
1

Selected partitions

A Novel Tree Visualization to Guide Interactive Exploration of

Multi-dimensional Topological Hierarchies

Yarden Livnat1, Dan Maljovec1, Attila Gyulassy1, Dr Baptiste Mouginot2, and Valerio Pascucci1

1 SCI Institute, University of Utah, Salt Lake City, Utah, United States
2 Nuclear Engineering, University of Wisconsin-Madison, Madison, Wisconsin, United States

Fig. 1. A Regulus Tree provides a concise annotated overview of all Morse-Smale complex partitions for the entire persistence hierarchy.

In a study of temperature as a function of chemical species, the Regulus Tree on the left encodes Child Dimension Fitness that
highlights partitions with different characteristics than their parents (red/blue indicate small/large differences). Selection of the top

partitions shows a single maximum and four distinct minima in the graph view (middle). Projections of the data points in the four

partitions (right) demonstrates that two unique minima are due to lack of fuel (top) and lack of oxidizer (bottom), while the other two

identify unmixed fuel and oxidizer due to turbulence in the combustion reaction.

Abstract—Understanding the response of an output variable to multi-dimensional inputs lies at the heart of many data exploration

endeavours. Topology-based methods, in particular Morse theory and persistent homology, provide a useful framework for studying
this relationship, as phenomena of interest often appear naturally as fundamental features. The Morse-Smale complex captures a

wide range of features by partitioning the domain of a scalar function into piecewise monotonic regions, while persistent homology

provides a means to study these features at different scales of simplification. Previous works demonstrated how to compute such a

representation and its usefulness to gain insight into multi-dimensional data. However, exploration of the multi-scale nature of the data

was limited to selecting a single simplification threshold from a plot of region count. In this paper, we present a novel tree visualization

that provides a concise overview of the entire hierarchy of topological features. The structure of the tree provides initial insights in terms

of the distribution, size, and stability of all partitions. We use regression analysis to fit linear models in each partition, and develop local

and relative measures to further assess uniqueness and the importance of each partition, especially with respect parents/children in

the feature hierarchy. The expressiveness of the tree visualization becomes apparent when we encode such measures using colors,
and the layout allows an unprecedented level of control over feature selection during exploration. For instance, selecting features from

multiple scales of the hierarchy enables a more nuanced exploration. Finally, we demonstrate our approach using examples from

several scientific domains.

Index Terms—Computational Topology-based Techniques, High-dimensional Data, Data Models, Graph/Network and Tree Data.

Multi-Resolution and Level of Detail Techniques.

1 INTRODUCTION

Many phenomena in science and engineering can be described by how
an output variable depends on input parameters. For example, under-
standing the correlation between temperature and chemical species
and turbulence in a computationally model of a combustion reaction
can lead to better fuel or engine designs. As another example, under-
standing how the measured strength of concrete varies with the ratios
of its ingredients can lead to more error-tolerant mixtures. Compu-
tational models are used to study such real-world phenomena, either
by conducting computer simulations or through a set of well-designed
experiments. Analysis of the results can then be used to improve the
models, find optimal solutions, uncover unknown relationships, and
support decision-making.

The set of relationships between inputs and output can be very

specialized; for any input parameter, its relationship to the output
variable may be conditioned on the variation in the other parameters.
Topology provides a means of studying the shape of a function; for
instance, identifying how local minima and maxima are related to each
other both spatially and in terms of local importance. The Morse-Smale
complex, in particular, decomposes the domain into monotonic regions
that enable reasoning about local trends that contribute to the formation
of a local maximum or minimum. In contrast to a user-defined query or
hypercube sample, the topological partitions are intrinsic to the function
and underlying manifold, and are well-suited for regression analysis.

Local perturbations, artifacts of meshing, or small features can derail
analysis, as it is difficult to separate phenomena from noise. Persistent
homology describes topological features in terms of their life-span

2

of the element from its birth critical point to its death in a sweep of
the range of the function. In many applications, features below a
persistence threshold are discarded as noise, a process that involves
guesstimating an appropriate value, sometimes with the help of a per-
sistence curve. In many applications, however, features appear with

(a) (b) (c) (d)

after

before

(e)

varying persistence in the domain. In multi-dimensional data analy-
sis, in particular, justifying a simplification threshold is difficult as,
until now, there have not been effective visualization and exploration
techniques to understand the specific relationships between features at
different scales.

