
NSDF-Catalog: Lightweight Indexing Service
for Democratizing Data Delivering

Jakob Luettgau
University of Tennessee

Knoxville, TN, USA
jluettga@utk.edu

Christine R. Kirkpatrick
UC San Diego

La Jolla, CA, USA
christine@sdsc.edu

Giorgio Scorzelli and Valerio Pascucci
University of Utah

Salt Lake City, UT, USA
valerio.pascucci@utah.edu

Glenn Tarcea
University of Michigan
Ann Arbor, MI, USA
gtarcea@umich.edu

Michela Taufer
University of Tennessee

Knoxville, TN, USA
taufer@utk.edu

Abstract—Across domains massive amounts of scientific data
are generated. Because of the large volume of information, data
discoverability is often hard if not impossible, especially for
scientists who have not generated the data or are from other
domains. As part of the NSF-funded National Science Data Fabric
(NSDF) initiative, we develop a testbed to demonstrate that these
boundaries to data discoverability can be overcome. In support
of this effort, we identify the need for indexing large-amounts
of scientific data across scientific domains. We propose NSDF-
Catalog, a lightweight indexing service with minimal metadata
that complements existing domain-specific and rich-metadata col-
lections. NSDF-Catalog is designed to facilitate multiple related
objectives within a flexible microservice to: (i) coordinate data
movements and replication of data from origin repositories within
the NSDF federation; (ii) build an inventory of existing scientific
data to inform the design of next-generation cyberinfrastructure;
and (iii) provide a suite of tools for discovery of datasets for
cross-disciplinary research. Our service indexes scientific data
at a fine-granularity at the file or object level to inform data
distribution strategies and to improve the experience for users
from the consumer perspective, with the goal of allowing end-to-
end dataflow optimizations.

Index Terms—national science data fabric, scientific data,
cloud, high performance computing

I. INTRODUCTION

The amount of scientific data is exploding rapidly as compu-
tational resources, research instruments, remote sensing, and
environmental sensors grow in fidelity and count. In 2016,
Globus [1], [2], for example, reportedly managed 150 PB of
data spread across 25 billion files [2]. In 2020 [3], Globus
further reported to having moved 100 billion files totaling more
than 790 PB of data. Globus live statistics today indicate more
than 180 billion files moved with a transfer volume of 1.7 EB.

While most data is collected in the context of a specific
research effort for a group of experts in a given domain,
many datasets later turn out to be useful beyond their original
purpose. For this reason, countless scientific domains and their
sub-fields have set up research data archives (RDA) [4]–[7].
Because these data archives are often not public, some insti-

tutions and operators of RDAs have started building domain-
specific data repositories to help make their data accessible
to other researchers [7], [8]. These efforts are encouraged
by funding-agencies [9]–[11]. Furthermore, most publishers
promote sharing of research artifacts under the banner of the
FAIR principles [12]. Many publishers, for example, include
guidance in their editorial policies [13] that increasingly state
what relevant research artifacts should be submitted to public
data repositories. The general recommendation is to submit
data to a domain-specific, community-recognized repository
when possible, and only turn to general repositories, if spe-
cific ones do not exist. This is a dramatic improvement to
discoverability and reuse of scientific data, but it also leads to
data fragmentation, ultimately resulting in the scientist’s lack
of awareness on which repository is the most appropriate to
upload generated data or where to search for specific datasets.

The overall trend creates a burden for scientists searching
for data to answer scientific queries. Even though several
domain-agnostic data aggregators that collect data from one
or more sources have been developed [14], [15], the definition
of appropriate metadata standards across repositories remains
a major challenge, adding further complexity to the indexing
and search processes. Generally speaking, enforcing metadata
adherence early in the dataset generation is a good strategy be-
cause scanning an entire dataset repository to extract metadata
can be costly. Considering that Globus reported moving 180
billion files, but most of the domain-specific and even multi-
domain repositories are listing only several million files each,
it becomes clear that there is a large gap between searchable
data and available data.

We propose to fill this gap through NSDF-Catalog, a
lightweight, comprehensive indexing data service that comple-
ments the above-mentioned existing efforts and their limits.
In our design and implementation approach, we follow a
paradigm in which we build an inventory of all available
scientific data. In other words, NSDF-Catalog accelerates the
process of building inventories of scientific data across mul-

tiple domain-specific repositories, while informing the design
of cross-cutting cyberinfrastructure.

NSDF-Catalog is an effort within the NSF-funded Na-
tional Science Data Fabric (NSDF) initiative, a project that
gathers scientists, computer scientists, and engineers who
share the mission of building a platform-agnostic testbed for
democratizing data delivery. This vision requires an inven-
tory service across multiple, independently-collected datasets.
On the infrastructure side, the coordination of data storage,
transfer, and caching requires a federated inventory similar to
the Domain Name System (DNS). On the applications and
workflow side, multiple scientists report use cases that can
benefit from even simple keyword search against filenames,
but the effort to develop adapters to various relevant domain-
specific repositories in many cases is still prohibitive for
them. Similarly, especially scientists from different domains
but also young researchers and students often do not know
what domain-specific repositories are most suitable for their
scientific queries. The main contributions of our work are as
follows:

• We analyze data collections across multiple domain-
specific repositories in terms of their number and size of
collected data and identify five recurrent patterns that are
useful to optimize various search and transfer scenarios.

• We use the empirical analysis to inform the requirements
for the design of the NSDF-Catalog architecture.

• We design the NSDF-Catalog microservice architecture
for a data catalog that meets the requirements.

• We implement the NSDF-Catalog microservice architec-
ture that is composed of a front-end (Web interface), a
back-end (REST API), and a python client library.

• We demonstrate the catalog to index the eight different
repositories demonstrating both the interoperability and
scalability of our NSDF-Catalog for datasets totaling 1.6
billion entries.

The remainder of the paper is structured as follows: In
Section II, we analyze various scientific data repositories to
define the requirements for our lightweight indexing service.
In Section III, we leverage the requirements to develop the
NSDF-Catalog microservice architecture. In Section IV, we
perform an evaluation of our NSDF-Catalog architecture with
respect to scalability and interoperability. In ??, we present
a qualitative discussion of lessons learned and benefits. In
Section V, we discuss related work. Last, we summarize our
results and conclude with future work in Section VI.

