was originally designed in serial and focused on
generating a patch-set that minimized the total amount of refinement while also minimizing the
total number of patches [4].

This algorithm has worked well leading to its widespread use throughout BSAMR community.
Parallel versions of this algorithm were presented in [5, 6] and improved in [7]. These paralleliza-
tions computed portions of the algorithm in parallel and combined the results across cores using
all-reduces. An all-reduce is a process whereby data on each core is combined with data from
each other core. For example, an all-reduction may compute the maximum value across cores
or the sum across cores. This algorithm has been implemented within SAMRAI and Uintah and
within these frameworks it has been observed that the reduction operations limited the parallel
performance of the algorithm at large scales [7, 22]. These algorithms will be referred to as global
Berger–Rigoutsos (GBRv1 and GBRv2, respectively). An alternative approach to GBR is to run
Berger–Rigoutsos locally on a subset of the domain. This approach is similar to the approach
taken in AMROC [23]. This algorithm will be referred to as LBR. Finally, within Uintah, a tiled
algorithm has been implemented which initially has shown good performance and will be examined
throughout this paper.

The remainder of this section will describe each of these algorithms in more detail and provide
complexity analysis of their performance. This analysis will assume that the work per core is
load balanced well, making the time for load imbalance insignificant and that all logarithms are
base two.

Within this section the following symbols will be used:

C = Number of mesh cells in the domain,

F = Number of refinement flags in the domain,

B = Number of patches (blocks) in the domain,

P = Number of processing cores.

The Berger–Rigoutsos algorithm operates on a list of refinement flags which is a sparse data
structure. However, in many frameworks, the refinement flags are stored per-cell which is a dense
data structure. These frameworks often require an extra step that computes the list of refinement
flags. This step can be done by iterating over the dense data structure and adding all refinement
flags to a list, which would have a parallel complexity of O(C/P).

It is worth noting that GBRv2, LBR, and the tiled algorithms generate a local patch-set, meaning
that each core only has knowledge of a subset of the patches. Generally today’s frameworks require
each core to be aware of the global patch set. These frameworks would require an all-gather on
the local patch-sets to generate the global patch-set. An all-gather is a process that combines
local arrays on each core into a global array on each core and it is commonly done through the
MPI_Allgather function. The analysis below does not include the time for creating the sparse flag
set or for performing the all-gather which may be significant at large numbers of cores. The time
for these operations will be revisited in Section 4.
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2.1. Serial Berger–Rigoutsos

The following presents a high-level description of the serial Berger–Rigoutsos algorithm (SBR).
For brevity, a complete description of this algorithm has been omitted but can be found in [4]. The
Berger–Rigoutsos algorithm can be defined recursively as shown in Algorithm 1 below.

The first step of the algorithm is to compute the bounding box of the refinement flags list. This
can be done in O(F) time. The second step is to check the termination condition by comparing the
number of cells in the bounding box to the number of flags. The time for this is insignificant. The
third step is to compute a histogram of the spatial location for each refinement flag. A histogram
is created for each dimension yielding X , Y , and Z histograms. This process touches each flag
after making the complexity for this operation O(F). Next each

Algorithm 1 The serial Berger–Rigoutsos algorithm.
BRSplit(INPUT: flags, OUTPUT: patches)

//compute the bounding box
BB=computeBoundingBox(flags)

//check the termination condition
IF flags.size/BB.size > tolerance

patches.add(BB)
RETURN

END IF

//compute the histogram in each dimension
histogram=computeHistogram(flags)

//split the domain into left and right halves
[left,right]=split(flags,histogram)

//recursively repeat this process
BRSplit(left,patches)
BRSplit(right,patches)

histogram is used to determine the best location to split the domain and the flags are divided into
left and right halves. This step has a complexity of O(F). Finally, the algorithm recursively repeats
on each half. The recursion implicitly defines a recursive tree in which parent nodes are split into
two children nodes. In the best case, the recursive tree is a complete tree in which every parent has
two children except perhaps the lowest level of the tree. In this case, the recursion would repeat
O(log B) times. If the tree were largely unbalanced, then in the worst case the algorithm could
repeat up to O(B) times. In practice, the algorithm generally behaves similarly to the best case
which is

O(SBR)= F log B.