We introduce a novel visualization that is composed of a nested
space-filling tree layout to visualize the topological hierarchy whose
geometry encodes the size and persistence of topological features. We
reinterpret persistence simplification hierarchies of the Morse-Smale
complex as a merging tree of partitions, allowing an even finer gran-
ularity of feature selection than a single simplification operation and
efficient layout. Color in the cells of the tree is used to encode one of
many computed measures, such as fitness of a regression model to the
corresponding topological feature, relationships between the models
of parents and children, or any other computed attributes. Our new
visualization is deployed in an open exploration environment imple-
mented in Python and JupyterLab extensions. Linked views enable
dynamic feature selection for flexible analysis. We evaluate the utility
of the approach with use cases in combustion and nuclear energy, where
salient features are visible at a glance, that previously depended on an
exhaustive search through the simplification parameter. Specifically,
our contributions are:

• A new interpretation of persistence simplification of a Morse-
Smale complex as a merger tree of partitions,

• A new visualization of topological hierarchies that encodes the
size and life-span of every feature at once,

• Measures on topological features that incorporate the ancestry of
a partition to aid and guide users in selecting the topological scale
for analysis,

• A user interface that enables adaptive simplification, and non-
uniform and non-consistent selection of features across multiple
scales,

• Design of an open exploration environment to facilitate ex-
ploratory analysis.

2 BACKGROUND AND RELATED WORKS

2.1 Topology-based analysis

Morse theory describes the topology of differentiable functions on a
manifold [22]. The critical points of a function f occur where the
gradient vanishes with index equal to the number of negative eigen-
values of the Hessian. Integral lines are paths that are tangent to ∇ f ,
do not intersect, and have lower and upper limits at critical points,
called the origin and destination, respectively. The ascending and
descending manifold of a critical point is the union of integral lines
originating, and terminating at that point, respectively. For f defined
on a d-dimensional manifold, an index-i critical point has a d −i di-
mensional ascending manifold and d-dimensional descending manifold.
A function is Morse-Smale [27, 28] if all ascending and descending
manifolds intersect transversally, or not at all. The intersections of all
ascending and descending manifolds forms a cell complex called the
Morse-Smale complex. Each d-dimensional cell of the complex, called
a partition, is composed of points whose integral lines originate and
terminate at the same minimum-maximum pair. Figure 2 Shows the
critical points, integral lines, and cells of the Morse-Smale complex of
a 2-dimensional scalar function.

A Morse-Smale complex is simplified by repeated cancellation of
critical point pairs that differ in index by one [9]. Persistent homology
orders cancellations by increasing difference in function value [10]. In
the Morse-Smale complex, a cancellation is realized by removing a pair
of critical points and merging their ascending and descending manifolds

with their neighbors [15,16]. For d > 2 a 1-saddle that separates distinct
minima is called a split saddle, and a d − 1-saddle that separates distinct
maxima is called a merge saddle. When cancelling a merge or split
saddle with an extremum, the effect on the Morse-Smale complex is

Fig. 2. The maxima (red) minima (blue) and saddles (green) of a two-

dimensional scalar function (a), are the origin and destination of integral

lines (b). A cell of the Morse-Smale complex (c) is formed by integral lines

sharing an origin and destination. The 2D patches, called a partitions

is highlighted (b,c). Cancellation of a saddle-maximum pair (circled)

merges adjacent partitions (c,d); 2,3 merge to 6, and 1,4 merge to 5.

The max-saddle cancellation is represented as these merging partition
in a Regulus Tree (e).

to merge partitions separated by the d − 1-manifold emanating from
the saddle. As a cancellation corresponds to a local change in f ,
and corresponding local change to the structure of the Morse-Smale
complex, independent cancellations can be organized into a persistence
hierarchy, a directed graph whose arrows local cancellation indicate
order dependency [3]. The subset of cancellations between extrema
and split and merge saddles turns the persistence hierarchy into a
rooted tree [30]. This tree interpretation motivates tree representation
of merging partitions, and enables the overall approach of displaying
multi-dimensional persistence hierarchies.

Morse-Smale complexes, merge trees, contour trees [6], and Reeb
graphs [25] all encode aspects of the topology of scalar functions, and
have been used successfully to define and compute features in many
application domains [2, 4]. While most methods employ persistent
homology [10] to reason about the features at multiple scales, rarely
is the merging of regions directly encoded and visualized. The branch
decomposition of contour trees comes close [24], encoding persistence
and parent-child child relationships in the merging of regions in its
structure. Persistence diagrams [8–10], and their variants, barcode
diagrams [14], and persistence landscapes [5] present the persistence
pairs and their place in the range of the function, but fail to convey the
nesting of topological features.