II. CATALOG REQUIREMENTS

When designing an indexing data service that allows for
searching across large amounts of raw scientific research data
in multiple repositories, an open question is what requirements
such a service should meet. We establish a set of requirements
from observations of existing data services and properties in
well-known repositories.

A. Lessons from Established Indexing Tools

We study the performance of established private and public
tools providing a wide range of data services such as the
Google Data Commons, Dataverse, and Globus to reason
about requirements in terms of scale metrics and types of
entries (i.e., files or objects) for our indexing catalog. For
instance, Google represents data as graphs and uses triples for
measuring scale. Recent reports indicate that Google has built
large-scale knowledge graphs of 850 billion triples containing
200,000 variables and 1.4 trillion triples containing 100,000
variables [16]. While these are certainly impressive upper-
bound values in terms of knowledge that can be indexed
by Google, they may not be intuitive for scientists who are
looking for the location and number of individual raw data
entries. Google is also over-counting the number of entries
because a single raw data entry may generate many triples.
Dataverse reports more intuitive metrics (i.e., it refers to
200,000 collections in 12,000 Dataverses for a total of 2.1
million files). Dataverse is under-counting them because only
pre-processed, high-quality data is made available to users
who, in some cases, may need to search across all available
raw data. Globus on its website reports live statistics indicating
that over 180 billion files and 1.7 EB total bytes were
transferred. Because of its nature (i.e., indexing movement of
entries and not number of individual ones) it can both over-
count and under-count entries. Files may be transferred, and
thus counted, multiple times. On the other hand, not all files
on a storage system may not be transferred by Globus and
therefore the total files is under-counted. These observations
highlight how an indexing catalog should index raw data, and
count data entries once no matter whether the data is moved
during its lifespan.

B. Lessons from Properties in Existing Datasets

We study the properties (i.e., number and size of files
or objects) and their distributions (i.e., patterns) of existing
private and public data repositories to reason about how to
best search through collections with our indexing catalog.
To this end, we analyze the frequency distributions of 1.6
billion entries from eight repositories, totaling 71.4 PiB of
data. The repositories range from domain-specific collections
in materials science and astronomy (i.e., Digital Rocks Portal
[17], Materials Commons [18], Materials Data Facility [19],
and Arecibo [7]) to general data collections such as AWS
Open Data [20], TACCs Ranch Long-Term Archive [6], and
Zenodo [21] and the Dataverse [] federation of repositories.
Table I describes the repositories in terms of their number of
collections, entries, and total entry size. For each collection,
we gather an entries’ name, creation time, and size. For each
repository, we generate a repository fingerprint capturing the
relationships between the frequency of entries with a specific
size across collections. In other words, each fingerprint serves
as a proxy for the fragmentation of data that has to be in-
dexed across collections in the associated repository. For each
repository, we create its fingerprint by (i) sampling a subset
of collections from a repository, (ii) building a histogram of

20 0 20

20

0

20

Digital Rocks Portal

20 0 20

20

0

20

Materials Commons

20 0 20

20

0

20

Materials Data Facility

20 0 20

20

0

20

Arecibo Observatory

20 0 20

20

0

20

AWS Open Data

20 0 20

20

0

20

TACC Ranch

20 0 20

20

0

20

zenodo.org

(a) Set of domain-specific and general data repositories.

20 0 20

20

0

20

dataverse.harvard.edu

20 0 20

20

0

20

dataverse.asu.edu

20 0 20

20

0

20

dataverse.no

20 0 20

20

0

20

dataverse.nl

20 0 20

20

0

20

dataverse.openforestdata.pl

20 0 20

20

0

20

dataverse.iit.it

20 0 20

20

0

20

dataverse.ifdc.org

(b) Selected Dataverse repositories.

Fig. 1: Uniform Manifold Approximation and Projection (or UMAP) clustering for different data collections (each represented
by a dot) across different, well-known repositories (figures). The clustering is performed using the distribution of number of
entries (i.e., files or objects) and their frequency (i.e., histogram of file sizes or object sizes). The plots are a proxy for the
repositories’ diversity: the more disperse the dots, the more diverse the entries.

TABLE I: Repositories considered in our study grouped in
domain-specific for materials science and astronomy, general
repositories, and federation of repositories.

Collections # Entries Size
Repository (Bytes)

Digital Rocks Portal 148 17,285 6.1 TiB
Materials Commons 70 258,576 10.2 TiB
Materials Data Facility 178 1,075,706 4.8 TiB
Arecibo Observatory 221 2,045,049 447.4 TiB

AWS Open Data 397 1,617,966,022 50,400.0 TiB
TACC/Ranch 184 1,091,321 20,500.0 TiB
zenodo.org 1,001,459 3,461,517 339.5 TiB

Dataverse 154,472 2,306,495 104.9 TiB

the distributions and frequency of entry sizes for each sample,
and (iii) clustering the histogram. Specifically, the fingerprints
are generated with the Uniform Manifold Approximation and
Projection (or UMAP) clustering [22]. Figure 1a presents
the fingerprints for the seven repositories (i.e., Digital Rocks
Portal, Materials Commons, Materials Data Facility, Arecibo
Observatory, AWS Open Data, and TACC Ranch); Figure 1b
shows the fingerprints for seven selected repositories from
the Dataverse federation. The x and y coordinates in each
fingerprint are normalized coordinates of dots representing the
repository’s diversity in number of entries with a given size.
The more dispersed the cluster of dots, the more diverse the
collections in the cluster; the darker the cluster, the larger the
amount of similar collections.