The left image of Figure 2 shows an example of a patch-set generated by the SBR algorithm.
The patches fit the refinement flags tightly and are irregular in size.

2.2. Parallel global Berger–Rigoutsos (GBR)

The GBR algorithm is implemented in parallel by performing the bounding of the refinement flags
and the generation of the histograms in parallel [6, 7]. To do this each core computes the bounds
and the histogram on a subset of the refinement flags and then combines the results with every
other process through an all-reduce operation. In this analysis, the time to perform the all-reduce
will be referred to as the communication time and the time for the rest of the algorithm will be
referred to as the computation time.

Copyright � 2011 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2011; 23:1522–1537
DOI: 10.1002/cpe



1526 J. LUITJENS AND M. BERZINS

SBR Patches LBR Patches Tiled Patches

Figure 2. Patch-sets generated by the SBR (left), LBR (middle), and tiled (right) algorithms. The
coarse-level patches are drawn using dashed lines and the fine-level patches are drawn using solid lines.
The SBR and LBR algorithms use less patches but generate irregular patch-sets. In the LBR algorithm
boundaries of the coarse level also exist on the fine level. The tiled algorithm generates regular patches.

The time for the computation of GBR is equivalent to the serial algorithm performed on a subset
of the flags. Consequently, the complexity for the computational portion of the GBR algorithm
O((F/P) log B).

The communication step in GBRv1 involves performing two all-reduces at each node and leaf
of the recursive tree. The parallel complexity for an all-reduce operation is not straightforward to
define as it varies depending on the network topology and the MPI library implementation. Within
some MPI libraries the algorithm used may vary according to the size of the reduction and the
number of cores. In most cases the time for an all-reduce is dominated by message latency and
thus the time for an all-reduce is proportional to the number of pairwise communications required
to reduce the data, which requires a minimum of log P pairwise messages.

In the best case, the recursive tree of the Berger–Rigoutsos algorithm is completely balanced
and the number of nodes is equal to

∑log B
k=0 2k which is the sum of a geometric series and is equal

to 2B −1 making the number of messages

M(GBRv1)= (2B −1) log P.

Thus, the complexity for GBRv1 is

O(GBRv1)= F

P
log B + B log P.

The improvements to this algorithm presented in [7] involve reducing the number of cores that
contribute to reductions at each level of the recursion. At the first level, every core contributes and
at each successive level the number of contributing cores decreases until the algorithm terminates
or only a single core is contributing to each reduction, at which point the algorithm completes in
serial. In the best case, the number of contributing cores at each node would be half the number
of contributing cores of the parent node. This leads to a total number of messages of

min(log B,log P−1)∑
k=0

(
2k log

P

2k

)
.

Refactoring the equation above yields

min(log B,log P−1)∑
k=0

2k log P −
min(log B,log P−1)∑

k=0
k2k .
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Figure 3. The number of messages required to execute GBR.

By substituting these summations with their known solutions found in [24] and performing algebraic
simplification we get the number of messages is equal to

M(GBRv2)=
{

2P − log P −2 : P<B,

(2B −1) log P −2B log B +2B −2 : P ≥ B.

Figure 3 shows the number of messages generated for both GBR algorithms when generating
1000 patches. This figure shows that GBRv2 has a significant improvement over GBRv1 when the
number of patches is less than the number of processors. However, when this is not the case the
number of messages generated by the two algorithms are similar.

Thus GBRv2 has an overall complexity of

O(GBRv2)=

⎧⎪⎪⎨
⎪⎪⎩

F

P
log B + P : P<B,

F

P
log B + B log P : P ≥ B.

From this we can see that when P<B the communication complexity is O(P), however, when
P ≥ B the communication complexity is O(B log P) which is the same as GBRv1. The GBRv2
algorithm replaces the all-reductions in the GBRv1 algorithm with pairwise asynchronous commu-
nication performed along the edges of a hypercube. In addition, the algorithm is decomposed
into tasks, where each task represents a node of the recursive tree. The tasks are designed such
that they are restartable. When a task blocks for communication it cedes control of the core so
that the next scheduled tasks can execute. Once communication is completed that task is once
again scheduled for execution and will restart where it left off. When there are enough tasks the
communication can be overlapped with computation leading to potentially further increases in
performance. These optimizations within the GBRv2 algorithm are complex and can be difficult
to implement correctly.