A standard approach for selecting an appropriate persistence value,
in the context of Morse-Smale complexes, is based on the notion of a
persistence graph, which depicts the number of extrema points with
respect to the normalized persistence value [11, 25]. The expectations
are that extrema points with low persistence are most likely due to
noise or under sampling. In addition, stable features require a large
change in the persistence value before they are removed, leading to
visible plateaus in the graph. The persistence graph, however, even
when providing clear stable thresholds, does not provide any insights
about the underlying function.

2.2 Exploring Parameter Spaces

An important aspect of our work is its applicability to exploration and
understanding the functional relationship between multi-dimensional
parameter spaces and their derived outputs. HyperMoVal [26] is a
system designed for validating support vector regression models against
the underlying data. The system employs linked views, local sensitivity
information, and model tuning capabilities to allow the user to see not
only where the model deviates from the data, but to refine the model
interactively until desired criteria are met.

Tuner is a software system designed to help users tune the parameters
for image segmentation and combines an automated adaptive sampling
phase with a visual exploration stage where stability and sensitivity can
be evaluated until the user guides the system to their optimal solution.
Berger et al. combine regression models and linked views to provide
users with local uncertain-aware sensitivity information that is meant
to guide users to interesting regions in their domain. Similar works
that focus on such design steering methodologies include the works
of Matkovic et al. [19, 20, 29] where linked views are combined with
user-guided adaptive sampling to refine the data and/or models built on
the data in areas of interest to the user.

ParaGlide [1] provides an interactive exploration of the parameter
space of multidimensional simulation models. The system enable users

5 6

1 4 2 3

1

2
3

4

6

5

3

to define regions in the input space that represent distinct output behav-
ior. The regions are defined manually by the user and are restricted to
Cartesian product of ranges in the various input dimensions.

In contrast to these works, we use Morse-Smale complex to partition
the space and persistence homology to study the space in multiple
levels of details. We also fit local models on the data and compare and
contrast them both within and across levels in the hierarchy.

2.3 Visual Exploration

Gerber et al. [11] were the first to use Morse-Smale approximation to
visualize scalar functions defined on multi-dimensional point cloud data.
They created geometric summary of a simplified Morse-Smale complex
by using locally weighted regression [7] to fit inverse regression curve
in each partition and use dimension reduction to embed them in a 3D
display. The curves model the inverse relation from the output value to
the input parameters and provide visual cues about each partition such
as local and global shape, width, length, and sampling densities. Linked
views showed details of the individual partitions and their one/two-
dimensional relationships with respect to the output of interest. The 3D
visualization is hard to interpret and, as noted by the authors, introduced
phantom visual cues such as twists of the curves that did not encode
real information. We follow their use of inverse regression curves when
depicting details about specific partitions and for generating additional
samples but we do not use the 3D view (the sampling is not part of this
paper).

Maljovec et al. [18] noted that computing all the inverse regression
curves in large dataset incurred high overhead and additional manipula-
tion is required to make an aesthetically pleasing visualization where
the skeleton connects at the endpoints. Instead, they employ a more
abstract ball and stick style overview that required no additional com-
putation (aside from the Morse-Smale decomposition). Their overview
consist of a 2D plot of function value versus persistence value and
depicted each partition as a curve between its extrema points. For
data fitting, the simpler Morse-Smale regression [12, 13] strategy were
computed on-demand for a specified persistence level. They also used
bar charts to compare and contrast the sensitivities and goodness-of-fit
of the resultant linear models. Their overview provides a consistent
view of where extrema exist in the hierarchy more in line with the work
presented herein, but like Gerber’s work before them, still only allowed
for the visualization of a single persistence level at a time. In contrast
to Maljovec et al., we use the inverse regression curves and reduce the
computational cost by lazily computing them only for visible partitions
and only after reducing the tree. Lastly, neither work shows how a
feature merges in the hierarchy and does not provide comparison across
persistence levels.

May et al. [21] and Muhlbacher and Piringer [23] both utilize
partition-based regression models that are limited to one or two di-
mensional axis-aligned cuts. The goals of these works are different as
the idea is to build and validate regression models and understand the
effects of one or two parameters on the system whereas the topology-
based methods are attempting to describe the overall structure and
motifs of the data such as finding similar-behaving regions in disparate
areas of the domain.

