
Chapter 4

Scalable Parallel AMR for the
Uintah Multiphysics Code

Justin Luitjens

SCI Institute, University of Utah

Bryan Worthen

SCI Institute, University of Utah

Martin Berzins

SCI Institute, University of Utah

Thomas C. Henderson

School of Computing, University of Utah

4.1 Introduction . 67
4.2 Adaptive Mesh Refinement . 68
4.3 Uintah Framework Background . 72
4.4 Regridder . 75
4.5 Performance Improvements . 78
4.6 Future Work . 79
4.7 Acknowledgments . 80

4.1 Introduction

Large-scale multiphysics computational simulations often provide insight
into complex problems that both complements experiments and helps define
future physical and computational experiments [13]. A good example of a
production-strength code is Uintah [13, 12]. The code is designed to solve
reacting fluid-structure problems involving large deformations and fragmen-
tation. The underlying methods inside Uintah are a combination of standard
fluid-flow methods and material point (particle) methods. In the case of
codes like Uintah which solve large systems of partial differential equations
on a mesh, refining the mesh increases the accuracy of the simulation. Un-
fortunately refining a mesh by a factor of two increases the work by a factor
of 2d, where d is the dimensionality of the problem. This rapid increase in
computational effort severely limits the accuracy attainable on a particular

0-8493-0052-5/00/$0.00+$.50
c© 2008 by CRC Press LLC 67

68 Scalable Parallel AMR for the Uintah Multiphysics Code

parallel machine.
Adaptive mesh refinement (AMR) attempts to reduce the work a simulation

must perform by concentrating mesh refinement on areas that have high error
[3, 2] and coarsening the mesh in areas in which the error is small. One
standard parallel AMR method divides the domain into rectangular regions
called patches. Typically each patch contains Cartesian mesh cells of the
same size. Each processor runs the simulation on a subset of the patches
while communicating with neighboring patches. By using a component-based
framework [13, 12, 8, 10] simulation scientists can solve their problems without
having to focus on the intricacies of parallelism. For example, inside Uintah,
parallelism is completely hidden from the simulation scientists [13], by means
of a sophisticated task compilation mechanism.

In order to achieve good parallel performance with AMR, the component-
based frameworks must be enhanced. The framework must drive refinement
by locating regions that require refinement and creating patches on those
regions. We refer to the process of generating patches as regridding. The
patches must be load balanced onto processors in such a way that each pro-
cessor is performing approximately the same amount of work while min-
imizing the overall communication. This can be achieved in the case of
AMR calculations through the use of space-filling curves. Load balancers
based on space-filling curves can create partitions quickly that keep com-
munication between processors low while also keeping the work imbalance
low [1, 16, 18, 6]. Recent work has shown that space-filling curves can
be generated quickly and scalably in parallel [11]. In addition, the Uin-
tah framework must also schedule the communication between the patches.
As the simulation runs, regions needing refinement change, and as the com-
putational mesh changes, load balancing and scheduling need to be recom-
puted. The regridding can occur often throughout the computation requir-
ing each of these processes to be quick and to scale well in parallel. Poor
scalability in any of these components can significantly impact overall per-
formance [19, 20]. The Berger-Rigoutsos algorithm, which is commonly used
for regridding [19, 4], creates patch sets with low numbers of patches that
cover all regions needing refinement. In addition, the Berger-Rigoutsos al-
gorithm can be parallelized using a task-based parallelization scheme [19,
20].

Present state-of-the-art AMR calculations have been shown by Wissink and
colleagues [19, 20] to scale to many thousands of processors in the sense of
the distribution of computational work. The outstanding issues with regard to
AMR are surveyed by Freitag Daichin et al. [7], and in great depth by Steens-
land and colleagues [17]. In this paper we will show how scalability needs to
reevaluated in terms of accuracy and consider how different components of
Uintah may be made scalable.