The analysis above did not consider the case where communication is overlapped with computa-
tion and thus should be considered an upper bound. Details of this algorithm can be found in [7].

2.3. Local Berger–Rigoutsos (LBR)

The LBR algorithm performs SBR locally on each coarse patch to generate finer patches that are
nested within the coarse patch. This provides an advantage over GBR in that no communication
is required to bound the refinement flags or generate the histogram. However, since this algorithm

Copyright � 2011 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2011; 23:1522–1537
DOI: 10.1002/cpe



1528 J. LUITJENS AND M. BERZINS

is running locally on each patch, the patches on the finer level cannot span across a coarse patch.
This causes the boundary of the coarse patches to project onto finer patches thereby increasing
the total number of patches. This is similar to an algorithm implemented within AMROC’s [23],
however, that algorithm runs SBR locally on the entire local patch-set and then intersects the
resulting patch-set with the original patches. This generates more patches than the SBR algorithm
but less patches than the LBR algorithm. In addition, this results in patch-sets that change as the
number of cores changes, which may be an undesirable property.

The complexity for LBR (assuming that patches are fairly evenly sized) is defined as follows.
Let Bc be the number of coarse patches. Then the flags per coarse patch is F/Bc, the number of
coarse patches per core is Bc/P , and the number of fine patches per coarse patch is B/Bc. Thus
the complexity for this operation is

O(LBR) = Bc

P

F

Bc
log

B

Bc

= O

(
F

P
log

B

Bc

)
.

AMROC’s implementation of this algorithm has a similar complexity. The middle image in
Figure 2 shows the patch-set generated using the LBR algorithm. This figure shows the patch-set
is similar to SBR and that the boundaries of the coarse patches exist on the finer level.

2.4. Tiled

The tiled algorithm was developed within Uintah to eliminate the performance problems associated
with the GBR algorithms. A similar grid algorithm was utilized in [25] for non-hierarchical grids.
This algorithm is defined in Algorithm 2.

Algorithm 2 The tiled regridding algorithm.
FOR each local tile

FOR each cell in tile
IF cell has refinement flag

patches.add(tile)
BREAK

END IF
END FOR

END FOR

This algorithm defines a set of tiles using a lattice where each lattice cell corresponds to a
possible patch. To compute the patch-set each core searches a subset of the tiles for refinement
flags, when a refinement flag is found the tile is added to the patch-set and the next tile is searched
for refinement flags. Like the LBR algorithm this algorithm requires no communication. This
algorithm is an embarrassingly parallel algorithm and has a complexity of

O(Tiled)= C

P
.

The right image in Figure 2 shows an example of a patch-set generated by the tiled regridder.
In this case, the algorithm uses more patches than the Berger–Rigoutsos algorithms, however, the
patches generated are regular. If the algorithm is generating too many patches, which are causing
inefficiencies elsewhere in the code, then the tiled size could be increased, which would thereby
decrease the number of patches. The grids generated by the tiled algorithm look similar to the
grids produced using OSAMR, however, it is not the case that they are the same. For example,
OSAMR patches are constrained to a power of two in size whereas patches produced by the tiled
algorithm are not.
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3. PATCH-SET CHARACTERISTICS

The characteristics of the patch-sets generated by these algorithms is important. The following
will describe and analyze the differences between the patch-sets generated by the SBR, LBR, and
tiled algorithms.

The original Berger–Rigoutsos algorithm generates patch-sets of varying sizes. Using this method
it is not uncommon to have patches that span large portions of the domain next to patches that only
span a few cells which can complicate the load balancing operation. The irregularity of the patches
necessitates a general framework. Some frameworks restrict the types of patch-sets to simplify
other portions of the framework [22]. These restrictions require a cleanup phase after regridding
to ensure that the grid constraints are met [22].