3 REGULUS

While topological structures such as contour trees, merge trees and
Morse-Smale complexes can capture features at multiple scales, they
nevertheless do not describe the simplification process, nor do they
provide an overview of all the simplified topologies; rather, each in-
stance describes, and is used to explore, only one simplified topology.
Conceptually, simplification consist of creating a series of progressively
coarse variation of one of these topological structures. In practice, only
one model is created and then transformed to describe the required sim-
plification level. Visual exploration methods [11, 18] are also designed
to visualize one simplified topology at a time. Often, phenomena of
interest appear at different scales in the data, and a single simplification
threshold is insufficient for analysis. The question of why should the
user select a particular simplification level was mostly left to the user’s
best estimation.

In this work, we focus on the ’why’ question in the context of using
multi-dimensional Morse-Smale complexes to study the relationships
between input parameters and the output function. Rather than develop
a method to find an optimal simplification threshold, our approach is
to develop a visual representation of the whole persistence space that
can help guide the user exploration. The new visualization, called
Regulus Tree, is based on an interpretation of the simplification process
in terms of nested partitions rather than cancellation on critical points.
The expressiveness of the Regulus Tree comes to light when various
attributes and measures are encoded on top of it. Another consideration
of our design is to empower users to define their own attributes and
measures and enable on the fly modification. The Regulus Tree enables,
Noise: identify regions where noise is prominent
Persistence level: gain better understanding of the plateaus in terms of
the size and stability of the partitions involves. Compare the statistical
characteristics on the set of partitions for different persistence levels
Adaptive simplification: Select multiple persistence levels for indi-
vidual features to adapt the simplification based on amount of relative
rather than absolute noise, adapt to the local scale of features, and other
measures of interest

Local properties: Compute and display local attributes of the function
in different regions

Relative measures: Compare and contrast partitions from different
locations in the function space as well as from different levels of details
(persistence levels)

Uniqueness: Identify and study partitions that exhibit unique charac-
teristics

Clarity: The Regulus Tree provide a hierarchical view of the per-
sistence space in terms of nested partitions, which our collaborator
scientists found much easier to grasp and comprehend as opposed to
the technical description in terms of critical points cancellations.

In the following, we present the conceptual design, structure, and
layout of the Regulus Tree as well as ways to simplify the tree itself.
We describe several ways the Regulus Tree can be used for various
tasks along with additional supporting views. We then introduce the
notion of dynamic attributes and measures and show how they can
provide unique insights and help guide the user exploration.

4 THE REGULUS TREE

4.1 The Regulus Partition Perspective

A More-Smale complex can viewed from two different perspectives.
From a partition perspective, a More-Smale complex describes a tessel-
lation of the space into monotonic partitions. From a formal perspective,
it is described in terms of an intersection of ascending and descending
manifolds, which generates cells including critical points, and arcs
that connect them. Cancellations, although involving only a pair of
critical points, may affect several partitions at once. This often poses a
challenge for scientists in application domains using this approach, as
the rules that govern the merging of spatial partitions are obfuscated by
the simplified explanation.

Consider a single cancellation step, in which a pair of critical points
is deleted as depicted in Fig. 2(c-e). From the partition perspective, the
single simplification step consists of two merges of pairs of partitions.
In general, and especially in multi-dimensional data, several merges can
occur in each step, but each partition may participate in only one merger
per step. Note that the actual simplification process stays the same and it
is only our perspective that is changed. Furthermore, from the partition
perspective, the partitions mergers form a nested hierarchy and the full
simplification process forms a binary tree. The leaf nodes of the tree
represent the partitions of the initial More-Smale Complex (persistence
level 0), while the root represents a single partition that encompasses
the whole space. To construct a Regulus Tree we first create a full
More-Smale complex and then traverse the simplification list in order.
For each simplification step we identify the pairs of merging partitions,
create new nodes representing the merged partitions, and update the lists
of internal and critical points associated with each new node (partition).
Once we finish the traversal we descend down the new tree structure
in a depth-first order and assign a sequential id to each node. We also

4

a) Top Down layout b) Bottom Up layout c) Vertical layout based on persistence.

Width encodes size
d) Regulus Tree

Fig. 3. Typical tree layouts position nodes based on their distance from
the top (a) or bottom (b). We use vertical position to encode persistence

and width to encode size (c). Regulus Tree (d): node height extends to

parent to encode lifespan; horizontal layout based on enumeration of the

points. Two of the nodes are shaded to illustrate the correspondence

between the trees.

reorder the data points to follow the order of the leaf nodes as described
in Sect. 4.2 below.

