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Fig. 1. A Regulus Tree provides a concise annotated overview of all Morse-Smale complex partitions for the entire persistence hierarchy. 

In a study of temperature as a function of chemical species, the Regulus Tree on the left encodes Child Dimension Fitness that 
highlights partitions with different characteristics than their parents (red/blue indicate small/large differences). Selection of the top 

partitions shows a single maximum and four distinct minima in the graph view (middle). Projections of the data points in the four 

partitions (right) demonstrates that two unique minima are due to lack of fuel (top) and lack of oxidizer (bottom), while the other two 

identify unmixed fuel and oxidizer due to turbulence in the combustion reaction. 

Abstract—Understanding the response of an output variable to multi-dimensional inputs lies at the heart of many data exploration 

endeavours. Topology-based methods, in particular Morse theory and persistent homology, provide a useful framework for studying 
this relationship, as phenomena of interest often appear naturally as fundamental features. The Morse-Smale complex captures a 

wide range of features by partitioning the domain of a scalar function into piecewise monotonic regions, while persistent homology 

provides a means to study these features at different scales of simplification. Previous works demonstrated how to compute such a 

representation and its usefulness to gain insight into multi-dimensional data. However, exploration of the multi-scale nature of the data 

was limited to selecting a single simplification threshold from a plot of region count. In this paper, we present a novel tree visualization 

that provides a concise overview of the entire hierarchy of topological features. The structure of the tree provides initial insights in terms 

of the distribution, size, and stability of all partitions. We use regression analysis to fit linear models in each partition, and develop local 

and relative measures to further assess uniqueness and the importance of each partition, especially with respect parents/children in 

the feature hierarchy. The expressiveness of the tree visualization becomes apparent when we encode such measures using colors, 
and the layout allows an unprecedented level of control over feature selection during exploration. For instance, selecting features from 

multiple scales of the hierarchy enables a more nuanced exploration. Finally, we demonstrate our approach using examples from 

several scientific domains. 

Index Terms—Computational Topology-based Techniques, High-dimensional Data, Data Models, Graph/Network and Tree Data. 

Multi-Resolution and Level of Detail Techniques. 

 

 

1 INTRODUCTION 

Many phenomena in science and engineering can be described by how 
an output variable depends on input parameters. For example, under- 
standing the correlation between temperature and chemical species 
and turbulence in a computationally model of a combustion reaction 
can lead to better fuel or engine designs. As another example, under- 
standing how the measured strength of concrete varies with the ratios 
of its ingredients can lead to more error-tolerant mixtures. Compu- 
tational models are used to study such real-world phenomena, either 
by conducting computer simulations or through a set of well-designed 
experiments. Analysis of the results can then be used to improve the 
models, find optimal solutions, uncover unknown relationships, and 
support decision-making. 

The set of relationships between inputs and output can be very 

 
specialized; for any input parameter, its relationship to the output 
variable may be conditioned on the variation in the other parameters. 
Topology provides a means of studying the shape of a function; for 
instance, identifying how local minima and maxima are related to each 
other both spatially and in terms of local importance. The Morse-Smale 
complex, in particular, decomposes the domain into monotonic regions 
that enable reasoning about local trends that contribute to the formation 
of a local maximum or minimum. In contrast to a user-defined query or 
hypercube sample, the topological partitions are intrinsic to the function 
and underlying manifold, and are well-suited for regression analysis. 

Local perturbations, artifacts of meshing, or small features can derail 
analysis, as it is difficult to separate phenomena from noise. Persistent 
homology describes topological features in terms of their life-span 
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of the element from its birth critical point to its death in a sweep of 
the range of the function. In many applications, features below a 
persistence threshold are discarded as noise, a process that involves 
guesstimating an appropriate value, sometimes with the help of a per- 
sistence curve. In many applications, however, features appear with 
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varying persistence in the domain. In multi-dimensional data analy- 
sis, in particular, justifying a simplification threshold is difficult as, 
until now, there have not been effective visualization and exploration 
techniques to understand the specific relationships between features at 
different scales. 

We introduce a novel visualization that is composed of a nested 
space-filling tree layout to visualize the topological hierarchy whose 
geometry encodes the size and persistence of topological features. We 
reinterpret persistence simplification hierarchies of the Morse-Smale 
complex as a merging tree of partitions, allowing an even finer gran- 
ularity of feature selection than a single simplification operation and 
efficient layout. Color in the cells of the tree is used to encode one of 
many computed measures, such as fitness of a regression model to the 
corresponding topological feature, relationships between the models 
of parents and children, or any other computed attributes. Our new 
visualization is deployed in an open exploration environment imple- 
mented in Python and JupyterLab extensions. Linked views enable 
dynamic feature selection for flexible analysis. We evaluate the utility 
of the approach with use cases in combustion and nuclear energy, where 
salient features are visible at a glance, that previously depended on an 
exhaustive search through the simplification parameter. Specifically, 
our contributions are: 

• A new interpretation of persistence simplification of a Morse- 
Smale complex as a merger tree of partitions, 

• A new visualization of topological hierarchies that encodes the 
size and life-span of every feature at once, 

• Measures on topological features that incorporate the ancestry of 
a partition to aid and guide users in selecting the topological scale 
for analysis, 

• A user interface that enables adaptive simplification, and non- 
uniform and non-consistent selection of features across multiple 
scales, 

• Design of an open exploration environment to facilitate ex- 
ploratory analysis. 

2 BACKGROUND AND RELATED WORKS 

2.1 Topology-based analysis 

Morse theory describes the topology of differentiable functions on a 
manifold [22]. The critical points of a function f occur where the 
gradient vanishes with index equal to the number of negative eigen- 
values of the Hessian. Integral lines are paths that are tangent to ∇ f , 
do not intersect, and have lower and upper limits at critical points, 
called the origin and destination, respectively. The ascending and 
descending manifold of a critical point is the union of integral lines 
originating, and terminating at that point, respectively. For f defined 
on a d-dimensional manifold, an index-i critical point has a d −i di- 
mensional ascending manifold and d-dimensional descending manifold. 
A function is Morse-Smale [27, 28] if all ascending and descending 
manifolds intersect transversally, or not at all. The intersections of all 
ascending and descending manifolds forms a cell complex called the 
Morse-Smale complex. Each d-dimensional cell of the complex, called 
a partition, is composed of points whose integral lines originate and 
terminate at the same minimum-maximum pair. Figure 2 Shows the 
critical points, integral lines, and cells of the Morse-Smale complex of 
a 2-dimensional scalar function. 