Scalable Parallel AMR for the Uintah Multiphysics Code 69

4.2 Adaptive Mesh Refinement

Traditionally in parallel computing, scalability is concerned with maintain-
ing the relative efficiency as the problem size grows. What is often missing is
any attempt to ensure that the computational effort is, in comparative terms,
well spent. The following argument was made by Keyes at the Dagstuhl
workshop where his work was presented:

Consider a fixed mesh p.d.e. calculation in three space dimensions with
mesh sizes δx, δy, δz defining a regularly refined box mesh M1 and a time
step δt. Then it is possible to write the error obtained by using that mesh in
some suitable norm, defined here by ||E(M1)|| as

||E(M1)|| = Cx(δx)k + Cy(δy)k + Cz(δz)k + Ct(δt)q (4.1)

In many cases of practical interest p and q may be less than three. The com-
putational time, Tcpu, associated with this mesh is (at best) a linear function
of the number of unknowns and the number of time steps and hence may be
written as:

Tcpu(M1) = Ccpu
1

δxδyδzδt
(4.2)

where Ccpu is an appropriate constant.
In order to simplify the discussion from hereon the time dependent nature

of the calculation is neglected. In the case when a new mesh, M2 is defined
by uniformly refining the original mesh by a factor of 2 in each dimension

δx =
δx

2
(4.3)

and similarly for δy and δz, then the computational work increases by

Tcpu(M2) = 8Tcpu(M1) (4.4)

while the error changes by

||E(M2)|| =
1
2k

||E(M1)|| (4.5)

Hence for first and second order methods k = 1, 2 the increase in work is
greater than the decrease in error. The situation becomes worse if the work has
a greater than linear dependency on the number of unknowns. Observations
have spurred much work on high-order methods; see for example comparisons
in the work of Ray and Steensland and others [14].

We can now define a mesh accuracy ratio, denoted by Mar by:

Mar =
||E(M2)||
||E(M1)|| (4.6)

70 Scalable Parallel AMR for the Uintah Multiphysics Code

Now also assuming that the calculation on M1 uses P1 parallel processors
and the calculation on mesh M2 uses P2 parallel processors, and that both
solutions are delivered in the same time, then the Mesh parallel efficiency as
denoted by Mpe, may be defined as

Mpe = Mar
P2

P1
(4.7)

For the simple fixed mesh refinement steady state case above then,

Mpe =
8
2k

(4.8)

It is worth remarking that if the calculation (inevitably) does not scale per-
fectly as far as computational work, or the different numbers of processors
take different amounts of time, then the above expression may be modified to
take this into account:

Mpe = Mar
P2T2

P1T1
(4.9)

where T1 and T2 are the compute times using P1 and P2 processors, respec-
tively.

As a simple example consider the case of the solution of Laplace equation on
the unit cube using a Jacobi method. Suppose that an evenly spaced NxNxN

mesh is decomposed into p sub-cubes each of size N3

p on p processors. A
standard second order method gives an accuracy of C2

N2 while use of a fourth
order method [9], gives an accuracy of C4

N4 and where C2 and C4 are both
known constants. The cost of the fourth order method is twice as many
operations per point with a communications message length that is twice as
long as in the second order case, and with perhaps rI as many iterations, thus
with an overall cost of 2rI of that of the second-order method.

For the same accuracy, and Mar = 1, it follows that

N2 =
√

C4

C2
N2

4 (4.10)

where N2 is the second order mesh size and N4 is the fourth order mesh size.
In order to achieve Mpe = 1 with each run having the same execution time,
as estimated by a simple cost model based on N3

p , the number of processors
used by the second order mesh, P2, must be related to the number used by
the fourth order mesh, P4 by

(N2)3

P2
≈ 2rI

(N4)3

P4
(4.11)

Hence the lower order method needs approximately the square of the number
of processors of the higher order method:

P2 ≈ 1
2rI

(
C4

C2

) 3
2

(P4)2 (4.12)

Scalable Parallel AMR for the Uintah Multiphysics Code 71

The mesh parallel efficiency is also far from one:

Mpe =
C4

C2

2rI

N2N4
(4.13)

Unless the fourth order method has a significantly greater number of iterations
per point than the second order method, the implications of this estimate for
a petaflop machine with possibly O(106) processors are clear.