We observe two different patterns. The first pattern (Pattern
1) consists of a dark dot in the central upper part of the
fingerprint – the single cluster indicates a high frequency of
identical-in-size entries, with the darker the cluster, the higher
the frequency. The second pattern (Pattern 2) consists of a
point cloud (i.e., collection of dots) randomly distributed in a
centrally located, horizontal stripe – the many clusters indicate

the presence of different types of entries. Some clusters in
the cloud are darker than others: the darkness represents the
frequency of entries of the given size. We can pinpoint these
patterns in individual repositories. For instance, in Figure 1a,
the three domain-specific repositories for materials sciences
share similar entry properties. All three feature mostly col-
lections with many files with different sizes (Pattern 2); the
Materials Data Facility also features a large pool of collections
with only a single small file in the range of few MB (Pattern
1). Similarly, to Materials Data Facility, Zenodo exhibits
Pattern 1 as it is used extensively to publish snapshots of
research software composed of many usually small files as
well as to publish project reports that often consist only of
a single small sized PDF. Contrary to the materials science
repositories, Zenodo does not gather a rich set of different-in-
size files typical of Pattern 2. Within the Dataverse federation
of repositories, we plot the fingerprints of seven selected
repositories: four of the largest (i.e., dataverse.harvand.edu,
dataverse.asu.edu, dataverse.no, and dataverse.nl), two featur-
ing a small number of clusters (i.e., dataverse.openforestdata.pl
and dataverse.lit.ut), and one featuring only a single cluster
(i.e., dataverse.lfdc.org).The two largest Dataverse repositories
are operated by universities which allow both data and pub-
lications to be archived. This explains the presence of both
patterns. The primary mission of dataverse.no is to preserve
national research data, and hence does not include single file
collections, exhibiting only Pattern 2. On the opposite side of
the spectrum, dataverse.ifdc.org features only reports, and thus
presents only Pattern 1. This observation highlights how our
catalog should ultimately preserve effective indexing across
the different patterns characterizing the targeted datasets.

C. Summary of Requirements

The resulting requirements that are driving our catalog’s
design and implementation are as follows.

• Our catalog should index a broad range of individual data
entries (i.e., files or objects) ranging from several hundred
to millions of data entries.

• Our catalog should index raw data and complement
existing curated efforts such as Dataverse and domain-
specific repositories.

• Our catalog should establish a criterion to identify unique
data.

• Our catalog should preserve properties including data
such as size, name, collection, and repository.

• Our catalog should preserve effective indexing across the
different distribution patterns characterizing the targeted
datasets.

III. CATALOG DESIGN AND IMPLEMENTATION

We design the microservice architecture of our NSDF-
Catalog based on identified requirements, best practices, and
targeted cyberinfrastructure.

A. Implementation Strategies

We build our architecture using the set of empirical require-
ments from analysing related services and from sampling the
landscape of well-known scientific repositories in Section II.
Directly informed by these requirements, we follow these
implementation approaches:

• We opt for a minimal and thus lightweight metadata
schema.

• We aim for a database agnostic back-end for which both
central and replicated deployments are supported.

• We decouple harvesting workers and database ingest to
allow asynchronous index updates with many parallel
workers.

We further choose to implement the NSDF-Catalog using
the following best practices to reduce the maintenance burden
while increasing the robustness of the catalog’s services:

• All sub-services are containerized, allowing for both co-
located and distributed deployments based on index scales
and query loads.

• Services are designed to be stateless to simplify load-
balancing while avoiding unintended bottlenecks.

• The deployment automation enables leveraging different
academic and commercial cloud resources.

Finally, our microservice architecture integrates with other
scientific cyberinfrastructure and NSDF-federated services
through:

• Access control via SciTokens (JSON Web Tokens) to
access protected routes and to allow users searching non-
public or embargoed repositories and collections.

• Protected routes for authorized users and external ser-
vices to access data preparation as well as usage statistics
and analysis.

• Open source software and deployment automation to help
institutions that do not have resources on site to make
their data findable by setting up their own NSDF-catalog
instance.

B. Microservice Architecture Overview

Our indexing service is broken up into multiple microser-
vices. We illustrate the high-level overview of the microser-
vices in Figure 2 and their detailed implementation in Figure 3.

Our indexing service supports both ➊ human users and ➋
programmatic access as forms of interaction with our NSDF-
catalog. At the core of our architecture, we place our ➌
REST-API endpoint. Users can deploy either a web front-end
or the Python client library to interact with this service, for
example, in their Jupyter notebooks. The REST-API endpoint
connects to the database endpoint managing the indexing. Our
architecture is agnostic to the ➍ database back-end. Our initial
prototype and the measurements discussed in Section IV uses
Clickhouse as the back-end. Swapping out a database back-
end only requires a single file in the REST-API back-end to
be changed. We also decouple the harvesting effort from other
operations to allow independent scaling and load balancing.
As indexing has to be kept up to date continuously, we use
an architecture of independent ➎ harvesting workers. Each
worker runs in a container and executes an Extract-Transform-
Load (ETL) pipeline for a repository. We provide a blueprint
for workers that only require to add logic to fetch repository
entries and transform them into NSDF-Catalog entries. All
found entries are then stored into a comma-separated values
(CSV) file that are then pushed to a shared storage system
(e.g., S3 object storage) and ingested into an index database
in a separate process. The ➏ web front-end server can be
deployed independently of the REST-API endpoint and both
services are stateless.

We provide a default docker-compose configuration that
spawns a REST-API endpoint and a front-end server along
with a Clickhouse instance. We also include a working con-
figuration for nginx to securely serve both the REST-API
endpoint and the front-end through a single customizable
domain name. The certificates needed to enable HTTPS are
obtained using Let’s Encrypt/Certbot.

C. Minimal Metadata Schema

Our indexing data service uses the query in Listing 1 as the
minimal metadata schema to describe the functional and se-
mantic properties of a repository. The schema includes repos-
itory, collection, and name fields needed to uniquely describe
a data entry across repositories. The size and last modified
fields are additional metadata needed by other NSDF services

Users

N
G

IN
X

 +
 C

er
tb

ot

Frontend
SPA

REST
Endpoint
(FastAPI)

Storage
(e.g., S3)

Replication

Replication

...

User
Apps

DBMS/
OLAP

(Clickhouse)

Dask

ETL/PrefectHarvesting
Worker

...

Dask

ETL/PrefectHarvesting
Worker2

1

3 4

6

5

Fig. 2: High-level overview of the NSDF-Catalog microservice
architecture, our lightweight indexing service for scientific
data.

REST Endpoint (Stateless) (FastAPI + ORM)

Python

requirements.txt

FastAPI
Uvicorn

/search

JSON Web Tokens
(SciToken)

/auth/get_token

clickhouse-driver
or Postgres client

Dockerfile

/docs (OpenAPI)

/entry

pip

Manual Actions:
Set NSDF_CATALOG_INDEX_HOST via
environemnt or compose.yml.

Set SECRET_KEY via environment or
compose.yml as needed for SciToken.