A Morse-Smale complex is simplified by repeated cancellation of 
critical point pairs that differ in index by one [9]. Persistent homology 
orders cancellations by increasing difference in function value [10]. In 
the Morse-Smale complex, a cancellation is realized by removing a pair 
of critical points and merging their ascending and descending manifolds 

with their neighbors [15,16]. For d > 2 a 1-saddle that separates distinct 
minima is called a split saddle, and a d − 1-saddle that separates distinct 
maxima is called a merge saddle. When cancelling a merge or split 
saddle with an extremum, the effect on the Morse-Smale complex is 

Fig. 2. The maxima (red) minima (blue) and saddles (green) of a two- 

dimensional scalar function (a), are the origin and destination of integral 

lines (b). A cell of the Morse-Smale complex (c) is formed by integral lines 

sharing an origin and destination. The 2D patches, called a partitions 

is highlighted (b,c). Cancellation of a saddle-maximum pair (circled) 

merges adjacent partitions (c,d); 2,3 merge to 6, and 1,4 merge to 5. 

The max-saddle cancellation is represented as these merging partition 
in a Regulus Tree (e). 

to merge partitions separated by the d − 1-manifold emanating from 
the saddle. As a cancellation corresponds to a local change in f , 
and corresponding local change to the structure of the Morse-Smale 
complex, independent cancellations can be organized into a persistence 
hierarchy, a directed graph whose arrows local cancellation indicate 
order dependency [3]. The subset of cancellations between extrema 
and split and merge saddles turns the persistence hierarchy into a 
rooted tree [30]. This tree interpretation motivates tree representation 
of merging partitions, and enables the overall approach of displaying 
multi-dimensional persistence hierarchies. 

Morse-Smale complexes, merge trees, contour trees [6], and Reeb 
graphs [25] all encode aspects of the topology of scalar functions, and 
have been used successfully to define and compute features in many 
application domains [2, 4]. While most methods employ persistent 
homology [10] to reason about the features at multiple scales, rarely 
is the merging of regions directly encoded and visualized. The branch 
decomposition of contour trees comes close [24], encoding persistence 
and parent-child child relationships in the merging of regions in its 
structure. Persistence diagrams [8–10], and their variants, barcode 
diagrams [14], and persistence landscapes [5] present the persistence 
pairs and their place in the range of the function, but fail to convey the 
nesting of topological features. 

A standard approach for selecting an appropriate persistence value, 
in the context of Morse-Smale complexes, is based on the notion of a 
persistence graph, which depicts the number of extrema points with 
respect to the normalized persistence value [11, 25]. The expectations 
are that extrema points with low persistence are most likely due to 
noise or under sampling. In addition, stable features require a large 
change in the persistence value before they are removed, leading to 
visible plateaus in the graph. The persistence graph, however, even 
when providing clear stable thresholds, does not provide any insights 
about the underlying function. 

 
2.2 Exploring Parameter Spaces 

An important aspect of our work is its applicability to exploration and 
understanding the functional relationship between multi-dimensional 
parameter spaces and their derived outputs. HyperMoVal [26] is a 
system designed for validating support vector regression models against 
the underlying data. The system employs linked views, local sensitivity 
information, and model tuning capabilities to allow the user to see not 
only where the model deviates from the data, but to refine the model 
interactively until desired criteria are met. 

Tuner is a software system designed to help users tune the parameters 
for image segmentation and combines an automated adaptive sampling 
phase with a visual exploration stage where stability and sensitivity can 
be evaluated until the user guides the system to their optimal solution. 
Berger et al. combine regression models and linked views to provide 
users with local uncertain-aware sensitivity information that is meant 
to guide users to interesting regions in their domain. Similar works 
that focus on such design steering methodologies include the works 
of Matkovic et al. [19, 20, 29] where linked views are combined with 
user-guided adaptive sampling to refine the data and/or models built on 
the data in areas of interest to the user. 

ParaGlide [1] provides an interactive exploration of the parameter 
space of multidimensional simulation models. The system enable users 
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to define regions in the input space that represent distinct output behav- 
ior. The regions are defined manually by the user and are restricted to 
Cartesian product of ranges in the various input dimensions. 

In contrast to these works, we use Morse-Smale complex to partition 
the space and persistence homology to study the space in multiple 
levels of details. We also fit local models on the data and compare and 
contrast them both within and across levels in the hierarchy. 

2.3 Visual Exploration 

Gerber et al. [11] were the first to use Morse-Smale approximation to 
visualize scalar functions defined on multi-dimensional point cloud data. 
They created geometric summary of a simplified Morse-Smale complex 
by using locally weighted regression [7] to fit inverse regression curve 
in each partition and use dimension reduction to embed them in a 3D 
display. The curves model the inverse relation from the output value to 
the input parameters and provide visual cues about each partition such 
as local and global shape, width, length, and sampling densities. Linked 
views showed details of the individual partitions and their one/two- 
dimensional relationships with respect to the output of interest. The 3D 
visualization is hard to interpret and, as noted by the authors, introduced 
phantom visual cues such as twists of the curves that did not encode 
real information. We follow their use of inverse regression curves when 
depicting details about specific partitions and for generating additional 
samples but we do not use the 3D view (the sampling is not part of this 
paper). 

Maljovec et al. [18] noted that computing all the inverse regression 
curves in large dataset incurred high overhead and additional manipula- 
tion is required to make an aesthetically pleasing visualization where 
the skeleton connects at the endpoints. Instead, they employ a more 
abstract ball and stick style overview that required no additional com- 
putation (aside from the Morse-Smale decomposition). Their overview 
consist of a 2D plot of function value versus persistence value and 
depicted each partition as a curve between its extrema points. For 
data fitting, the simpler Morse-Smale regression [12, 13] strategy were 
computed on-demand for a specified persistence level. They also used 
bar charts to compare and contrast the sensitivities and goodness-of-fit 
of the resultant linear models. Their overview provides a consistent 
view of where extrema exist in the hierarchy more in line with the work 
presented herein, but like Gerber’s work before them, still only allowed 
for the visualization of a single persistence level at a time. In contrast 
to Maljovec et al., we use the inverse regression curves and reduce the 
computational cost by lazily computing them only for visible partitions 
and only after reducing the tree. Lastly, neither work shows how a 
feature merges in the hierarchy and does not provide comparison across 
persistence levels. 

May et al. [21] and Muhlbacher and Piringer [23] both utilize 
partition-based regression models that are limited to one or two di- 
mensional axis-aligned cuts. The goals of these works are different as 
the idea is to build and validate regression models and understand the 
effects of one or two parameters on the system whereas the topology- 
based methods are attempting to describe the overall structure and 
motifs of the data such as finding similar-behaving regions in disparate 
areas of the domain. 