In considering mesh refinement it is possible to start with a simple one-
dimensional case. Consider a uniform mesh of Nc δxf cells. Next consider
a nonuniform mesh which starts with a cell of width δxf at its left side and
then doubles with each subsequent cell. Suppose that there are q of these
cells, then:

δxf (1 + 2 + 4 + ...2q) = δxfNc (4.14)

Hence after summing the left side of this

δxf (2q+1 − 1) = δxfNc (4.15)

or
q = log2(Nc + 1) − 1 (4.16)

It is worth remarking that it is possible to modify the above expression to
account for a mesh that increases more gradually. For example, an adaptive
mesh in which two cells have the same size before the size changes gives:

q = log2(Nc + 2) − 2 (4.17)

With this simple logarithmic model of mesh changes in mind consider three
cases in which mesh refinement is applied to a three-dimensional box around
either one vertex, one edge or one bounding plane. Suppose that the box is
discretized by using N3

c regular cells. While there are many refinement pos-
sibilities, typically nonuniform refinement takes place on a lower dimensional
manifold than the original mesh. For example:

Refinement at a Point. In this case the mesh can increase in all three
dimensions as in the simple one-dimensional example and so q3 cells are used.
In this case we assume that it is possible to increase the accuracy by only
refining m cells close to the point. Hence the new mesh has q3 + m cells and

Mpe =
q3 + m

q3

1
2k

(4.18)

Refinement on a Line. In this case the mesh can increase in only two
dimensions as in the simple one-dimensional example and so Ncq

2 cells are
used. In this case we assume that it is possible to increase the accuracy by
only refining m cells close to the line. Hence the new mesh has Ncq

2 + mNc

cells and

Mpe =
Ncq

2 + mNc

Ncq2

1
2k

(4.19)

72 Scalable Parallel AMR for the Uintah Multiphysics Code

Refinement on a Plane. In this case the mesh can increase in only one
dimension as in the simple one-dimensional example and so N2

c q cells are
used. In this case we assume that it is possible to increase the accuracy by
only refining N2

c m cells close to the plane. Hence the new mesh has q3 + m
cells and

Mpe =
N2

c q + mN2
c

N2
c q

1
2k

(4.20)

In all three cases a mesh efficiency close to 1 requires:

m

qj
≤ 2k (4.21)

where j = 1, 2 or 3 depending on the case above. Even in the case k = 1 and
j = 1 (refinement of a plane), this simple analysis shows that as long as mesh
refinement needs to be used on less than 50% of the existing cells in order to
reduce the accuracy by half then the increase in accuracy is matched by the
increase in work.

These studies show that if either high order methods or adaptive mesh ap-
proaches are used, then computational resources are used wisely with respect
to the accuracy achieved. This has already been recognized for high order
methods [14], but is not so widely understood for adaptive methods, such a
those discussed below.

4.3 Uintah Framework Background

Uintah is a framework consisting of components such as a simulation com-
ponent, the load balancer, the scheduler, and the regridder. The regridder
component will be described in detail below.

4.3.1 Simulation components

The Uintah simulation components implement different algorithms and op-
erate together or independently [13, 12, 8]. Uintah’s main simulation compo-
nents are based on the implicit compressible eulerian algorithm (ICE), mate-
rial point method (MPM), and Arches [13]. The simulation component will
create tasks, and pass them to the scheduler, which is described below, in-
structing it as to what data relative to a patch that task will need. The
scheduler will then execute the simulation component’s tasks, one patch at
a time, thus creating a parallel environment, and enabling the applications
scientist to concentrate on the science issues.

Scalable Parallel AMR for the Uintah Multiphysics Code 73

4.3.2 Load balancer

The load balancer is responsible for determining which patches will be
owned by each processor. There are two main load balancers in Uintah:
the simple load balancer, and the dynamic load balancer. The simple load
balancer simply determines the average number of patches per processor, and
assigns that number of consecutive patches to each processor. This suffices
for simple static problems that are easily load balanced. The dynamic load
balancer attempts to achieve balance for more complicated problems. First,
it orders the patches according to a space-filling curve; and second, it com-
putes a weight for each patch, based on its size and the number of particles.
The curve and the weights are then used to distribute the patches according
to the average work per processor. The patches are assigned in the order of
the space-filling curve placing patches that are close together in space on the
same processor. This reduces the overall amount of communication that must
occur. The patches are assigned so that each processor has approximately the
same amount of work.