Routes
./main.py + routes/*.py

Frontend (Stateless) (Vue SPA)

yarn

packages.json

Quasar
(GUI Framework)

Vue 3
(MVVM)

Axios
(API/REST)

/search

/entry

/

/advanced

Routes
./router/routes.ts

Dockerfile

./layout/MainLayout.vue
+

No manual actions needed, as long as the REST
Endpoint is exposed via "/api" routed from serving
host (rewrite rule).

Otherwise set NSDF_CATALOG_API_ENDPOINT
in environment or compose.yml.

./pages/IndexPage.vue

./pages/Advanced.vue

./pages/Search.vue

./pages/Entry.vue

DBMS

Dockerfile

Clickhouse/Postgres
(optional with S3
syncronisation)

./data

As the index grows
or query loads

require it, this can
be switched to a
replicated setup.

4

Workers

Dask

requirements.txt

Dockerfile

pip

ETL/Prefect

5
NGINX + Certbot (HTTPS)

certbot

Dockerfile

nginx

/

/api

Rewrite Rules

Frontend IP

REST Endpoint IP

Manual Actions:
Need to update configuration in ./data to
reflect domain name.

May need to update IPs for frontend and
REST endpoint if not localhost.

./data

Users

Notebook/Binder

Jupyter

Ingest (CSV files)

Users

Other

Custom Applications

1

2

36

Fig. 3: Whitebox overview of the microservice architecture to support the search indexing and expose it to users and applications.

make deploy

make on target host

DevOps Ansible compose.yml
(manual deploy/dev)

devenv
(requirement.txt, ...)

Optional:
nsdf-cloud + Ansible

1. Install development/deploy dependencies locally
2. Configure domain, (multi-host-mapping)?, etc.

6. SSH/login to target host
7. Transfer/modify configuration files.

Ansible
Inventory

File
(Hostlist)

Automatically generates
Ansible Inventory

3. Setup credentials for nsdf-cloud/vault
4. Use nsdf.cloud to obtain ansible inventory

3. make deploy
3.1. installs requirements (docker/podman)
3.2. docker/podman-compose compose.yml

Fig. 4: Deployment automation allowing users to spin up there own index and search with support for academic resources.

to coordinate and optimize data transfers. The etag field stores
a hash of the data to allow detecting changes in supported
repositories.

1 CREATE TABLE nsdf.catalog
2 (
3 ‘repository‘ String,
4 ‘collection‘ String,
5 ‘name‘ String,
6 ‘size‘ Int64,
7 ‘last_modified‘ Nullable(String),
8 ‘etag‘ Nullable(String)
9)

10 ENGINE = MergeTree
11 ORDER BY (repository, collection)
12 SETTINGS index_granularity = 8192

Listing 1: Minimal metadata schema used by NSDF-Catalog
to index data entries across scientific repositories.

D. Database Back-end

We design the different services to be agnostic about which
database back-end can be used. Our prototype uses Clickhouse
as the database back-end. Both the front-end and Python client
library interact with a catalog instance through the REST-API
endpoint. As a result, all logic to interact with the catalog back-
end can be consolidated into a single file within the REST-API
endpoint source code. As the index grows in size, our catalog
can leverage different strategies, including:

• Distributed indexes (e.g., fragmented by repository or
scientific domain) to maintain low query latency;

• Replication for load-balancing and scale out as more
requests are handled; and

• Hybrid approach that mixes different databases that al-
lows adaptation to more complex schema and queries.

E. ETL Workflow for Asynchronous Harvesting and Ingest

For catalog harvesting, we use the well established ETL
approach with Prefect [23] and Dask [24] for orchestration.
This strategy allows us to decouple harvesting and ingesting
into the index and makes the service more scalable. To add a
new repository we provide a template class that the developer
extends with some repository-specific data, to allow for entry
enumeration and data extraction to populate our lightweight
schema as described in Section III-C. Harvesting workers emit
CSV files that are ingested into the global index in a separate
process.

F. Open Source and Deployment

All NSDF software is open source. The NSDF-Catalog is
designed so that it can be deployed in isolation (i.e., without
being connected to other NSDF services [25], [26]). This
makes our catalog easily deployable using standard tools such
as Ansible. Because we include a harvesting worker for NSDF-
Catalog instances, connecting to the global NSDF-Catalog is
possible at any time.

We illustrate the different deployment modes and their
dependencies in Figure 4. Within the NSDF federation we use
NSDF-Cloud [27], a unified cloud API to quickly allocate re-
sources for hybrid clouds based on registered credentials. This
allows us to support different commercial and academic cloud
providers. The NSDF-Cloud utilitiy optionally populates an
Ansible inventory file for use by the other deployment stages.
Ansible connects to the host and ensures a suitable container
runtime is installed. On the host systems our microservices’
run inside containers. In the simplest case we use docker-
compose. For manual deployment and development purposes
we also provide make targets to spawn all our individual
services.

IV. EVALUATION

We evaluate the NSDF-Catalog by answering the following
questions:

• Can we harvest data from different repositories? Answer-
ing this question allows us to demonstrate interoperability
of our ETL pipeline across different repositories. It also
helps us to understand the performance requirements
needed to operate the NSDF-Catalog.

• How fast can we ingest data produced by harvesters
into an existing index and across different repositories?
Answering this question allows us to identify architecture
limits due to, for example, the technologies used for the
back-end.

• How does the NSDF-Catalog querying performance
change against an index populated with real-world data?
Answering this question allows us to better understand
the cost of operation for a service like NSDF-Catalog and
also informs load-balancing strategies when distributing
the index.

A. Testing Environments

We run our tests using two different cloud providers:
Amazon Web Services (AWS) for the harvesting workers and
Jetstream2 [28] for benchmarking the NSDF-catalog perfor-
mance. For the measurement of the harvesting rates, we use
the AWS c5d.9xlarge instance type in the us-east-1 region.
This instance type features 36 vCPUs with 72.0 GiB of
RAM as well as a 900 GB NVMe SSD and a 10 Gigabit
network connection. For the performance evaluation, we use
the Jetstream2 academic cloud. We use different instance
types for Jetstream2 and list the specifications for each of
the instances in Table II. All nodes in Jetstream2 are based
on AMD Milan 7713 CPUs. Volumes are served by a Ceph
cluster with 14 PB of storage.