The notion of persistence as it applies to critical points does not
directly apply to the nodes/partitions in the Regulus Tree . From the
perspective of critical points, at each simplification step, one extremum
is deleted while another one is retained, and no new extrema are added.
The persistence of an extremum describes the value when the point is
deleted. In contrast, we regard the merger of two partitions as a new
partition that describes a larger region of space with more data points
and different properties and characteristics. The importance of this
distinction arises when we fit regression models and evaluate various
measures in each partition as described in 6.3. A partition is thus
associated with two persistence values describing its creation, original
through Morse-Smale complex or through merger, and destruction,
when it is merged. In the context of the Regulus Tree, we only need to
save for each partition the persistence level it is created, as it is deleted
at the persistence value its parent is created. The lifespan of a partition,

i.e. the difference between the persistence levels of its parent and its
own, provides a measure of the life-span of the partition.

4.2 Regulus Tree Layout

There are dozens of different ways to visualize a tree, yet conceptually
all full tree layouts are based on either a top-down or a bottom-up
ordering (Fig. 3). The placement of a node is based on the distance of
the node from the root (top-down) or a leaf (bottom-up) in terms of
the number of parent-child edges. This is true whether the layout is
vertical, horizontal, or radial.

To the best of our knowledge, the Regulus Tree layout is new and
unique. We describe the new layout in terms of modifying a bottom-
up layout. First, we use the vertical axis to depict persistence level
Fig. 3c). We then represent a tree node by a rectangle and position it
vertically such that its bottom edge is aligned with the persistence level
in which it is created. Because the leaves of the tree represent the base
partitions, i.e. the partitions of the full More-Smale complex before
any simplification, they must, by definition, have a persistence level of
0 and therefore form a single row of rectangles whose bottoms are all
aligned.

When two partitions are merged, the new partition (the parent) must
have a persistence level greater than that of its children and thus will be
positioned vertically higher than its children. In the horizontal direc-
tion, we use the width of the rectangles to encode the number of data
points and convey a measure of size. Note that if the data points were
sampled uniformly, then the number of points in a partition is roughly
proportional to its volume. Since, by definition, a parent contains all
the points of its direct children, then the width of the parent is equal
to the sum of the widths of its children. Therefore, we can position all
the children of a parent sequentially in the horizontal direction without
causing overlaps (Fig. 3d). Finally, we extend the top of each node
to the base of its parent. The height of a node therefore encodes its
lifespan since the base of the parent represents the persistence level the
parent is created and the level in which the children are deleted. We
note that the vertical axis of the Regulus Tree represents persistence
and not function value as used in other techniques, such as the contour
and merge trees, or the persistence diagram.

We can take advantage of the horizontal layout by enumerating

Fig. 4. A 2D scalar function and a corresponding Regulus Tree . For

illustration purpose, color encodes the lifespan of a partition using the
blue-yellow-red colormap shown at the top. Selecting persistence level

of 0.3 amount to selecting the nodes that intersect the dashed line.

all the data points based on the base partitions they are part of (the
enumeration within a partition is not important). Using this approach,
we need only two numbers per partition to indicate the range of data
points that are contained in that partition. Since the parent partition
contains all the data points of its children and the children are positioned
sequentially, the partition’s data points can also be specified via a range
using two numbers. Effectively, we decoupled the data points from
the hierarchical structure of the partitions and kept the memory size at

O(n + p), where n is the number of data points and p is the number of
partitions in the tree.

It is important to note that the above description is correct only with
respect to non-critical points, which are shared between partitions. To
address this, we initially assign each critical point to one of the base
partitions adjacent to it. We then maintain for each partition a short
list of all the critical points it’s associated with but are not part of its
own range of points. In the tree layout, we use the width of a node to
encode only the number of points its children contain. This ensures
that the parent has the correct visual width to contain all of its children.
The exact number of points associated with a partition is provided in a
tooltip. This does not pose any problems as the number of extra critical
points is minimal.

Fig. 4 shows a Regulus Tree associated with a 2d scalar function,
which we sampled at 2000 points and added small white noise. The
horizontal axis represents enumeration of all 2000 points, while the
vertical axis represents the relative persistence level in the range of 0 to
1. For illustration purposes we use color to encode the lifespan of each
node, i.e the difference between the persistence value of the parent and
the persistence value of the node.