The Hilbert [15] space-filling curve is used in Uintah because it may be
generated quickly, [1, 16, 18, 6, 11], in parallel [11], and provides good local-
ity. The curve is formed over patches by using the centroid of the patches
to represent them. The space-filling curve provides a linear ordering of the
patches such that patches that are close together in the linear ordering are
also closer together in the higher dimensional space. The curve is then bro-
ken into curve segments based on the weights of the patches. This provides
approximately equally sized partitions that are clustered locally. Figure 4.1
shows an adaptive mesh partitioned using the Hilbert curve.

FIGURE 4.1: An example of how a space-filling curve is used in partitioning
a mesh.

74 Scalable Parallel AMR for the Uintah Multiphysics Code

The space-filling curve can be generated quickly in parallel. Figure 4.2
shows how the generation performance varies for large numbers of patches
on up to 2048 processors. The load balancer is also responsible to create a

FIGURE 4.2: Scalability of the generating space-filling curves.

processor’s neighborhood, which in essence is every patch on that processor
along with every patch on any other processor that will communicate with a
patch on that processor.

4.3.3 Scheduler

The scheduler is responsible to order the simulation component’s tasks in
a parallel fashion, and to determine the corresponding MPI communication
patterns. Its work is divided into two phases: compilation and execution.
The compilation phase determines what data are required by each patch from
its neighboring patches for each task. This is determined from the basic
communication requirements that are provided by the simulation component.
It accomplishes this by determining which patches are neighbors, and then
computes the range of data the neighboring patch will need to provide [13,
12, 8]. On each processor, this algorithm is executed for each patch in the
processor’s neighborhood, which is on the order of the number of patches
per processor, thus giving a complexity of nearly O(N

P log N
P

2
), where N is

the number of patches and P is the number of processors. This phase is
executed only once for problems without AMR or dynamic load balancing,
hence for fixed meshes its performance is not an issue. During the execution
phase, each task will receive any data it requires from a neighboring patch’s

Scalable Parallel AMR for the Uintah Multiphysics Code 75

processor, run the simulation code for the task, and then send any data it
computes to requiring tasks on other processors.

4.4 Regridder

The regridder’s duty is to create a finer level — a level is a set of patches
with the same cell spacing — based on the refinement flags, which are created
by the simulation component. It determines the region of space on which
to create a finer level, and then divides that space into patches with a finer
resolution. It is important that the regridder considers what type of patches
to produce. Producing patches that are too large can result in large load
imbalances and prevent scalability. However, producing patches that are too
small can cause significant overhead in other components.

The Uintah framework has constraints which require the regridder to pro-
duce certain types of patch sets. The first constraint is a minimum patch
size. Each edge of a patch must be at least 4 cells in length. In addition,
patch boundaries can either be coarse or fine but not a combination of the
two. That is, every patch boundary must be completely filled with neigh-
boring patches or have no neighbors at all. For the rest of this chapter we
refer to the location on a boundary that moves from coarse to fine as a mixed
boundary. Figure 4.3 shows two patch sets that cover the same area. The left
patch set is invalid because it contains a mixed boundary; the second patch
set does not contain a mixed boundary and is valid.

Invalid Valid

FIGURE 4.3: Valid and invalid patch sets within Uintah. The left patch set
is invalid because it contains a mixed boundary.

Regridding is commonly accomplished through the Berger-Rigoutsos algo-
rithm [19, 4]. The algorithm starts by placing a bounding box around all of
the refinement flags. A histogram of the refinement flags is then created in

76 Scalable Parallel AMR for the Uintah Multiphysics Code

each dimension. This histogram is then used to determine a good location to
split the bounding box in half. The process then recursively repeats on both
halves of the bounding box. By having different processors evaluate different
sections of the recursion this process can be made parallel. A full description
of the parallel algorithm can be found in [19, 20].