3 REGULUS 

While topological structures such as contour trees, merge trees and 
Morse-Smale complexes can capture features at multiple scales, they 
nevertheless do not describe the simplification process, nor do they 
provide an overview of all the simplified topologies; rather, each in- 
stance describes, and is used to explore, only one simplified topology. 
Conceptually, simplification consist of creating a series of progressively 
coarse variation of one of these topological structures. In practice, only 
one model is created and then transformed to describe the required sim- 
plification level. Visual exploration methods [11, 18] are also designed 
to visualize one simplified topology at a time. Often, phenomena of 
interest appear at different scales in the data, and a single simplification 
threshold is insufficient for analysis. The question of why should the 
user select a particular simplification level was mostly left to the user’s 
best estimation. 

In this work, we focus on the ’why’ question in the context of using 
multi-dimensional Morse-Smale complexes to study the relationships 
between input parameters and the output function. Rather than develop 
a method to find an optimal simplification threshold, our approach is 
to develop a visual representation of the whole persistence space that 
can help guide the user exploration. The new visualization, called 
Regulus Tree, is based on an interpretation of the simplification process 
in terms of nested partitions rather than cancellation on critical points. 
The expressiveness of the Regulus Tree comes to light when various 
attributes and measures are encoded on top of it. Another consideration 
of our design is to empower users to define their own attributes and 
measures and enable on the fly modification. The Regulus Tree enables, 
Noise: identify regions where noise is prominent 
Persistence level: gain better understanding of the plateaus in terms of 
the size and stability of the partitions involves. Compare the statistical 
characteristics on the set of partitions for different persistence levels 
Adaptive simplification: Select multiple persistence levels for indi- 
vidual features to adapt the simplification based on amount of relative 
rather than absolute noise, adapt to the local scale of features, and other 
measures of interest 

Local properties: Compute and display local attributes of the function 
in different regions 

Relative measures: Compare and contrast partitions from different 
locations in the function space as well as from different levels of details 
(persistence levels) 

Uniqueness: Identify and study partitions that exhibit unique charac- 
teristics 

Clarity: The Regulus Tree provide a hierarchical view of the per- 
sistence space in terms of nested partitions, which our collaborator 
scientists found much easier to grasp and comprehend as opposed to 
the technical description in terms of critical points cancellations. 

In the following, we present the conceptual design, structure, and 
layout of the Regulus Tree as well as ways to simplify the tree itself. 
We describe several ways the Regulus Tree can be used for various 
tasks along with additional supporting views. We then introduce the 
notion of dynamic attributes and measures and show how they can 
provide unique insights and help guide the user exploration. 

 
4 THE REGULUS TREE 

4.1 The Regulus Partition Perspective 

A More-Smale complex can viewed from two different perspectives. 
From a partition perspective, a More-Smale complex describes a tessel- 
lation of the space into monotonic partitions. From a formal perspective, 
it is described in terms of an intersection of ascending and descending 
manifolds, which generates cells including critical points, and arcs 
that connect them. Cancellations, although involving only a pair of 
critical points, may affect several partitions at once. This often poses a 
challenge for scientists in application domains using this approach, as 
the rules that govern the merging of spatial partitions are obfuscated by 
the simplified explanation. 

Consider a single cancellation step, in which a pair of critical points 
is deleted as depicted in Fig. 2(c-e). From the partition perspective, the 
single simplification step consists of two merges of pairs of partitions. 
In general, and especially in multi-dimensional data, several merges can 
occur in each step, but each partition may participate in only one merger 
per step. Note that the actual simplification process stays the same and it 
is only our perspective that is changed. Furthermore, from the partition 
perspective, the partitions mergers form a nested hierarchy and the full 
simplification process forms a binary tree. The leaf nodes of the tree 
represent the partitions of the initial More-Smale Complex (persistence 
level 0), while the root represents a single partition that encompasses 
the whole space. To construct a Regulus Tree we first create a full 
More-Smale complex and then traverse the simplification list in order. 
For each simplification step we identify the pairs of merging partitions, 
create new nodes representing the merged partitions, and update the lists 
of internal and critical points associated with each new node (partition). 
Once we finish the traversal we descend down the new tree structure 
in a depth-first order and assign a sequential id to each node. We also 



4  

  
a) Top Down layout b) Bottom Up layout c) Vertical layout based on persistence. 

Width encodes size 
d) Regulus Tree 

 

Fig. 3. Typical tree layouts position nodes based on their distance from 
the top (a) or bottom (b). We use vertical position to encode persistence 

and width to encode size (c). Regulus Tree (d): node height extends to 

parent to encode lifespan; horizontal layout based on enumeration of the 

points. Two of the nodes are shaded to illustrate the correspondence 

between the trees. 

 
reorder the data points to follow the order of the leaf nodes as described 
in Sect. 4.2 below. 

The notion of persistence as it applies to critical points does not 
directly apply to the nodes/partitions in the Regulus Tree . From the 
perspective of critical points, at each simplification step, one extremum 
is deleted while another one is retained, and no new extrema are added. 
The persistence of an extremum describes the value when the point is 
deleted. In contrast, we regard the merger of two partitions as a new 
partition that describes a larger region of space with more data points 
and different properties and characteristics. The importance of this 
distinction arises when we fit regression models and evaluate various 
measures in each partition as described in 6.3. A partition is thus 
associated with two persistence values describing its creation, original 
through Morse-Smale complex or through merger, and destruction, 
when it is merged. In the context of the Regulus Tree, we only need to 
save for each partition the persistence level it is created, as it is deleted 
at the persistence value its parent is created. The lifespan of a partition, 

i.e. the difference between the persistence levels of its parent and its 
own, provides a measure of the life-span of the partition. 

 

4.2 Regulus Tree Layout 

There are dozens of different ways to visualize a tree, yet conceptually 
all full tree layouts are based on either a top-down or a bottom-up 
ordering (Fig. 3). The placement of a node is based on the distance of 
the node from the root (top-down) or a leaf (bottom-up) in terms of 
the number of parent-child edges. This is true whether the layout is 
vertical, horizontal, or radial. 

To the best of our knowledge, the Regulus Tree layout is new and 
unique. We describe the new layout in terms of modifying a bottom- 
up layout. First, we use the vertical axis to depict persistence level 
Fig. 3c). We then represent a tree node by a rectangle and position it 
vertically such that its bottom edge is aligned with the persistence level 
in which it is created. Because the leaves of the tree represent the base 
partitions, i.e. the partitions of the full More-Smale complex before 
any simplification, they must, by definition, have a persistence level of 
0 and therefore form a single row of rectangles whose bottoms are all 
aligned. 

When two partitions are merged, the new partition (the parent) must 
have a persistence level greater than that of its children and thus will be 
positioned vertically higher than its children. In the horizontal direc- 
tion, we use the width of the rectangles to encode the number of data 
points and convey a measure of size. Note that if the data points were 
sampled uniformly, then the number of points in a partition is roughly 
proportional to its volume. Since, by definition, a parent contains all 
the points of its direct children, then the width of the parent is equal 
to the sum of the widths of its children. Therefore, we can position all 
the children of a parent sequentially in the horizontal direction without 
causing overlaps (Fig. 3d). Finally, we extend the top of each node 
to the base of its parent. The height of a node therefore encodes its 
lifespan since the base of the parent represents the persistence level the 
parent is created and the level in which the children are deleted. We 
note that the vertical axis of the Regulus Tree represents persistence 
and not function value as used in other techniques, such as the contour 
and merge trees, or the persistence diagram. 