B. Interoperability Study

To understand the sustained operational performance of our
indexing service, we study the harvesting of data sources when
searching for new entries and updating existing ones across
six of the eight repositories in Table I (i.e., Digital Rocks
Portal, Materials Common, Materials Data Facility, AWS Open
Data, Zenodo, and Dataverse). We measure the performance
of the search and update operations to understand the resource
requirements to harvest different repositories. Through this
study, we demonstrate that our ETL pipeline is interoperable
as it can harvest from a wide range of different repositories.

The NSDF-Catalog’s harvesters use Python for repository-
specific handling logic. Specifically, we use the client libraries
available through the Python Package Index (PyPI). The effort
to harvest data can vary significantly depending on the repos-
itory and its APIs. For instance, the Digital Rocks Portal does
not expose any public API and the harvester has to scrape (i.e.,
browse the repository copying and pasting down all the entries)
the HTML pages using Beautiful Soup [29]. On the other
hand, Materials Commons features a Python client library
(materials-commons on PyPI) and a REST-API. The Materials
Data Facility also offers a Python client library (mdf-forge on
PyPI). Furthermore, the AWS Open Data Registry is managed
through a public Git-repository hosted on GitHub that contains
metadata files. The metadata references S3 buckets that contain
the actual data. For the repository, our harvester reads the
YAML-based metadata files and then inspects all the objects
in the referenced bucket. When harvesting Zenodo, we rely
on the zenodopy library that uses the Zenodo REST-API. This

TABLE II: Specifications for instance types on Jetstream2.

instance-type CPUs RAM Root Disk Ephemeral Disk

m3.tiny 1 3 GB 20 GB none
m3.small 2 6 GB 20 GB none
m3.quad 4 15 GB 20 GB none
m3.medium 8 30 GB 60 GB none
m3.large 16 60 GB 60 GB none
m3.xl 32 125 GB 60 GB none
m3.2xl 64 250 GB 60 GB none

TABLE III: Harvesting performance and network traffic statistics for different repositories.

Repository Digital Rock Portal Materials Common Materials Data Facility AWS Open Data Zenodo Dataverse

Collections 154 81 637 398 1,012,474 150,834
Collections/s 0.05 1.066 0.799 0.001 51.306 8.236
Upload Bytes/Collection 162.0 KiB 132.0 KiB 320.0 KiB 384.7 MiB 45 Bytes 17.8 KiB
Download Bytes/Collection 725.0 KiB 944.7 KiB 2.0 MiB 1.0 GiB 4.1 KiB 168.2 KiB

Entries 139,393 131,091 1,206,801 1,540,162,975 3,485,074 2,596,905
Entries/s 45.257 1724.882 1514.179 5232.136 176.603 141.807
Upload Bytes/Entry 183 Bytes 83 Bytes 172 Bytes 104 Bytes 13 Bytes 1.0 KiB
Download Bytes/Entry 820 Bytes 597 Bytes 1.1 KiB 279 Bytes 1.2 KiB 9.8 KiB

Avg. Up 8.1 KiB 140.7 KiB 255.7 KiB 532.7 KiB 2.3 KiB 146.3 KiB
Avg. Down 36.3 KiB 1006.8 KiB 1.6 MiB 1.4 MiB 209.7 KiB 1.4 MiB
Down/Up Ratio 4.476758 7.154878 6.254201 2.681026 91.409164 9.4708
Total Time (seconds) 51 1 13 4,906 328 305

requires a Zenodo access token before any request is handled.
Zenodo imposes strict rate limits of 60 requests per minute
and 2000 requests per hour that we have to adapt to in the
harvesting process. For Dataverse we use the same handler
for all 43 tested Dataverse installations in combination with
their restful search API.

The complexity of the harvesting process and the structure
of the data in a repository have an impact on the harvesting
rate of the repository. In Table III we report the harvesting
rates (collections per second and entries per second) together
with the average upload/download traffic per collection and
entry respectively as well as total harvesting time in minutes.
All measurements are performed using a single worker. When
harvesting the Digital Rocks Portal, we observe an average
upload traffic of 8.1 KiB/s and download traffic of 36.3
KiB/s. that the harvesting rate is significantly lower and the
accumulated network traffic per collection and entry is not
higher than with the other repositories, despite using HTML.
This maybe be either the result of network or rate limits
at the repository server or the larger effort it takes to parse
and extract information from the HTML representation. In
Section II-B we notice how the Materials Commons and the
Materials Data Facility repositories share similar fingerprint
patterns. We also observe the similarity in the harvesting
performance: both repositories perform at similar harvesting
rates (one collection per second and about 1,600 entries per
second). For Materials Commons we observe average upload
traffic of 140.7 KiB/s and download traffic of 1006.8 KiB/s; for
the Materials Data Facility we observe average upload traffic
of 255.7 KiB/s and download traffic of 1.6 MiB/s. The fact
that the average upload/download rates are similar suggests to
us that the observed behavior can be explained by the similar
structures of the two repositories.

For the general data repository we see two repository on
opposite ends of the performance spectrum. On one hand,
for AWS Open Data we observe a low harvesting rate of
only 0.001 collections per second but a very high harvesting
rate of 5,200 entries per second. A closer inspection in line
with our observations discussed in Section II-B outlines how
AWS Open Data counts fewer collections but each collection

features 3.9 million entries on average. For AWS Open data we
observe an average upload rate of 532.7 KiB/s and download
rate of at 1.4 MiB/s. Zenodo exhibits an average of 3 entries
per collection and as a result the higher harvesting rate of
51.3 collections per second. Zenodo allows to request batches
of up to 10,000 collections or entries; this results in a favorable
upload to download ratio. We observe an average upload rate
of 2.3 KiB/s and an download rate of 209.7 KiB/s.

Finally, for Dataverse, which has both general and spe-
cialized domain-specific repositories, we observe the second
highest collection harvesting rate of 8.2 collections per second
and 141.8 entries per second. Overall Dataverse also tends to
feature a lower average of 17 entries per collection but this
depends on the particular Dataverse repository. We observe an
average upload rate of 146.3 KiB/s and an download rate of
1.4 MiB/s.

Based on the performance collected while harvesting data
across the different repositories, we confirm the benefits of
our approach to decouple the harvesting process from other
operations. The decoupling allows us to adapt to the different
harvesting rates observed for the different repositories. The
analysis also gives us a better understanding of the system
requirements for different harvesters. For instance, a user does
not need all the processing power of the AWS c5d.9xlarge
instance type for the harvesting process as many repositories
do not saturate the available network connection.