The Regulus Tree is not a TreeMap despite the superficial similarity.
A TreeMap depicts the leaves of a tree using a 2D layout that takes
into consideration the tree hierarchy, and the two axes do not have
individual meaning. A few variations do incorporate some information
about the parents, but because the emphasis is on the leaves, the parents
are depicted differently and are mainly used to convey structure. In
contrast, the Regulus Tree represents the whole tree structure, the two
axes have precise and different meaning and for the most part the leaves
are the least important features.

4.3 Simplifying the Tree

Despite its compactness, the Regulus Tree can become quite large for
large datasets with complex topology. In addition to pan and zoom,
we can also visually simplify the tree without changing the layout by
hiding nodes based on some filtering criteria. In both cases only the
visualization of the tree is modified but not the tree itself. More often
than not, though, we want to simplify the tree itself.

Persistence is often used to help separate between noise and real fea-
tures by removing features with low persistence level, which amounts
to pruning the tree at a certain threshold. From the technical perspec-
tive, persistence provides some measure of the dominance and stability
of a critical point, suggesting which features should be preserved. The
partition perspective of the Regulus Tree offers a different way to think

1-

0-

1-

Points

0- 0

0 1

P
e

rs
is

te
n

c
e

L
e
v
e
l

P
e

rs
is

te
n

c
e

L
e
v
e
l

5

(a)

(e)

a b c d

(a) (b) (c) (d) (f)

Fig. 5. Simplifying a Regulus Tree by removing intermediate nodes.

of persistence. Consider the Regulus Tree depicted in Fig. 5b and the
two narrow green and purple partitions, both of which have a relatively
short lifespan but may actually represent a merger of two prominent
features. The higher the node is located along the vertical axes, the
higher the persistence levels of the two features being merged and the
deeper the valley between the two mountains is (or the taller the ridge
between two valleys is).

From the perspective of the Regulus Tree, such partitions are un-
stable and can be regarded as a relative noise within their local neigh-
borhood. In terms of creating a simplified description of the topology,
removing these partitions is akin to depicting a mountain range by only
one or two mountains. We extend this notion of simplifying the topol-
ogy by simplifying the Regulus Tree to also include removing small
partitions (thin partitions with few points), partitions with points with
values outside a range of interest, and in general filtering the function
the user may wish to apply.

While removing small noise amount to pruning the tree, filtering
specific nodes does not amount to removing their children. Instead we
attach the children to their grandparent (Fig. 5a), which means that in
general a Regulus Tree is not a binary tree. We compute a full tree
simplification by traversing the tree depth-first and considering one
node at a time. If many nodes are removed the new tree may end up
with tall and skinny nodes. This is especially the case if we insist on
keeping base partitions even if the original lifespan is too small. Our
approach is to remove such base partitions and allow the tree to have a
jagged edge at the bottom (Fig. 12).

We do need to ensure that the new tree represents a valid simplifica-
tion of the topology. Since a node/partition is the sum of its children, it
contains all of their points and thus the grandparent must by definition
already contain the points of its new direct children. Another issue
to consider is the lifespan of the remaining partitions. We defined
the lifespan as the difference between the persistence levels of the
parent and the partition. For this reason, we do not store the lifespan
of a partition in the partition record; rather, we compute it on the fly
based on the parent-child relationship of the node pointing to it. The
lifespan of a partition is therefore relative to the tree pointing to it
and a partition may have different vertical height (lifespan) after the
simplification/transformation of the tree.

In general, we do not modify the original tree; rather, we create a
new tree hierarchy that refers to a shared collection of partitions. In
this sense, each tree is a view over the collection of partitions, similar
to creating a sub-array as a view of the full array.

4.4 Exploration and Simplifications Strategies

In addition to providing a concise global overview, the structure of the
Regulus Tree can be used to help guide the exploration and determine
where to simplify,

Global simplification: In the context of the Regulus Tree, a persistence
value maps to a single horizontal line as shown by the red dashed line
in Fig. 6a. Since we do not compute level sets, it doesn’t matter where
the line intersects a partition, only that it does. While the persistence
graph only indicates the number of active critical points for the given
persistence value, the Regulus Tree provides insights about the size
(width) and stability (height) of the partitions. The tree structure may,
for example, reveal that a section of the persistence graph that is not a
plateau is actually composed mostly of stable partitions throughout the
domain except for instabilities in a small part of the domain or maybe
in a number of small partitions that are likely not significant.