We can take advantage of the horizontal layout by enumerating 

 

 

 

 

 

Fig. 4. A 2D scalar function and a corresponding Regulus Tree . For 

illustration purpose, color encodes the lifespan of a partition using the 
blue-yellow-red colormap shown at the top. Selecting persistence level 

of 0.3 amount to selecting the nodes that intersect the dashed line. 

 
all the data points based on the base partitions they are part of (the 
enumeration within a partition is not important). Using this approach, 
we need only two numbers per partition to indicate the range of data 
points that are contained in that partition. Since the parent partition 
contains all the data points of its children and the children are positioned 
sequentially, the partition’s data points can also be specified via a range 
using two numbers. Effectively, we decoupled the data points from 
the hierarchical structure of the partitions and kept the memory size at 

O(n + p), where n is the number of data points and p is the number of 
partitions in the tree. 

It is important to note that the above description is correct only with 
respect to non-critical points, which are shared between partitions. To 
address this, we initially assign each critical point to one of the base 
partitions adjacent to it. We then maintain for each partition a short 
list of all the critical points it’s associated with but are not part of its 
own range of points. In the tree layout, we use the width of a node to 
encode only the number of points its children contain. This ensures 
that the parent has the correct visual width to contain all of its children. 
The exact number of points associated with a partition is provided in a 
tooltip. This does not pose any problems as the number of extra critical 
points is minimal. 

Fig. 4 shows a Regulus Tree associated with a 2d scalar function, 
which we sampled at 2000 points and added small white noise. The 
horizontal axis represents enumeration of all 2000 points, while the 
vertical axis represents the relative persistence level in the range of 0 to 
1. For illustration purposes we use color to encode the lifespan of each 
node, i.e the difference between the persistence value of the parent and 
the persistence value of the node. 

The Regulus Tree is not a TreeMap despite the superficial similarity. 
A TreeMap depicts the leaves of a tree using a 2D layout that takes 
into consideration the tree hierarchy, and the two axes do not have 
individual meaning. A few variations do incorporate some information 
about the parents, but because the emphasis is on the leaves, the parents 
are depicted differently and are mainly used to convey structure. In 
contrast, the Regulus Tree represents the whole tree structure, the two 
axes have precise and different meaning and for the most part the leaves 
are the least important features. 

4.3 Simplifying the Tree 

Despite its compactness, the Regulus Tree can become quite large for 
large datasets with complex topology. In addition to pan and zoom, 
we can also visually simplify the tree without changing the layout by 
hiding nodes based on some filtering criteria. In both cases only the 
visualization of the tree is modified but not the tree itself. More often 
than not, though, we want to simplify the tree itself. 

Persistence is often used to help separate between noise and real fea- 
tures by removing features with low persistence level, which amounts 
to pruning the tree at a certain threshold. From the technical perspec- 
tive, persistence provides some measure of the dominance and stability 
of a critical point, suggesting which features should be preserved. The 
partition perspective of the Regulus Tree offers a different way to think 
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(a) 

(e) 
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(a) (b) (c) (d) (f) 

 
Fig. 5. Simplifying a Regulus Tree by removing intermediate nodes. 

 
of persistence. Consider the Regulus Tree depicted in Fig. 5b and the 
two narrow green and purple partitions, both of which have a relatively 
short lifespan but may actually represent a merger of two prominent 
features. The higher the node is located along the vertical axes, the 
higher the persistence levels of the two features being merged and the 
deeper the valley between the two mountains is (or the taller the ridge 
between two valleys is). 

From the perspective of the Regulus Tree, such partitions are un- 
stable and can be regarded as a relative noise within their local neigh- 
borhood. In terms of creating a simplified description of the topology, 
removing these partitions is akin to depicting a mountain range by only 
one or two mountains. We extend this notion of simplifying the topol- 
ogy by simplifying the Regulus Tree to also include removing small 
partitions (thin partitions with few points), partitions with points with 
values outside a range of interest, and in general filtering the function 
the user may wish to apply. 

While removing small noise amount to pruning the tree, filtering 
specific nodes does not amount to removing their children. Instead we 
attach the children to their grandparent (Fig. 5a), which means that in 
general a Regulus Tree is not a binary tree. We compute a full tree 
simplification by traversing the tree depth-first and considering one 
node at a time. If many nodes are removed the new tree may end up 
with tall and skinny nodes. This is especially the case if we insist on 
keeping base partitions even if the original lifespan is too small. Our 
approach is to remove such base partitions and allow the tree to have a 
jagged edge at the bottom (Fig. 12). 

We do need to ensure that the new tree represents a valid simplifica- 
tion of the topology. Since a node/partition is the sum of its children, it 
contains all of their points and thus the grandparent must by definition 
already contain the points of its new direct children. Another issue 
to consider is the lifespan of the remaining partitions. We defined 
the lifespan as the difference between the persistence levels of the 
parent and the partition. For this reason, we do not store the lifespan 
of a partition in the partition record; rather, we compute it on the fly 
based on the parent-child relationship of the node pointing to it. The 
lifespan of a partition is therefore relative to the tree pointing to it 
and a partition may have different vertical height (lifespan) after the 
simplification/transformation of the tree. 

In general, we do not modify the original tree; rather, we create a 
new tree hierarchy that refers to a shared collection of partitions. In 
this sense, each tree is a view over the collection of partitions, similar 
to creating a sub-array as a view of the full array. 

 

4.4 Exploration and Simplifications Strategies 

In addition to providing a concise global overview, the structure of the 
Regulus Tree can be used to help guide the exploration and determine 
where to simplify, 

 

Global simplification: In the context of the Regulus Tree, a persistence 
value maps to a single horizontal line as shown by the red dashed line 
in Fig. 6a. Since we do not compute level sets, it doesn’t matter where 
the line intersects a partition, only that it does. While the persistence 
graph only indicates the number of active critical points for the given 
persistence value, the Regulus Tree provides insights about the size 
(width) and stability (height) of the partitions. The tree structure may, 
for example, reveal that a section of the persistence graph that is not a 
plateau is actually composed mostly of stable partitions throughout the 
domain except for instabilities in a small part of the domain or maybe 
in a number of small partitions that are likely not significant. 