The GBRv1 and GBRv2 algorithms generate patch-sets that are equivalent to the SBR algorithm.
Like the SBR algorithm the LBR algorithm generates irregular patches; however, it will generate
more patches than the SBR algorithm. Finally, the tiled algorithm may generate more patches but
the patches are regular. This regularity can be exploited to provide further increases in performance.
The following will discuss the advantages and disadvantages of the number of patches, tightness
of fit, and regularity of the patch-sets.

Each of the regridders above were implemented as a stand-alone program as described in their
original papers and the patch-sets generated by each regridder were tested with a benchmarking
problem. This problem defined a 3D domain in the range of [0,1]. Within this domain refinement
flags were added in the region between two concentric spheres centered at [0.5,0.5] with radii 0.3
and 0.4. The resolution of the grid was increased and the patch-sets generated were recorded. The
coarse level was split into square patches of 163 cells and the tile size was set to 163 for the tiled
regridder. The Berger–Rigoutsos based algorithms used a tolerance parameter of 0.85, meaning
that the recursion terminated when 85% of the patch contained refinement flags. This problem was
chosen as it closely resembles an expanding blast-wave that is commonly simulated within Uintah
[9, 22]. Figure 2 shows the corner of a 2D version of this test problem.

3.1. Number of patches

Increasing the number of patches also decreases the average size of a patch for a fixed size mesh.
Depending on the underlying framework there may be a significant overhead per patch. If the
overhead is significant then increasing the number of patches may hinder performance as shown
in [26]. In addition, some data structures may depend on the total number of patches. For example,
Uintah and SAMRAI utilize tree-based data structures for neighbor finding [6]. As the number of
patches increases the size of these data structures and the time to query them will also increase.

While increasing the number of patches may decrease performance, it can also potentially
increase parallel performance. Decreasing the average size of a patch often decreases the load
imbalance which leads to an increase in performance. In addition, having more patches on each
processor may allow the simulation to proceed in a more asynchronous manner reducing the
synchronization and thereby overall simulation time [27]. Finally, decreasing the patch size may
also improve cache performance. Whether or not increasing the number of patches will increase
or decrease performance depends on the framework. Within Uintah, we have found that increasing
the number of patches often increases the overall performance. However, the performance begins
to decrease once patches become too small [27].

Figure 4 shows the number of patches generated by each regridder for the benchmark problem.
In this graph the points are the recorded data and the lines are a linear least squares fits to the
data for the curve Cm . The slope of these lines correspond to the rate at which the number of
patches grows relative to the number of cells. This graph shows that the number of patches using
the tiled algorithm is directly proportional to the number of cells. The SBR algorithm grows at
≈C0.5 and the LBR grows at ≈C0.7. The tiled algorithm uses a factor of 10 more patches at the
largest scales.

For scalability at large numbers of processors it is desirable that the number of patches scale
proportionally to the number of cells. Since the SBR and LBR algorithms do not exhibit this
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Figure 4. The number of patches generated by the regridding algorithms. The points are the recorded data
and the lines are a linear least squares fit of that data within a loglog plot.

property they will require an extra step for large problems at large numbers of processors. This
step will need to split the largest patches until every processor has at least one patch. One efficient
way to do this would be to split every patch that was larger than some percent of the total volume
of the new grid. This would take O((B/P)+ log P) time to compute the total volume using an
all-reduce and O(B/P) time to split the patch-set leading to an overall complexity of

O(Split)= B

P
+ log P. (1)

The tiled algorithm would not require this step. The time for this step is investigated in Section 4.

3.2. Tightness of fit

Having a tight-fitting patch-set ensures a minimal amount of unnecessary refinement, thereby
reducing the overall runtime. However, in applications that regrid often a tight patch-set may
actually hinder performance. For these applications, the cost of regridding, load balancing, and
scheduling can become significant. A loose patch-set can reduce the frequency of these opera-
tions. Recognizing this, Uintah provides an option for the user to increase the looseness of the
patch-set, which has provided large increases in performance problems involving rapidly moving
fronts [22].