The Berger-Rigoutsos algorithm produces patch sets with low numbers
of patches. However, the constraints within Uintah prevent the use of the
Berger-Rigoutsos algorithm. Berger-Rigoutsos produces patch sets that con-
tain mixed boundaries. Mixed boundaries can be eliminated by splitting
patches at the point where the boundary changes. However, splitting patches
produced by Berger-Rigoutsos can lead to patches that violate the minimum
patch size requirement. Due to the constraints within Uintah we initially
used a tiled regridder. A grid was placed across the domain creating square
patches. Each patch was searched for refinement flags. If a patch did not
contain any refinement flags then the patch was thrown away. This produces
square patches that cannot contain mixed boundaries and are larger than
the minimum patch size. In addition, this regridder simplified the load bal-
ancer because all patches had the same number of cells allowing us to load
balance by using simpler algorithms. Figure 4.4 shows a set of flags and a
corresponding patch set produced by the tiled regridder.

FIGURE 4.4: A patch set produced using the tiled regridder. Patches that
do not contain flags are removed from the computational mesh.

As mentioned above, Uintah cannot use the original algorithm directly.
However, a modified version of the Berger-Rigoutsos algorithm was devised
that creates patches that satisfy Uintah’s constraints. The first modification
is to coarsen the refinement flags by the minimum patch size. To coarsen the
refinement flags, tiles equal to the minimum patch size are laid across the
domain. Each tile represents a single coarse flag. A new flag set is generated
from these coarse flags. This modification guarantees that any patch created
by any regridding algorithm used on these flags is at least the size of the

Scalable Parallel AMR for the Uintah Multiphysics Code 77

minimum patch size. The Berger-Rigoutsos algorithm is then run on the
coarse flag set producing a coarse patch set.

Next a fix-up phase is run on the coarse patch set to guarantee the boundary
constraint. Each patch is searched for mixed boundaries. When a mixed
boundary is found the patch is split at the point where the boundary changes,
eliminating the mixed boundary. Performing this search along each boundary
of each patch guarantees that the boundary condition is met. This search can
easily be performed in parallel by having each processor search a subset of
patches.

The modifications have both advantages and disadvantages over the original
Berger-Rigoutsos algorithm. The coarsening of the flags allows the Berger-
Rigoutsos algorithm to run on a coarser level speeding up the computation
of the patch set. In addition, the minimum patch size can be set larger to
prevent tiny or narrow patches. The disadvantage to coarsening the flags is
the final patch set will in most cases contain more area than it would with
original flags and at best will contain the same area. In addition, the fix-
up phase causes the number of patches to increase. However, this increase is
small and is much better than the tiled algorithm. A comparison of patch sets
produced by the two regridders can be found in Figure 4.5. The coarsened
Berger-Rigoutsos regridder produces significantly fewer patches than the tiled
regridder.

FIGURE 4.5: Two patch sets from Uintah. The left patch set is using the tiled
regridder while the right is using the coarsened Berger-Rigoutsos regridder.

Finally, in order to facilitate a better load balance we have implemented one
additional modification to the Berger-Rigoutsos algorithm. After the fix-up
phase, patches may be subdivided further. The weights for each patch are
calculated and any patches that are greater than the average amount of work
per processor are split in half along the longest dimension. Patches that are

78 Scalable Parallel AMR for the Uintah Multiphysics Code

larger than the average amount of work are too big and will result in large
load imbalances. In addition, the dynamic load balancer can further split
patches in order to load balance them more efficiently.

4.4.1 Extending Uintah’s components to enable AMR

The simulation, scheduling, and load balancing components all need to
be extended for AMR. Any Uintah simulation component that wants to use
AMR must provide a set of functions to: compute refinement flags (so the
regridder can use them to create finer levels); refine the coarse–fine interface,
which interpolates coarse-level data to the fine level along the boundaries of
the fine level; coarsen, which interpolates the computed fine-level data to the
corresponding space on the coarse level; and refine, which interpolates coarse-
level data to a newly generated fine patch. These operations will increase
communication costs as each patch no longer only communicates along its
boundary, but must also communicate with the patches that are coarser and
finer in the same region of space.

The load-balancing component algorithms are also extended to operate on
each level independently. Thus, if each level is load balanced, the entire mesh
will be load balanced. However, it needs to create a global neighborhood,
which given the inter-level operations described above, extends the size of
each processor’s neighborhood.

The only part of the scheduler’s algorithm for computing the communica-
tion patterns that change is determining which patches need to communicate
with each patch. For example, in a simulation component’s refine coarse–fine
interface task, it will require data from the coarse level, so it selects patches
from the coarse level to determine the communication patterns.