Fig. 6. Exploration strategies. a) global simplification b) adaptive simplifi- 

cation c) non-continuous selection d) non-consistent simplification. e-f) 

The rational for non-consistent simplification (see text) 

 
Adaptive simplification: Consider a height function depicting the geo- 
graphic elevation of a valley in a mountainous area. Perturbations that 
might not be important in the rugged mountains may have significant 
importance in the flat valley area. We can apply the notion of local 
simplification in the context of the Regulus Tree by selecting a step like 
line, such a the red line in Fig. 6b. We do not alter the meaning of the 
simplifications. We only select a subset of the original simplifications. 
No new partitions are introduced. 
The adaptive simplification is easy to understand in the context of the 
Regulus Tree but computing the boundary or interpolating a continuous 
function across the selected partitions might not be a trivial task as the 
boundary will include T-junctions. This is not an issue in the context 
of this work as we focus on understanding the general structure of the 
underlying function and identify interesting regions. 
Discrete selection: Supporting a selection based on single persistence 
value is simple as it requires moving a single horizontal line up and 
down. The local simplification is more complex and would require 
interactive construction of a line with potentially multiple steps (adding 
and removing steps, adjusting step vertical and horizontal positions). A 
simpler approach is to allows the user to directly select (e.g. click on) 
the partitions the step line should pass through Fig. 6b. 
Non-continuous selection: For the purpose of identifying and exploring 
interesting partitions, it is sufficient to select only partitions of interest 
(Fig. 6c) to quickly compare and contrast the properties of partitions at 
different persistence levels. This is by far the most often used selection 
method we employ in our workflows. 
Non-consistent simplification: We can generalize the non-continuous 
selection by selecting partitions that overlap horizontally, that is a 
partition and its descendent (Fig. 6d). There are two reasons for using 
non-consistence simplification. One is to simply compare the properties 
of a partition with its parent to determine if the parent provides sufficient 
details. The process can be repeated up and down the tree hierarchy if 
a more fine tune simplification of the whole More-Smale complex is 
required. The second reason has to do with efficient representation. 
Consider a quadtree partitioning of a relatively smooth function except 
for one small area as shown in Fig. 6e. This space decomposition 
is often critical in many applications, despite the fact that 12 of the 
13 partitions are very similar. On the other hand, when studying the 
structure of the underlying function, a more efficient representation 
might consist of only two nested regions as shown in Fig. 6f, which 
provides both a global view and local details. 

5 VIEWS 

The Regulus Tree provides an overview of the hierarchical persistence 
space, but it does not provide any direct view of the data points, nor 
does it provide direct relations between the partitions. The variable 
size of the nodes also makes it harder to encode multiple values for 
each node. In the following, we provide a short descriptions of two 
additional views we employ. 

5.1 Details View 

The details view (Fig. 7) depicts a set of scatterplots for a set of selected 
partitions where each row represents one partition and each column 
represents one input dimension. Each scatterplot depicts the points in 
the partition, where the y-axis represents the scalar function value and 
the x-axis represents the specific input dimension. The same y-axis 
range is used for all the plots across all the rows and columns. The 
x-axis range depends on the dimension (column) but is the same across 
all rows. The points are colored using the same blue-yellow-red color 
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map and initially encode the value of the output function similar to 
the y-axis. Some datasets include multiple output values, only one of 
which is used to create the base Morse-Smale complex. The color can 
be used to encode any of the output variables. The partition id and the 
number of points in the partition (in parenthesis) are shown in the left 
most column. 

Each plot also depicts a projection of the inverse regression curve 
for that partition. The semi-transparent area on both sides of the curve 
corresponds to one standard deviation for the corresponding input 
dimension. 

We encode the coefficients of the linear regression models as hori- 
zontal bars under the plots. The bar in the left most column encode the 
intercept of the model. Green/red indicate a positive/negative coeffi- 
cient respectively. The coefficients are normalized either with respect 
to current model or with respect to all the selected models. 

5.2 Graph View 

The graph view depicts a 2D projection of selected partitions (Fig. 9). 
Each partition is represented by an edge between its minimum and max- 

imum critical points. There are many dimensional reduction methods, 
each with its own merits. One of a recurring complaints we receive 

from our collaborators is that the abstract nature of the projections often 
makes it very hard to comprehend and make use of. We designed the 
graph view to both simplify the projection and to allow the scientists 

to interactively explore the projections in ways that are meaningful to 
them. A point in multi-dimensional space is a linear combination of 

unit vectors each pointing along one dimension. In the Graph view we 
depict it as a linear combination of vectors in the 2d plane. The user 
can scale and rotate the vector to change its relative contributions as 

well as focus on specific dimensions by removing some of the vectors. 
The graph view can also project the points in the selected partitions. 

The points colors encode the same information as in the Details view. 
When a partition is highlighted, the points not in that partition are 
rendered as small gray points. A partition is highlighted when the user 
hovers over the partition edge in the graph view, hover over the partition 
in the Regulus Tree view, or hover over the partition row in the details 
view. Finally, the partition’s edges can be rendered by projecting their 
inverse curves. Although these curves are not guaranteed to end up in 
the appropriate critical points, they often provide a good insight about 
the structure of the partition. 

Fig. 9 depicts three projections of the test dataset. The projection on 
the right demonstrates that manipulating the vectors can provide mean- 
ingful projections, in this case conveying a pseudo 3D perspective. The 

interest for various reasons such as if they were created due to noise in 
the data, have too few data points, or have a very short lifespan. Since 
we often filter out or hide these partitions, precomputing their attributes 
would be a waste of resources. Third, some attributes describe relative 
measures between partitions, such as between parent and child, that 
depends on the particular tree. For example, the lifetime of a partition 
is the difference between the persistence values for the creation on 
its parent and itself. Fourth, some attributes, such as the bandwidth 
used in computing reverse regression curves, depend on parameters 
the user may change during the exploration, and which will require to 
recompute them on the fly. Finally, we want to empower users to define 
and modify their own attributes on the fly. 

Our solution is to add the notion of a measure, that is, an attribute that 
is defined by providing a function to compute it rather than providing 
its value. A measure will be lazily evaluated for a node and the value 
will be cached in memory, though the user can save the cached values 
and the measure function to a file and reloaded next time. The use of 
measure functions, lazy evaluation, and caching are opaque to the rest 
of the system, which uses them as regular maps of node id to value. 
Using this approach allows us to define many attributes without the 
computational costs, as well as add and modify attributes and measures 
on the fly. When visualizing a Regulus Tree, we only need to ensure 
the selected measure was evaluated for the visible nodes. 

Often, several measure functions use similar computations, such as 
fitting a regression model for a given partition and then computing some 
derived values. We address this by defining the shared computation as 
a separate measure, which the other measure functions then retrieve 
rather than call directly. 