Figure 5 shows the over-refinement as a percentage of the number of refinement flags for the
regridding algorithms. This graph shows that for the SBR algorithm over-refinement increases with
the problem size. This is due to large patches that cover a large number of refinement flags but
also cover a large number of cells without refinement flags. This can be seen in the left image
in Figure 2. This figure shows a large amount of over-refinement within the large vertical patch.
The increase in over-refinement should level off at or below the tolerance parameter (15% in this
case). The same increase was not seen with the LBR regridder. This is because the sizes of the
fine patches are limited by the size of the coarse patches. The over-refinement of both the LBR
and tiled algorithms decreases as the number of coarse cells increases. This reduction is due to
a reduction in the size of a patch relative to the size of the features being tracked. As this size
is decreased the patches more tightly cover the tracked feature thus reducing the over-refinement.
The SBR algorithm generates the most over-refinement at larger problem sizes followed by the
tiled algorithm and then the LBR algorithms.
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Table I. Statistics on the number of cells per patch generated by the regridding algorithms.

Mean Min Max Stdev

SBR 1.1×104 64 3.1×106 9.0×104

LBR 4.2×103 64 3.3×104 1.0×104

Tiled 512 512 512 0

3.3. Regularity

Regularity of patch size within patch-sets is a desirable quality as irregular patches can cause load
imbalance. In particular, having a large variance in the size of the patches is potentially problematic
as load balancing regular sized patches is much more straightforward. In addition, having long
slender patches next to many small patches produces load imbalance in the communication as the
large patches must communicate to many neighbors but the small patches only have to communicate
with a few neighbors.

In addition, if patches are completely regular the regularity can be exploited to simplify other
portions of the algorithm. For example, neighbor finding on irregular patch-sets generally utilizes a
tree algorithm, like a bounding volume hierarchy (BVH) [28], which has an O(log B) query time.
When the patches are regular the time for this query can be reduced to O(1) through the use of a
hash table [24]. Table I shows the statistics on the number of cells within patches generated by the
benchmark problem. This table shows that the SBR algorithm has the greatest variance followed
closely by the LBR algorithm. The tiled algorithm has no variance. The SBR algorithm produces
the largest patches followed closely by the LBR algorithm. The SBR and LBR algorithms also
produce the smallest patches.

3.4. Summary of patch-set characteristics

Figures 4 and 5 along with Table I show that the SBR algorithm generates the least number of
patches, this however comes at the cost of some over-refinement and irregular patch sizes. The LBR
generates slightly more patches than the SBR but has significantly less over-refinement. The tiled
regridder generates the most patches by far and has less over-refinement than the SBR algorithm.
The SBR and LBR algorithms may not generate enough patches for large numbers of processors
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and will thus require an extra step that splits large patches. The time for this operation may become
significant at large numbers of processors. The tiled regridder will not have this problem since the
number of patches scales linearly with the size of the coarse grid.

It is not clear if any type of patch-set is the best overall. Instead, it appears that the best type
of patch-set depends on the framework and the application. If the framework has a low per-patch
overhead and can exploit regularity it would appear that the patch-sets provided by the tiled
regridder would be the best. However, if a large patch overhead exists and load imbalance is not
a problem then the patch-sets generated by the LBR algorithm may be the best.

4. PARALLEL PERFORMANCE

This section evaluates the parallel performance of the regridding algorithms using performance
models derived from the analysis above and experiments on Kraken‡ up to 98 304 cores. The test
problem was the same problem as described in Section 3. For these results each algorithm was
tested 500 times and the average time was reported. The GBR algorithms were each executed
only five times due to the amount of time required to run these algorithms and constraints on our
machine usage. Finally, the GBR algorithms were not run at the largest numbers of cores due to
this same constraint.

4.1. Performance models

Using the analysis in Section 2 the following performance models are defined:

T (GBRv1) = c1
F

P
log(B)+c2 M(GBRv1),

T (GBRv2) = c1
F

P
log(B)+c3 M(GBRv2),

T (LBR) = c4
F

P
log

(
B

Bc

)
,

T (Tiled) = c5
C

P
,

T (Split) = c6
B

P
+c7 log(P),

where c1 =10−6, c2 =2×10−4, c3 =4×10−5, c4 =2.5×10−8, c5 =10−8, c6 =4×10−8, and c7 =
2×10−5 were chosen to match experimental data.