Fig. 6. Exploration strategies. a) global simplification b) adaptive simplifi-

cation c) non-continuous selection d) non-consistent simplification. e-f)

The rational for non-consistent simplification (see text)

Adaptive simplification: Consider a height function depicting the geo-
graphic elevation of a valley in a mountainous area. Perturbations that
might not be important in the rugged mountains may have significant
importance in the flat valley area. We can apply the notion of local
simplification in the context of the Regulus Tree by selecting a step like
line, such a the red line in Fig. 6b. We do not alter the meaning of the
simplifications. We only select a subset of the original simplifications.
No new partitions are introduced.
The adaptive simplification is easy to understand in the context of the
Regulus Tree but computing the boundary or interpolating a continuous
function across the selected partitions might not be a trivial task as the
boundary will include T-junctions. This is not an issue in the context
of this work as we focus on understanding the general structure of the
underlying function and identify interesting regions.
Discrete selection: Supporting a selection based on single persistence
value is simple as it requires moving a single horizontal line up and
down. The local simplification is more complex and would require
interactive construction of a line with potentially multiple steps (adding
and removing steps, adjusting step vertical and horizontal positions). A
simpler approach is to allows the user to directly select (e.g. click on)
the partitions the step line should pass through Fig. 6b.
Non-continuous selection: For the purpose of identifying and exploring
interesting partitions, it is sufficient to select only partitions of interest
(Fig. 6c) to quickly compare and contrast the properties of partitions at
different persistence levels. This is by far the most often used selection
method we employ in our workflows.
Non-consistent simplification: We can generalize the non-continuous
selection by selecting partitions that overlap horizontally, that is a
partition and its descendent (Fig. 6d). There are two reasons for using
non-consistence simplification. One is to simply compare the properties
of a partition with its parent to determine if the parent provides sufficient
details. The process can be repeated up and down the tree hierarchy if
a more fine tune simplification of the whole More-Smale complex is
required. The second reason has to do with efficient representation.
Consider a quadtree partitioning of a relatively smooth function except
for one small area as shown in Fig. 6e. This space decomposition
is often critical in many applications, despite the fact that 12 of the
13 partitions are very similar. On the other hand, when studying the
structure of the underlying function, a more efficient representation
might consist of only two nested regions as shown in Fig. 6f, which
provides both a global view and local details.

5 VIEWS

The Regulus Tree provides an overview of the hierarchical persistence
space, but it does not provide any direct view of the data points, nor
does it provide direct relations between the partitions. The variable
size of the nodes also makes it harder to encode multiple values for
each node. In the following, we provide a short descriptions of two
additional views we employ.

5.1 Details View

The details view (Fig. 7) depicts a set of scatterplots for a set of selected
partitions where each row represents one partition and each column
represents one input dimension. Each scatterplot depicts the points in
the partition, where the y-axis represents the scalar function value and
the x-axis represents the specific input dimension. The same y-axis
range is used for all the plots across all the rows and columns. The
x-axis range depends on the dimension (column) but is the same across
all rows. The points are colored using the same blue-yellow-red color

1-

0- 0
Points

1-

0- 0
Points

1-

0- 0
Points

1-

0- 0
Points

P
e
rs

is
te

n
c
e

 L
e
v
e
l

P
e
rs

is
te

n
c
e

 L
e
v
e
l

P
e
rs

is
te

n
c
e

 L
e
v
e
l

P
e
rs

is
te

n
c
e

 L
e
v
e
l

6

i

2 2

map and initially encode the value of the output function similar to
the y-axis. Some datasets include multiple output values, only one of
which is used to create the base Morse-Smale complex. The color can
be used to encode any of the output variables. The partition id and the
number of points in the partition (in parenthesis) are shown in the left
most column.

Each plot also depicts a projection of the inverse regression curve
for that partition. The semi-transparent area on both sides of the curve
corresponds to one standard deviation for the corresponding input
dimension.

We encode the coefficients of the linear regression models as hori-
zontal bars under the plots. The bar in the left most column encode the
intercept of the model. Green/red indicate a positive/negative coeffi-
cient respectively. The coefficients are normalized either with respect
to current model or with respect to all the selected models.

5.2 Graph View

The graph view depicts a 2D projection of selected partitions (Fig. 9).
Each partition is represented by an edge between its minimum and max-

imum critical points. There are many dimensional reduction methods,
each with its own merits. One of a recurring complaints we receive

from our collaborators is that the abstract nature of the projections often
makes it very hard to comprehend and make use of. We designed the
graph view to both simplify the projection and to allow the scientists

to interactively explore the projections in ways that are meaningful to
them. A point in multi-dimensional space is a linear combination of

unit vectors each pointing along one dimension. In the Graph view we
depict it as a linear combination of vectors in the 2d plane. The user
can scale and rotate the vector to change its relative contributions as

well as focus on specific dimensions by removing some of the vectors.
The graph view can also project the points in the selected partitions.