6.2 Regression Models 

To study the function behaviour, we employ regression analysis to fit 
local linear models in the various partitions. As a first step we standard- 
ize the full dataset by removing the mean and scaling to unit variance. 
We fit a model to each partition independently of any neighboring parti- 
tions. The main reason is that a partition can be explored in a variety 
of settings each leading to different sets of neighboring partitions or 
even none at all (Sect. 4.4). We do not want the model of a partition to 
change during the exploration based on indirect actions. 

A linear model is expressed in terms of a set of coefficient, βi such 

as that y˜ = ∑d xiβi + β0, where y˜ is the predicted value and β0 is the 
intercept. A least square regression model is obtained by minimizing 
the residual sum of squares between the observed and predicted values, 

min /1Xβ −Y /12 
ability to individually manipulate each dimension proved valuable in β 

2 

exploring the contribution of individual and groups of dimensions. For 
example, by combining, subtracting and contrasting the contributions 
of several dimensions (same, opposite or perpendicular directions), as 
shown in Fig. 11. 

6 COLORING THE TREE 

The structure of the Regulus Tree provides initial insights about the 
More-Smale complex that describe the underlying scalar function in 
terms of the distribution, size, and persistence of the partitions. The 
expressiveness of the Regulus Tree becomes apparent when we encode 
additional information about the underlying scalar function. In particu- 
lar, we fit linear models to the data points in each partition and compute 
various measures that provide insights about the local behaviour of the 
underlying scalar function within a partition, as well as comparison 
between different partitions. 

6.1 Attributes and Measures 

Each partition has several inherent attributes, such as the number of 
samples it contains and the persistence levels where it’s created. Addi- 
tional attributes, such as the min and max values of the function within 
the partition can be precomputed and saved. Precomputing attributes 
introduce several challenges. First, while some attributes are fast and 
cheap to compute and store, others, such as inverse regression curves, 
require substantial time and space, especially if precomputed for all 
the partitions in a large tree. Second, many partitions may not be of 

To address the potential problem of multicollinearity in the linear re- 
gression, which is common in models with large number of parameters, 
we use Tikhonov regularization, also known as Ridge regression, which 
constrains the solution by imposing a penalty on the magnitude of the 
coefficients, 

min /1Xβ −Y /12 + λ/1β /12 
β 

where large λ leads to smaller coefficients and a more robust solution 
to collinearity. 

Our attributes and measures approach allows us to accommodate 
different regression models and freely switch between them during an 
investigation. We first define a set of model computational functions and 
then assign one as the current model measure, see Listing 1. Measures 
that depend on the regression model in a partition can fetch the ’model’ 
attribute as shown in Listing 2. The model can be replaced at run-time, 
which in turn invalidates all the models that were already computed, as 
well as all other measures that depend on it. 

 

Higher order regression models can also be used although they are 
more complex and in some sense defeat the purpose because they are 
not monotonic and it is difficult to interpret their coefficients. High- 
order model also suffers from the curse of dimensionality; a linear 
model requires d+1 parameters to describe an d-dimensional data but a 

quadratic model requires O(d2) parameters. 

Vlaerio's PC
Stamp

Vlaerio's PC
Stamp
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∑(y−yˆ)2 

 
Listing 1. Using different regression models. 

 
6.3 Measures 

Basic measures we often use include the lifespan, minimum and maxi- 
mum value, and normalize size. We also define measures to assign a 
unique id (encoded as different colors) to minima and maxima critical 
points that are shared between partitions. A shared minima/maxima 
measure shows the tree from a perspective of merges of minimum/- 
maximum critical points, which in some sense is similar to a merge 
tree. 

 

6.3.1 Fitness 

Given a linear regression model for a partition, the first question is 
how well the linear model actually fits the data. The More-Smale 
complex guarantees that the data is monotonic within a partition at per- 
sistence level 0 but it does not imply linearity. Level 0 partitions that do 
not have a good linear model fit imply the function was undersampled. 
At higher persistence levels, multiple partitions with good but different 
linear models might merge into a single partition with a bad fit (e.g. 
partitions 0 and 45 in Fig. 7). Identifying such instances can be used to 
determine to locally choose a persistence value lower than the merged 
partition. 

We evaluate the fitness of a regression model using coefficient of 

determination: R2 = 1 − ∑
(y−y˜)2 

, where y˜ is the predicted value and yˆ 

is the mean value. The score value range between 1.0 (perfect fit) to 
−∞. A model that always predicts the expected value of y disregarding 
the input would have a score of 0. 

Example: Fig. 7 (middle right) shows the Regulus Tree of the 2D 
function from Fig. 4. In this case, we encode the fitness score of the 
linear model in each partition as color after we clamped it to the range 
0 (blue) to 1 (red). The details view, Fig. 7 left, shows projections of 
data points in several selected partitions. 

In general, the higher a partition is positioned alone the vertical axis 
the lower the fitness score will be (less red) as each merger add more 
points, which by definition can only reduce the fitness. The numerical 
value of the current attribute is displayed via a tooltip along with 
additional information. Partitions 21 and 34 have very good models 
(0.94 and 0.96 respectively) although they are very different from each 
other with respect to the x1 dimension. This difference is reflected in 
their parent, partition 20, which has a lower fitness score (0.77) due to 
the nonlinearity the merge introduced in the x1 dimension. 

The shallow hill (top left in the 3d view) contains over half the data 
points and is captured by partition 45 as a merge of four partitions with 
very good but very different linear models, leading to a fitness score 
of only (0.42). Close examination (zooming) confirms that two of the 
partitions merge first, followed by a merge with the third and fourth. 
The two intermediate partitions are not stable and have a very short 
lifespan. Finally, the root of the tree, partition id 0, consists of the entire 
domain (2000 sample points), and represent the case where we simplify 
the More-Smale complex all the way down to a single partition. As can 

 

 

 

 

 

 

 

Listing 2. Fitness score (not suitable for derived trees) 

 
 

Fig. 7. Left: details view showing points in selected partitions. Right: 
Three views of the Regulus Tree, each showing separate fitness measure 

(blue = 0, red = 1) 

 
be expected, the fitness score is only 0.38 since there is no good global 
linear model for the data. 

Parent and Child Fitness Partitions 20, 21 and 34 in the above 
example, highlight the case where a merger of two partitions, both with 
very good linear models, can lead to a partition with a much worse 
fitness score. In this case, we should avoid simplifying further at least 
locally. The different situation can arise where the parent model is 
very similar one of the children but not the other one. Fig. 8 depict 
a potential merger between two partitions for a 1d scalar function, 
where both the children and the parent have good linear models. If 
we rely only on the fitness score of the parent, we may conclude that 
the parent represents a good simplification choice, a decision we may 
not take if we examine at the actual data. This scenario can occur, for 
example, when one partition contains a lot more data points then the 
second partition. In some applications, this can be addressed by giving 
different weights to the points in the two partition. In the context of 
this work, we specifically want to identify and flag situations like this 
as they are likely pointing region where the scalar function have unique 
characteristics. Furthermore, we would like to be able to detect these 
cases directly in the Regulus Tree without the need to examine the data 
points. 