4.5 Performance Improvements

In order to analyze the performance of Uintah’s AMR infrastructure we
ran a 3D two-level spherically expanding blast wave problem using 128 pro-
cessors. This problem is near the worst case for AMR. It has relatively low
computation per cell and requires lots of regridding. Performing analysis on
this problem provides good insight into where AMR overheads are coming
from. This problem was ran on Zeus, which is a Linux cluster located at
Lawrence Livermore National Labs with 288 nodes each with eight 2.4 Ghz
AMD Opteron processors. Each node has 16 GB of memory. Nodes are
connected with an InfiniBand switch.

Figure 4.6 shows the runtime of the dominant components using the tiled
regridder. This graph shows that with the original tiled regridder communi-

Scalable Parallel AMR for the Uintah Multiphysics Code 79

cation and regridding time was a major overhead. By using the new load bal-
ancer the communication dropped significantly because the code could greater
exploit intra-node communication. This made the regridder the most time-
consuming portion of the overhead. By switching to the Berger-Rigoutsos
regridder the number of patches was significantly lowered and as a result the
time for regridding and recompiling the task graph was also lowered. However,
a significant amount of overhead was still due to regridding and the following
recompile. By introducing dilation the number of times the grid was changed
was reduced and an improvement in both regridding and recompile time was
observed. These changes in total have reduced the AMR overhead by around
65%.

FIGURE 4.6: The component times for a 3D blast wave in Uintah on 128
processors on Zeus.

4.6 Future Work

There is still much room for improvements in the infrastructure that could
decrease the overhead of AMR which will lead to good scalability. Wissink

References 80

and Steensland and their colleagues have recently shown that it is possible
but challenging to get specific codes to scale well. The challenge of applying
and extending such ideas to a more general purpose code such as Uintah is
considerable. The central issue is to ensure that the very general task com-
piler and task mapping components scale. Clearly if the substantial overhead
of AMR does not scale then the code as a whole will not scale. One possi-
ble solution is to move toward incremental algorithms, for which AMR is an
ideal problem. Often during execution only the finest level is changing. Incre-
mental algorithms could exploit this by not recalculating on the coarser levels
except when needed. In addition, when level changes are typically small, a few
patches may be added and a few may be removed but the overall patch struc-
ture remains unchanged. Incremental algorithms could take advantage of this,
reducing the AMR overhead considerably. For instance, the task graph com-
piler would only have to compile small subsets of the entire task graph and the
load balancer could take the current placement of patches into consideration
when deciding the placement of new patches. Ideally the entire framework
would be incremental reducing the overhead associated with the framework
and making the dominant costs the task computation and communication.

The communication is still a dominant portion of the runtime. We believe
this is due to synchronization and are working on modifying the infrastructure
to work in a more asynchronous fashion. In addition we are working on ways
to reduce the overall communication needed. The infrastructure of Uintah
can be made quite complex in order to perform communication as efficiently
as possible while keeping the interface for simulation component developers
simple. This provides an ideal scheme for having general purpose simulations
that use highly complex parallel algorithms and at the same time allows sim-
ulation component developers to implement their algorithms without being
hindered by the parallel complexities. Finally, given that redistributing data
is expensive after load balancing it may also be appropriate to take into ac-
count the relative merits of the redistribution cost against computing with a
small imbalance, see [5].

4.7 Acknowledgments

This work was supported by the University of Utah’s Center for the Simula-
tion of Accidental Fires and Explosions (C-SAFE) funded by the Department
of Energy, under subcontract No. B524196.

We would like to thank the C-SAFE team for all their hard work on Uintah
and would also like to thank Lawrence Livermore National Laboratories who
graciously gave us access to their computing facilities where we were able to
test Uintah on large numbers of processors.

0-8493-0052-5/00/$0.00+$.50
c© 2008 by CRC Press LLC 80

References 81

References

[1] S. Aluru and F. Sevligen. Parallel domain decomposition and load bal-
ancing using space-filling curves. In Proceedings of the 4th International
Conference on High-Performance Computing, pages 230–235, Bangalore,
India, 1997.