C. Database Back-end Performance Study

The NSDF-Catalog architecture can combine different tech-
nologies to ensure scalability and responsiveness of services as
the index of scientific data grows. For our prototype we use
Clickhouse, a columnar datastore, as our database back-end
because it features high-ingestion rates and is tailored to enable
aggregation across large amounts of data. We measure the
performance to ingest data as the index grows and break down
our study into the following two aspects. First, to understand
the performance behavior of the back-end under resource
constraints, we fill up a m3.tiny (20 GiB) Jetstream2 instance
and measure the ingestion performance, index size, and disk
fill level under this stress condition. Second, to understand the

8 10 11 13 14 15 17 18 20 21 22 24 25 27 28 29 31 32 34 35 36 38 39 41 42
Index Size (Million Entries)

183,000
180,000
176,000
172,000
168,000
165,000
161,000
157,000
154,000
150,000
146,000
142,000
139,000
135,000
131,000
128,000
124,000
120,000
117,000
113,000
109,000
102,000
94,000

In
ge

st
 R

at
e:

 E
nt

rie
s/

s

Fig. 5: Performance degradation for ingest rates as the index
grows on an m3.tiny instance.

performance behavior of ingestors for different instances and
their available memory, we use a 4 TB volume and ingest 1.6
billion entries (the cumulative entries of all the repositories in
Table I) in each of the instances in Table II.

a) Understanding Performance Behavior under Resource
Constrains: To understand the performance and limiting fac-
tors when using Clickhouse as our database back-end we use
the smallest instance type m3.quad that Jetstream2 offers and
fill to 95% of its 20 GiB disk volume. As new entries are
added to the index, we track the following metrics: ingestion
performance, index size, and disk fill level. We plot our results
in Figure 5. On the x-axis we show the index size and on the
y-axis we plot the ingestion performance (entries per second).
Initially, the ingestion performance is stable with occasional
outliers at about 150,000 entries added per second. As we
approach an index of 28 million entries, we observe average
performance drops to a lower level with higher variability to
the downside. After closer investigation, this is likely due to
the use of the MergeTree Table engine in Clickhouse. By
comparing the disk filling level around 28 million and 42
million marks, it appears that Clickhouse triggers housekeep-
ing routines including releases of storage as the MergeTrees
are restructured and data is compressed. From this analysis,
we learn that by using the smallest instance type we can
achieve ingest rates of about 150,000 entries per second and
that performance degrades as we approach the system limits
because of Clickhouse’s housekeeping routines.

b) Understanding Ingest Performance Behavior with dif-
ferent Instance Types: To understand how the NSDF-Catalog’s
performance scales as we add new resources, we first eliminate
the constraint on storage capacity by attaching a 4 TB volume.
The volume offers high performance as it is backed by a 14 PB
Ceph cluster. Then we measure the ingest performance of all
1.6 billion entries (the cumulative entries of all the repositories

0
1

1e10
Filesize

0

250
Elapsed (s)

0
5

1e7
Entries/s

0 250 500 750 1000 1250 1500 1750
0
1

1e9
Index Size

(a) m3.tiny

0
1

1e10
Filesize

0
25 Elapsed (s)

0.0

2.5
1e7

Entries/s

0 250 500 750 1000 1250 1500 1750
0
1

1e9
Index Size

(b) m3.xl2

Fig. 6: Profile of the workload ingesting 1.6 billion entries
from 1797 harvested CSV files.

in Table I). We use the clickhouse-client application
within the Clickhouse container and record the time before and
after the Clickhouse’s command-line CSV import in Listing 2
is executed.

1 query="INSERT INTO nsdf.catalog FORMAT CSV"
2 cat ${filename} | clickhouse-client --query=${query}

" --time ... <clickhouse credentials>

Listing 2: Clickhouse’s command-line CSV import.

The commands read the CSV file and pipes its content to the
clickhouse client that then imports the data into the index. Each
CSV represents the output of one of the harvesting workers
which typically generates one CSV file per repository. Two
exceptions to this approach are: AWS Open Data, where each
S3 bucket results in a separate CSV file, and Dataverse, where
each Dataverse installation results in its own CSV file.

We collect performance values for the multiple imports of
CSV files in Listing 2 and analyse the ingest performance

m3.tiny m3.small m3.quad m3.medium m3.large m3.xl m3.2xl
Instance Type

0

20

40

60

80

El
ap

se
d

(M
in

ut
es

)

Fig. 7: Total time taken to ingest 1.6 billion entries on different
instance types using Clickhouse and Jetstream2.

0 5 10 15 20
Time (seconds)

SELECT COUNT(*) FROM nsdf.catalog
SELECT SUM(size) FROM nsdf.catalog

SELECT repository, COUNT(*), SUM(size) FROM nsdf.catalog GROUP BY repository
SELECT collection, any(repository), COUNT(*), SUM(size) FROM nsdf.catalog GROUP BY collection

SELECT * FROM nsdf.catalog LIMIT 10
SELECT * FROM nsdf.catalog WHERE name LIKE '%abc%' LIMIT 10

SELECT * FROM nsdf.catalog WHERE name LIKE '%bcd%' LIMIT 100
SELECT * FROM nsdf.catalog WHERE name LIKE '%cde%' LIMIT 1000

SELECT * FROM nsdf.catalog WHERE name LIKE '%def%' LIMIT 10000

Qu
er

y

Fig. 8: Query performance against the index populated with 1.6 billion entries using the m3.quad instance type.

for differently sized dumps. In Figure 6 we plot the file
size, elapsed time in second, and entries per second from a
workload ingesting 1.6 billion entries from 1797 harvested
CSV files. Across instances we observe similar permanence
behaviors and thus we report here only results for the smallest
m3.tiny instance and largest m3.xl2 instance. The performance
gained when moving from the smallest to the largest instance
is nearly a factor of three. This shows that Clickhouse,
without additional tuning, can parallelize the import process.
In Figure 7 we reports the total time taken to import all files.
The figure shows that without further tuning, it is sufficient
to run the import using the m3.large instance type with 16
CPUs and 60 GB of RAM. For larger instances we observe
diminishing returns: the performance is almost identical to
the m3.large instance type. We also learn that performance
gains are tangible only when importing sufficiently large CSV
files for which Clickhouse performs some parallelization when
importing the large files. For our architecture, this means that
harvesting workers should be configured to generate large CSV
files to take advantage of this performance gain.