To address this issue we introduce two relative fitness measures as 
shown in Listing 2. The Parent Fitness is the fitness score of the parent’s 
model with respect to the partition data. Conversely, the Child Fitness 
is the fitness score of the partition model with respect the parent’s 
data. Referring back to Fig. 7, the parent fitness is shown in the top 
right tree and the child fitness in the bottom right tree. The parent 
fitness indicates that the model of partition 20 moderately fits the data 
in partitions 21 and 34 (0.79 and 0.65 respectively). The child fitness 
scores clearly show that the models for partitions 21 and 34 do not fit 
well with their parent’s data (0.2, -1.8 respectively), strongly implying 
that this simplification step should not be used. 

Example part II: Using the combination of fitness and child fitness 
scores, we can see that a persistence level of 0.2 provides a very good 
simplification value. Fig. 9 shows a top down projection of the full 

 

 
+ 

 
 
 
 

Fig. 8. A merge of two partitions with good but different models can lead 
to a partition with a model that is similar to only one of them. 

def linear_ model(tree , node): 
return LinearRegresssion().fit(node.x, node.y) 

def ridge_model(tree , node): 
return Ridge().fit(node.x, node.y) 

tree. add_attr(ridge_model , name=’model’) 
Parent Fitness: parent’s model, node’s data 

Fitness 

Child Fitness: node’s model, parent’s data 

def fitness(tree , node): 
model  =  tree[’model’][ node] 
return model.score(node.x, node.y) 

def parent_fitness(tree , node): 
parent_model = tree[’ m odel’][ node.parent] 
return  parent_ model.score(node.x,  node.y) 

def child_fitness(tree , node): 
model = tree[’model’][ node] 
return  model.score(node.parent.x,  node.parent.y) 
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Fig. 9. Left: Graph view of the full More-Smale complex and the data 

points as viewed from above. Middle: Simplification for persistence level 

= 0.2 Right: Adding the y-axis and slightly rotating the x1- and x2 axis 

generates a pseudo 3D projection. 

More-Smale complex and both top down and side view projections of 
the simplified More-Smale complex . We designed our visual explo- 
ration environment specifically to cater to this kind of workflow where 
multiple measures need to be considered at the same time. The user 
can visualize multiple Regulus Tree instances, each encoding different 
measures, or simply define a new measure that returns a value based 
on evaluation of the the fitness, child fitness, and parent fitness in the 
partition. 

Reference Model Fitness: The parent and child fitness measures 
play an important role in our workflow despite being limited to only the 
local neighborhood of a node. As a side note, we do not define a fitness 
measure between siblings because in the case of derived trees (see 
Sect. 4.3 a partition can have more than two children. The advantage 
of the local nature of the parent and child fitness measures is that we 
can depict each measure over all the nodes in the tree at once. There 
are cases, however, where we want to compare and contrast models 
for more distanced ancestors and even between partitions in different 
parts of the tree (recall that the tree is organized with respect to the list 
of merges generated using persistence homology not based on local 
geometry). Depicting many independent global comparisons at once 
is not possible. Instead, we define a reference model fitness measure 
that applies a reference model to the data in each partition. When the 
user hovers over the tree we set the reference model to the model of 
the node under the mouse and reset the cache to cause the values to be 
recomputed. 

Dimension Fitness: Regression methods fit linear regression mod- 
els by minimizing cost functions that take into consideration all the 
dimensions of the data. In that sense the cost (error) is spread over 
all the dimensions. Within the context of this work, we are trying 
to identify unique partitions, which means we aim to find maximum 
discrepancies between partitions and in particular with respect to indi- 
vidual dimensions. 

Our dimension fitness approach is to compute a vector of regression 
models for each partition, one per dimension, instead of a single model. 
Scoring in this case means applying each model in the vector to the 
data, resulting in a vector of scores instead of one value. Given two 
partitions, we apply and score the model vector of one partition to both 
data sets and finally compute the cosine similarity between the two 
score vectors (Listing 3). 

Listing 4. Chained attributes. Parent/child relation depends on the current 

tree structure 

 
to avoid recomputing them for each tree. On the other hand, relative 
measures are defined with respect to a tree structure and thus should be 
stored at the nodes. This means that when looking for an attribute or 
measure for a partition, we need to know where to search for it, which 
undermine the notion of separation of concerns. Derived trees, such as 
when one tree is a simplification of another, add further complication. 
The new derived tree will most likely have a similar structure to the 
original tree but will be composed of new nodes. We would rather not 
have to copy or recompute and instead reuse those relative attributes 
the are valid for the new tree. 

Our solution is to chain attributes by maintaining a pointer to the 
attributes of the parent tree. When the value of an attribute is not found 
in the new tree, we first consult the parent’s attributes before computing 
the value. To avoid recomputing relative measures, we stored such 
measures using a key consisting of the ids of both partitions. We can 
then reuse a previously computed value if the same parent-child pair 
exist in the original tree. To support this we set the node id to its 
partition id so that keys stays the same in derived trees. Listing 4 show 
how we redefine parent and child fitness in terms of a relative measure 
(compare to Listing 2) 

 
8 USE CASES 

8.1 Combustion 

In this example we look at sample data extracted from a time dependent 
jet simulations of turbulent CO/H2-air flame, where each sample point 
consists of chemical composition and temperature [17]. The data 
includes extinction and reignition phenomena where several chemical 
components form and evolve during the combustion reaction and in 
turn effect the amount of heat released. In this analysis we explore the 
temperature in relation to the chemical composition. 

The data consist of 5172 samples with 10 chemical species. Fig. 10, 
depicts fitness for a Regulus Tree after filtering out partitions with less 
then 100 data points. The root of the tree demonstrates that a single 
linear model describe the whole data with an exceptional score of 0.998. 
We fit good models in most other partitions but they are not necessarily 
similar to each other. A zoom-in to persistence range [0, 0.15] (middle) 
reveals a large partition containing 30% of data points all of which lie 
outside of the active combustion zone and should have been removed. 
This fact wasn’t noticed in previous works. 