In addition, the following models for F and B were used:

B = Cm,

F = 0.154C,

where m is the slope defined in Figure 4.

4.2. Parallel scalability

To run on large-scale machines applications must exhibit scalability on those machines. Scalability
is a measure of runtime as the problem size and number of cores varies. Strong and weak scaling
are two commonly used metrics for scalability. These metrics are defined below.

‡Kraken is a supercomputer located at the University of Tennessee with 99 072 cores. More information is available
at http://www.nics.tennessee.edu/computing-resources/kraken.
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Figure 6. The strong and weak scaling for the regridders. The points represent the experimental
data and the line represents the model. Ideal strong scaling is shown by a line with a slope

of −1 and ideal weak scaling is shown by a horizontal line.

Let T (N , P) be the runtime given the problem size (N ) and the number of cores (P). Then
strong scaling is defined as T (N , P) for N fixed as P varies. Ideally the runtime should be
inversely proportional to the number of cores. However, ideal strong scaling will eventually fail
for all applications as more cores are added. This is because all applications, even embarrassingly
parallel ones, contain some overhead that cannot be parallelized (for example the time to launch
the application on each core). As the number of cores is increased the time for the parallel portion
of the application is reduced while the serial time remains constant eventually leading to a failure
in scalability [29].

Figure 6 (left) shows the theoretical and experimental strong scalability for the various regridding
algorithms along with the time to split for the LBR algorithm. For this graph, Bc =131072,
C =4096Bc and for the splitting algorithm m =0.7. These parameters correspond to having around
one 163 coarse patch per core at 100 000 cores. In this figure, the dashed line is the theoretical
performance and the points are the experimental data. This graph shows that the models are highly
accurate. The GBRv2 model is not as accurate as the others because the model did not take into
account the possible overlap of communication and computation. Ideal strong scaling is shown as
a diagonal line with a slope of −1 which is shown by both the LBR and tiled algorithms. The
GBRv1 algorithm scales poorly. The GBRv2 algorithm strong scales well until the communication
dominates the runtime, at which point the algorithm fails to scale. The splitting algorithm scales
but eventually stops scaling due to the cost of the reduction. The time to split eventually exceeds
the time to execute the LBR algorithm which will limit the total scalability of the LBR algorithm.

While exhibiting strong scaling is important, it does not measure the way in which large-scale
machines are typically used. Weak scaling is a metric that more accurately measures scalability in
terms of how the machines are utilized. Weak scaling is defined as T (N , P) for N/P fixed. That is,
the problem size per core is fixed and as more cores are added the problem size is proportionally
increased. The weak scalability for the regridders is shown in Figure 6 (right).

For this graph C =16384P , Bc =C/4096 and for the splitting algorithm m =0.7, which corre-
sponds to each core having four 163 coarse patches. Ideal weak scaling is shown as a horizontal
line. The models are highly accurate for all cases. This graph shows GBRv1 and GBRv2 again
scale poorly. The tiled regridder shows ideal weak scaling and the LBR regridder shows better than
ideal weak scaling. This is because the ratio Bc/B is decreasing as the problem size gets larger.
The splitting algorithm weak scales according to log P and eventually takes longer than the LBR
algorithm. The model for the splitting algorithm is not as accurate when weak scaling. The splitting
algorithm is dominated by the time for the all-reduce, which is assumed to be O(log P). This
assumption is not true for all problem sizes as the MPI library may choose a different reduction
algorithm.

Copyright � 2011 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2011; 23:1522–1537
DOI: 10.1002/cpe



1534 J. LUITJENS AND M. BERZINS

101 102 103 104 105
10

10

10

10

100
Misc. Weak Scaling

Processors

E
xe

cu
tio

n 
T

im
e

GenFlags
AllGather
Tiled

Figure 7. The weak scaling for miscellaneous operations that may be required by the framework. Generating
the sparse flags list scales well, however, all-gathering the patch-set does not.