D. Query Performance Study

Querying data across large tables can become a expensive
operation. We build NSDF-Catalog to support a wide range of
queries meeting three scenarios. First, NSDF-Catalog should
support other NSDF services that coordinate data movements
and replication of data from origin repositories within the
federation. Queries related to this activity are composed of
simple ”WHERE” clauses. For a particular collection, queries
can explore individual entries at a small granularity scale or
all entries. Queries can request to search the full repository, a
collection, or an entry name and its size.

Second, to better understand the inventory of existing sci-
entific data and improve system designs, NSDF-Catalog has
to generate statistics. Queries related to this activity should
perform ”GROUP” operations along with various aggregations
such as counting and building sums.

Finally, as a tools for discovery available data for users
worldwide, the catalog should serve researchers asking for all
matches through large repositories. Thus, queries related to
this activity should support complex ”WHERE” clauses.

We define nine queries that cater to these three usage scenar-
ios and repeatedly run the query against the index populated
with all 1.6 billion entries on an m3.quad instance. Similar to

our previous analysis, m3.tiny performance is lower, but the
difference for the other instance types is small. We take 10
measurements for each query and report the average execution
time in seconds. We clean caches between measurements using
the helper shown in Listing 3.

1 def clickhouse_drop_caches():
2 !sudo sync;
3 !sudo sh -c "echo 1 > /proc/sys/vm/drop_caches"
4 client.execute(’SYSTEM DROP MARK CACHE’)
5 client.execute(’SYSTEM DROP UNCOMPRESSED CACHE’)

Listing 3: Instructions to clear OS and Clickhouse caches.

The results for the different queries are shown in Figure 8.
Queries counting all entries return on average within 10 ms;
the query taking the SUM across all entries requires 6 seconds
on average. For GROUP BY operations, we observe the high-
est query latency, requiring 14 seconds to generate aggregate
statistics for all repositories and 24 seconds for aggregate
statistics on all collections. All queries with aggregations show
higher variability. For searches against the index asking for
the first 10 entries returns within 244 ms; a specific search
independent of the LIMIT return within about 1 second. These
results demonstrate that query performance even with the
specification of the m3.quad featuring only 4 CPUs and 15
GB of RAM provides reasonable querying performance.

V. RELATED WORK

Data repositories and data catalogs are being used across
scientific domains for many years. Many of these repositories
are domain-specific such as [7], [18], [30]; a large number
of efforts provide cross-disciplinary solutions. For instance,
Dataverse [31] and Rucio [30] are open-source efforts ini-
tially funded by institutions in need of a solution otherwise
unfulfilled and currently used by the scientific communities
around the globe. Other initiatives typically establishing meta
catalogs are enjoying national or government backing, for
example, data.gov [32] and EUDAT [15]. Besides community
and national efforts there are also corporate catalogs or data
replication efforts such as Googles Data Commons [16] and
AWS Open Data Repository [20]. Our effort complements all
these systems to create an inventory of available scientific data.
The NSDF-catalog uses a system of systems approach that can
support organizations make searchable row data, in some cases
still not included in more curated catalogs. In our discussion

on lessons from established indexing tools in Section II-A
we cover key features of indexing tools used in Google Data
Commons or Dataverse, or data transfer tools such as Globus,
outlining how our NSDF-Catalog builds upon these tools and
complement them in their functionalities.

VI. SUMMARY & CONCLUSION

We present the NSDF-Catalog, its designed driven by es-
tablished indexing tools and properties in existing datasets, its
implementation including a microservice architecture, and its
performance analysis when indexing up to 1.6 billion entries
referencing about 71.8 PiB of data across eight repositories.
Our results show that NSDF-Catalog can offer a lightweight
service to make cross-disciplinary row data searchable effi-
ciently.

In future work we will extend our index with a larger suite
of statistics to identify scientific content in data. In particular,
we will leverage scientific content to prefetch and stage data
across the NSDF federation. We also observe how significant
number of files have self-describing data formats and are
archived in sub-structure. Leveraging the sub-structures to
improve the search performance is another future direction.

ACKNOWLEDGMENT

This research was supported by the National Science Foun-
dation (NSF) under grant numbers #1841758, #2028923,
#2103845 and #2138811; the Extreme Science and Engineer-
ing Discovery Environment (XSEDE) under allocation TG-
CIS210128; Chameleon Cloud under allocation CHI-210923;
and IBM through a Shared University Research Award;

REFERENCES

[1] I. Foster, “Globus Online: Accelerating and Democratizing Science
through Cloud-Based Services,” IEEE Internet Computing, vol. 15, no. 3,
pp. 70–73, May 2011.

[2] K. Chard, S. Tuecke, and I. Foster, “Globus: Recent Enhancements and
Future Plans,” in Proceedings of the XSEDE16 Conference on Diversity,
Big Data, and Science at Scale. Miami USA: ACM, Jul. 2016, pp.
1–8.

[3] “January 2020: Globus Turns 10...18 — globus,”
https://www.globus.org/blog/january-2020-globus-turns-1018.

[4] NCAR, “NCAR’s Research Data Archive,” https://rda.ucar.edu/.
[5] R. Petrie, S. Denvil, S. Ames, G. Levavasseur, S. Fiore, C. Allen,

F. Antonio, K. Berger, P.-A. Bretonnière, L. Cinquini, E. Dart,
P. Dwarakanath, K. Druken, B. Evans, L. Franchistéguy, S. Gardoll,
E. Gerbier, M. Greenslade, D. Hassell, A. Iwi, M. Juckes, S. Kinder-
mann, L. Lacinski, M. Mirto, A. B. Nasser, P. Nassisi, E. Nienhouse,
S. Nikonov, A. Nuzzo, C. Richards, S. Ridzwan, M. Rixen, K. Serradell,
K. Snow, A. Stephens, M. Stockhause, H. Vahlenkamp, and R. Wagner,
“Coordinating an operational data distribution network for CMIP6 data,”
Geoscientific Model Development, vol. 14, no. 1, pp. 629–644, Jan. 2021.

[6] TACC, “Ranch - Texas Advanced Computing Center,”
https://www.tacc.utexas.edu/systems/ranch.