Using child and parent fitness doesn’t reveal much but once we 
switch to child dimension fitness the tree comes to life, Fig. 1. The 
figure also shows the data points of the (four) top-most partitions that 
are different than their parents. Partition 494 (right most in the tree, 
bottom in the grid) is distinctly different from the other partitions. The 

 

 

 

 

 

 

Listing 3. Dimension Fitness 

 

 
7 CHAINED ATTRIBUTES 

Since several trees can point to the same collection of partitions, we 
would have preferred to store attributes in their respective partition 

 
 

Fig. 10. Combustion: Initial tree (left) shows that a single linear model 
describes all the data points(score = 0.998). Right: a zoom to persistence 

range [0:0.15] reveal a previously unknown partition containing large 

number ( 30%) of sample points that are outside of the active combustion 

zone and should have been removed (top). 

d e f r e l a t i v e f i t n e s s ( t r e e , has model ,  h a s p t s ) : 

r e t u r n t r e e [ ’ model ’ ] [ has model ] 

. s c o r e ( h a s p t s . x , h a s p t s . y ) 

d e f p a r e n t f i t n e s s ( t r e e , node ) : 

r e t u r n t r e e [ ’ r e l a t i v e f i t n e s s ’ ] [ node . p a r e n t , node ] 

d e f c h i l d f i t n e s s ( t r e e , node ) : 

r e t u r n  t r e e [ ’ r e l a t i v e f i t n e s s ’ ] [ node , node . p a r e n t ] 

def relative_dim(tree , models , data): 
return [ models[i]. score(data.x[i], data.y) 

for i in range(len(models)] 
def child_dim _fitness(tree , node): 

models = tree[’dim _ models’][ node] 
return cosine_similarity( 

tree[’relative_dim’][ models , node], 
tree[’relative_dim’][ models , node.parent]) 
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Fig. 11. Graph views of the combustion data. a) Highlighting the points 
of each partition. b) Without the HO2 only the two expected minima are 

apparent. c) The three minima separates along the HO2 direction. d) 

Regression curves follow the shape of the manifold. 

three other partitions differ mainly with respect of HO2, though the 
points in the first and third partitions (5 and 488) are mostly in the lower 
value. Fig. 11 shows the critical points graph. Note that the edges for 
the first three partitions overlap in (b) but are clearly separated in (c). 

The four partitions share a single maxima but feature four distinct 
minima. The minima in partition 494 captures a situation where fuel 
(H2 and CO) is available but the lack of oxidizer (O2) prevents a chemi- 
cal reaction. The situation is reversed in partition 5 where oxidizer (O2) 
is available but the lack of fuel prevents a reaction. In partitions 460 
and 488, the mixing of fuel and oxidizer is highly turbulent and blows 
the flames out, resulting in large amount of HO2. The clear separation 
between these two minima could be due to undersampling or possible 
the boundary of the manifold. 

8.2 Nuclear Fuel Cycle Simulations 

Nuclear fuel cycle analysis focuses on modeling the nuclear industry 
and ecosystem at a macroscopic level. This example studies scenarios 
for transitioning from one technology, Light Water Reactors (LWR) 
to a newer Sodium-cooled Fast breeder Reactor (SFR) technology. 
LWR reactors can use either enriched uranium (UOX, Uranium Oxyde) 
or a mixture of Uranium and Plutonium (MOX, Mixed Oxyde) as 
fuel but produce Minor Actinides waste. Minor Actinides have a 
long lifetime and high activities, which make such wastes difficult 
to deal with. In contrast, SFR reactors mainly use a mix of Natural 
Uranium and Plutonium as a fuel (MOX). The SFR reactors have the 
ability to breed Plutonium from the Uranium and energy production 
is based on the fission of the Plutonium. This breeding capability 
allows the fuel to stay longer in the fuel, reducing the amount of Minor 
Actinides ultimately present in the waste. Some combination of fuel 
and SFR reactor configuration allows to breed more Plutonium than 
it will burn . A sufficiently large number of SFR reactors (used in 
’breeder’ configuration) can thus be self sustained. 

The study consists of 3300 simulation runs, using four input param- 
eters (breeding ratio, start year of LWR fuel reprocessing, first year 
an SFR can be deploy and a bias measure). The aim here is to find a 
deployment schedule that transitions from an ecosystem consisting of 
LWRs to one with only SFR reactors, while minimizing some objective 
function. To this end we computed several objective functions at the 
end of each simulation including: the ratio of total power generated 
by LWRs reactors to the total energy generated over the simulation’s 

 

   

Fig. 12. Transition scenario: Partitions selected based on dimension 

fitness (left). Partition 1342 exhibits unique behaviour (mid and right) 
though its minimum (simulation 2330) is not the lowest (right). 

Fig. 13. Encoding other output variables as color demonstrates the 

advantages of simulation 2330 which exhibits low power ration and 
consistently generates low volumes of excess radio active materials. 

 

 

 
Fig. 14. Simulation 2330 exhibits an excellent and smooth transition (left), 

while simulation 1758 does not lead to a transition (right). 

 
200 years span, the mean ratio of plutonium to generated power, and 
amount of nuclear waste such as Plutonium, Uranium and Americium. 
Of the 3300 simulation only 2007 led to a complete transition within 
the first 120 years). In the following we looked at the mean ration of 
Plutonium to power objective function. Fig. 12 show a reduced Regulus 
Tree (remove partitions with less than 100 simulations or a lifespan 
less then 0.001) depicting child dimension fitness. Several partitions 
that stand out are also shown. The graph view on the right shows 
that partition 1342 exhibits a unique behaviour, although its minima 
(simulation run 2330) doesn’t have the lower value. Fig. 13 shows 
that adding ’bias’ in the graph view affects only one of the minima. 
However, when we use the same partitions and graph, but change the 
colors to encode other output values, we can see that simulation 2330 
is unique in that it consistently exhibits low values (blues) for power 
ration and the amount of the nuclear waste generated. Fig. 14 shows 
the deployment schedule of simulation 2330 (top) and an example of a 
simulation that doesn’t lead to a complete transition. 

 
9 CONCLUSIONS 

The Regulus Tree addresses the important, though often neglected, 
’why’ question by proposing a new perspective of the topology simpli- 
fication process. The Regulus Tree visualization offers both a concise 
broad view of the simplification landscape and a guide for an interac- 
tive visual exploration of the underlying scalar function. We describe 
the Regulus Tree in the context of Morse-Smale complexes, but the 
partition’s perspective and the tree are equally applicable to Morse 
complexes. Some of the measures as well as the inverse regression 
curves are not directly applicable and one will have to use high order 
regression models. 

The Regulus Tree has several limitations. First, it does not preserve 
spatial locality or even adjacency relation between partitions. Mapping 
spatial locality is a complex issue for multi-dimensional data in general. 
Adjacency information can be retrieved from the Morse-Smale com- 
plexes, though how to depict it is not clear and is especially problematic 
in a setting with many levels of details. Second, Morse-Smale partitions 
can have complex twisting shapes that are not captured directly in the 
tree structure and the tree does not address the notion of topological 
holes. 

We have begun exploring methods for using the inverse regression 
curves to facilitate adaptive sampling, both for validation purposes 
and for improving spatial resolutions in areas that are undersampled. 
We are also looking at using t-SNE and other dimensional reduction 
and clustering techniques to analyze the linear models and provide 
additional measures for identifying and highlighting potential unique 
partitions. 
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