[2] M. J. Berger and J. Oliger. Adaptive mesh refinement for hyperbolic
partial differential equations. Journal of Computat. Phys., 53:484–512,
1984.

[3] M.J. Berger and P. Colella. Local adaptive mesh refinement for shack
hydrodynamics. Journal of Computat. Phys., 82:65–84, 1989.

[4] M.J. Berger and I. Rigoutsos. An algorithm for point clustering and
grid generation. IEEE Transactions on Systems, Man and Cybernetics,
21(5):1278–1286, 1991.

[5] M. Berzins. A new metric for dynamic load balancing. Applied Math.
Modell., 25:141–151, 2000.

[6] K.D. Devine, E.G. Boman, R.T. Heaply, B.A. Hendrickson, J.D. Teresco,
J. Faik, J.E. Flaherty, and L.G. Gervasio. New challenges in dynamic
load balancing. Applied Numerical Mathematics, 52(2-3):133–152, 2005.

[7] L. Freitag Daichin, R. Hornung, P. Plassman, and A. Wissink. A par-
allel adaptive mesh refinement. In M. Heroux, P. Raghavan, and H. Si-
mon, editors, Parallel Processing for Scientific Computing, pages 143–
162. SIAM, 2005.

[8] J.D. Germain, J. McCorquodale, S.G. Parker, and C.R. Johnson. A
Massively Parallel Problem Solving Environment. IEEE Computer So-
ciety, Washington, DC, 2000.

[9] F. Gibou and R. Fedkiw. A fourth order accurate discretization for the
Laplace and heat equations on arbitrary domains, with applications to
the Stefan problem. Journal of Computat. Phys., 202(2):577–601, 2005.

[10] R.D. Hornung and S.R. Kohn. Managing application complexity in the
SAMRAI object-oriented framework. Concurrency and Computation:
Practice and Experience, 14:347–368, 2002.

[11] J. Luitjens, M. Berzins, and T. Henderson. Parallel space-filling curve
generation through sorting. Concurrency and Computation: Practice
and Experience, 19(10):1387–1402, 2007.

82 References

[12] S.G. Parker. A component-based architecture for parallel multi-physics
PDE simulation. Future Generation Comput. Sys., 22(1):204–216, 2006.

[13] S.G. Parker, J. Guilkey, and T. Harman. A component-based parallel
infrastructure for the simulation of fluid-structure interaction. Eng. with
Comput., 22(1):277–292, 2006.

[14] J. Ray, C. A. Kennedy, S. Lefantzi, and H.N. Najm. Using high-order
methods on adaptively refined block-structured meshes i - derivatives,
interpolations, and filters. SIAM Journal on Scientific Computing, 2006.

[15] H. Sagan. Space-Filling Curves. Springer-Verlag, Berlin, 1994.

[16] M. Shee, S. Bhavsar, and M. Parashar. Characterizing the performance
of dynamic distribution and load-balancing techniques for adaptive grid
hierarchies. In Proc. of the IASTED Int. Conf., Parallel and Distributed
Computing and Systems, Cambridge, MA, November 1999.

[17] J. Steensland and J. Ray. A partitioner-centric model for structured
adaptive mesh refinement partitioning trade-off optimization. Part I.
International Journal of High Performance Computing Applications,
19(4):409–422, 2005.

[18] J. Steensland, S. Söderberg, and M. Thuné. A comparison of partitioning
schemes for blockwise parallel SAMR algorithms. In PARA ’00: Proc.
of the 5th Int. Workshop on Appl. Parallel Comput., New Paradigms for
HPC in Industry and Academia, pages 160–169, London, 2001. Springer-
Verlag.

[19] A.M. Wissink, R.D. Hornung, S.R. Kohn, S.S. Smith, and N. Elliott.
Large scale parallel structured AMR calculations using the SAMRAI
framework. In Supercomputing ’01: Proc. of the 2001 ACM/IEEE Con-
ference on Supercomputing, page 6, New York, 2001. ACM Press.

[20] A.M. Wissink, D. Hysom, and D.R. Hornung. Enhancing scalability of
parallel structured AMR calculations. In ICS ’03: Proc. of the 17th
Ann. Int. Conf. on Supercomputing, pages 336–347, New York, 2003.
ACM Press.