[7] Arecibo Observatory, “Arecibo Observatory Data Catalog,”
https://www.naic.edu/datacatalog/.

[8] NASA, “NASA Open Data Portal,” https://data.nasa.gov/.
[9] M. Kozlov, “NIH issues a seismic mandate: Share data publicly,” Nature,

vol. 602, no. 7898, pp. 558–559, Feb. 2022.
[10] European Commision, “Data Guidelines — Open Research Europe,”

https://open-research-europe.ec.europa.eu/for-authors/data-guidelines.
[11] D. Forschungsgemeinschaft, “Guidelines for Safeguarding Good Re-

search Practice. Code of Conduct,” Apr. 2022.

[12] M. D. Wilkinson, M. Dumontier, I. J. Aalbersberg, G. Appleton,
M. Axton, A. Baak, N. Blomberg, J.-W. Boiten, L. B. da Silva Santos,
P. E. Bourne, J. Bouwman, A. J. Brookes, T. Clark, M. Crosas, I. Dillo,
O. Dumon, S. Edmunds, C. T. Evelo, R. Finkers, A. Gonzalez-Beltran,
A. J. G. Gray, P. Groth, C. Goble, J. S. Grethe, J. Heringa, P. A. C. ’t
Hoen, R. Hooft, T. Kuhn, R. Kok, J. Kok, S. J. Lusher, M. E. Martone,
A. Mons, A. L. Packer, B. Persson, P. Rocca-Serra, M. Roos, R. van
Schaik, S.-A. Sansone, E. Schultes, T. Sengstag, T. Slater, G. Strawn,
M. A. Swertz, M. Thompson, J. van der Lei, E. van Mulligen, J. Velterop,
A. Waagmeester, P. Wittenburg, K. Wolstencroft, J. Zhao, and B. Mons,
“The FAIR Guiding Principles for scientific data management and
stewardship,” Scientific Data, vol. 3, no. 1, p. 160018, Mar. 2016.

[13] “Data Repository Guidance — Scientific Data,”
https://www.nature.com/sdata/policies/repositories.

[14] “DataCite Repository Selector,” https://repositoryfinder.datacite.org/.
[15] EUDAT, “B2FIND - Interdisciplinary discovery portal in the EUDAT

Service Catalogue,” http://b2find.eudat.eu/.
[16] Data Commons, “Data Commons 2022,”

https://www.datacommons.org/.
[17] M. Prodanovic, M. Esteva, and M. Hanlon, “Digital Rocks Portal,” Sep.

2015.
[18] B. Puchala, G. Tarcea, E. A. Marquis, M. Hedstrom, H. V. Jagadish,

and J. E. Allison, “The Materials Commons: A Collaboration Platform
and Information Repository for the Global Materials Community,” JOM,
vol. 68, no. 8, pp. 2035–2044, Aug. 2016.

[19] B. Blaiszik, K. Chard, J. Pruyne, R. Ananthakrishnan, S. Tuecke, and
I. Foster, “The Materials Data Facility: Data Services to Advance
Materials Science Research,” JOM, vol. 68, no. 8, pp. 2045–2052, Aug.
2016.

[20] AWS, “Open Data on AWS,” https://aws.amazon.com/opendata/.
[21] European Organization For Nuclear Research and OpenAIRE, “Zenodo,”

2013.
[22] L. McInnes, J. Healy, and J. Melville, “UMAP: Uniform Manifold

Approximation and Projection for Dimension Reduction,” Sep. 2020.
[23] Prefect Technologies, “Prefect,” Prefect, Aug. 2022.
[24] M. Rocklin, “Dask: Parallel computation with blocked algorithms and

task scheduling,” in Proceedings of the 14th Python in Science Confer-
ence, no. 130-136. Citeseer, 2015.

[25] NSDF, “National Science Data Fabric,”
https://nationalsciencedatafabric.org/.

[26] P. Olaya, J. Luettgau, N. Zhou, J. Lofstead, G. Scorzelli, V. Pascucci,
and M. Taufer, “NSDF-FUSE: A Testbed for Studying Object Storage
via FUSE File Systems,” in Proceedings of the 31st International
Symposium on High-Performance Parallel and Distributed Computing,
ser. HPDC ’22. New York, NY, USA: Association for Computing
Machinery, Jun. 2022, pp. 277–278.

[27] J. Luettgau, P. Olaya, N. Zhou, G. Scorzelli, V. Pascucci, and M. Taufer,
“NSDF-Cloud: Enabling Ad-Hoc Compute Clusters Across Academic
and Commercial Clouds,” in Proceedings of the 31st International
Symposium on High-Performance Parallel and Distributed Computing,
ser. HPDC ’22. New York, NY, USA: Association for Computing
Machinery, Jun. 2022, pp. 279–280.

[28] D. Y. Hancock, J. Fischer, J. M. Lowe, W. Snapp-Childs, M. Pierce,
S. Marru, J. E. Coulter, M. Vaughn, B. Beck, N. Merchant, E. Skidmore,
and G. Jacobs, “Jetstream2: Accelerating cloud computing via Jet-
stream,” in Practice and Experience in Advanced Research Computing,
ser. PEARC ’21. New York, NY, USA: Association for Computing
Machinery, Jul. 2021, pp. 1–8.

[29] “Beautiful Soup: We called him Tortoise because he taught us.”
https://www.crummy.com/software/BeautifulSoup/, 2004.

[30] M. Barisits, T. Beermann, F. Berghaus, B. Bockelman, J. Bogado,
D. Cameron, D. Christidis, D. Ciangottini, G. Dimitrov, M. Elsing,
V. Garonne, A. di Girolamo, L. Goossens, W. Guan, J. Guenther,
T. Javurek, D. Kuhn, M. Lassnig, F. Lopez, N. Magini, A. Molfetas,
A. Nairz, F. Ould-Saada, S. Prenner, C. Serfon, G. Stewart, E. Vaan-
dering, P. Vasileva, R. Vigne, and T. Wegner, “Rucio: Scientific Data
Management,” Computing and Software for Big Science, vol. 3, no. 1,
p. 11, Dec. 2019.

[31] G. King, “An Introduction to the Dataverse Network as an Infrastructure
for Data Sharing,” Sociological Methods & Research, vol. 36, no. 2, pp.
173–199, Nov. 2007.

[32] “Data.gov,” https://www.data.gov/.