To scale onto petascale and eventually exascale machines applications must exhibit good weak
scaling. This analysis has shown that both GBR algorithms do not perform well at large numbers
of cores and will limit the scalability of the application. This is due to the cost of combining global
data that is inherent in those algorithms. Both the tiled and LBR algorithms avoid this bottleneck
by only operating on local data.

Figure 7 shows the experimental time for generating the flags list and performing an all-gather
on the patch-sets. The experimental times for the tiled algorithm have also been included on this
graph to provide a reference point.

This graph shows that the time to create the sparse flags scales well but is slightly slower than
the tiled algorithm. In addition, the cost to all-gather the final patch-set is substantially higher
than the cost of regridding. This shows that maintaining global metadata for the patch-sets will
become a bottleneck at sufficiently large numbers of cores. Thus frameworks that currently utilize
this global metadata will eventually need to find ways to eliminate this requirement by moving to
local algorithms.

5. EXASCALE PERFORMANCE

It is expected that exascale computers will start appearing within the next decade. It is uncertain
what architecture the first exascale machines will utilize. Though it is not unreasonable to assume
that such machines may include upwards of 100 M cores. Using the models presented earlier we
will now extend the performance analysis to include a machine like Kraken with 100 M cores. The
time to split the patches for the GBR and LBR algorithms has been included in the projected times.

Figure 8 shows the theoretical strong scaling performance up to 100 M cores. In this graph
Bc =1073741824, C =4096Bc and which corresponds to having around one 163 coarse patch per
core at 100 000 000 cores. This graph shows that the LBR algorithm scales well but tails off as the
number of patches per processor becomes low due to the cost of splitting. Since splitting does not
scale ideally it eventually becomes a bottleneck thereby limiting strong scaling. The tiled algorithm
continues to show ideal strong scaling. The GBR algorithms scale well at smaller numbers of
processors but do not scale well at the largest numbers of processors. The GBR algorithms also
take significantly longer than the LBR and tiled algorithms.

Figure 8 shows the theoretical weak scaling performance out to 100 M cores. For this graph
C =16384 P and Bc =C/4096, which corresponds to each core having four 163 coarse patches.
This graph shows both the LBR and the tiled algorithms weak scale well. In this case, LBR scales
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Figure 8. The theoretical strong and weak scaling to 100 M cores. The GBR algorithms do not strong or
weak scale well, the LBR and the tiled algorithms both strong and weak scale well.

well because the log(P) in the splitting algorithm is fairly flat at large numbers of cores. The GBR
algorithms do not scale well.

6. SUMMARY AND CONCLUSIONS

To move onto exascale machines the algorithms we use will have to exhibit nearly ideal weak
scaling. We have shown that algorithms that utilize global metadata do not scale well in the strong
or weak sense and are not feasible for large-scale machines. We have presented two new local
algorithms which both show promising weak and strong scalability up to 98 304 cores. In addition,
we have presented the analysis of these algorithms which shows they should weak scale up to
100 M cores.

It is commonly assumed that less patches is better. However, when weak scaling we have shown
that if the number of patches does not scale linearly with the volume of the domain then a splitting
algorithm will be required to ensure that there is at least one patch per core. This is the case with
the Berger–Rigoutsos algorithms. This implies that the extra patches generated using the LBR
algorithm over the GBR algorithms should not be a problem. In addition, the number of patches
produced by the tiled algorithm scales linearly with the size of the domain and thus will not require
the splitting algorithm.

The irregularity of the patch-sets produced by the GBR and LBR algorithms may be problematic,
especially in terms of load imbalance. All the algorithms generate tight-fitting patch-sets thereby
limiting over-refinement. The tiled algorithm generates a completely regular patch-set and that
regularity could be exploited. We believe that exploiting this regularity could provide significant
simplifications to frameworks along with large increases in performance and may be necessary to
achieve good performance on exascale machines.

As we move toward exascale machines we will need to move away from inherently global
algorithms and toward more local algorithms. Algorithms that operate on global metadata will
eventually be limited by the cost to compute and communicate the global metadata. We have shown
that the grid creation for BSAMR can be done completely locally, however, most frameworks still
depend on the construction of global metadata. These frameworks should focus on eliminating this
dependency in preparation for future petascale and exascale machines.
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