The points colors encode the same information as in the Details view.
When a partition is highlighted, the points not in that partition are
rendered as small gray points. A partition is highlighted when the user
hovers over the partition edge in the graph view, hover over the partition
in the Regulus Tree view, or hover over the partition row in the details
view. Finally, the partition’s edges can be rendered by projecting their
inverse curves. Although these curves are not guaranteed to end up in
the appropriate critical points, they often provide a good insight about
the structure of the partition.

Fig. 9 depicts three projections of the test dataset. The projection on
the right demonstrates that manipulating the vectors can provide mean-
ingful projections, in this case conveying a pseudo 3D perspective. The

interest for various reasons such as if they were created due to noise in
the data, have too few data points, or have a very short lifespan. Since
we often filter out or hide these partitions, precomputing their attributes
would be a waste of resources. Third, some attributes describe relative
measures between partitions, such as between parent and child, that
depends on the particular tree. For example, the lifetime of a partition
is the difference between the persistence values for the creation on
its parent and itself. Fourth, some attributes, such as the bandwidth
used in computing reverse regression curves, depend on parameters
the user may change during the exploration, and which will require to
recompute them on the fly. Finally, we want to empower users to define
and modify their own attributes on the fly.

Our solution is to add the notion of a measure, that is, an attribute that
is defined by providing a function to compute it rather than providing
its value. A measure will be lazily evaluated for a node and the value
will be cached in memory, though the user can save the cached values
and the measure function to a file and reloaded next time. The use of
measure functions, lazy evaluation, and caching are opaque to the rest
of the system, which uses them as regular maps of node id to value.
Using this approach allows us to define many attributes without the
computational costs, as well as add and modify attributes and measures
on the fly. When visualizing a Regulus Tree, we only need to ensure
the selected measure was evaluated for the visible nodes.

Often, several measure functions use similar computations, such as
fitting a regression model for a given partition and then computing some
derived values. We address this by defining the shared computation as
a separate measure, which the other measure functions then retrieve
rather than call directly.

6.2 Regression Models

To study the function behaviour, we employ regression analysis to fit
local linear models in the various partitions. As a first step we standard-
ize the full dataset by removing the mean and scaling to unit variance.
We fit a model to each partition independently of any neighboring parti-
tions. The main reason is that a partition can be explored in a variety
of settings each leading to different sets of neighboring partitions or
even none at all (Sect. 4.4). We do not want the model of a partition to
change during the exploration based on indirect actions.

A linear model is expressed in terms of a set of coefficient, βi such

as that y˜ = ∑d xiβi + β0, where y˜ is the predicted value and β0 is the
intercept. A least square regression model is obtained by minimizing
the residual sum of squares between the observed and predicted values,

min /1Xβ −Y /12
ability to individually manipulate each dimension proved valuable in β

2

exploring the contribution of individual and groups of dimensions. For
example, by combining, subtracting and contrasting the contributions
of several dimensions (same, opposite or perpendicular directions), as
shown in Fig. 11.

6 COLORING THE TREE

The structure of the Regulus Tree provides initial insights about the
More-Smale complex that describe the underlying scalar function in
terms of the distribution, size, and persistence of the partitions. The
expressiveness of the Regulus Tree becomes apparent when we encode
additional information about the underlying scalar function. In particu-
lar, we fit linear models to the data points in each partition and compute
various measures that provide insights about the local behaviour of the
underlying scalar function within a partition, as well as comparison
between different partitions.

6.1 Attributes and Measures

Each partition has several inherent attributes, such as the number of
samples it contains and the persistence levels where it’s created. Addi-
tional attributes, such as the min and max values of the function within
the partition can be precomputed and saved. Precomputing attributes
introduce several challenges. First, while some attributes are fast and
cheap to compute and store, others, such as inverse regression curves,
require substantial time and space, especially if precomputed for all
the partitions in a large tree. Second, many partitions may not be of

To address the potential problem of multicollinearity in the linear re-
gression, which is common in models with large number of parameters,
we use Tikhonov regularization, also known as Ridge regression, which
constrains the solution by imposing a penalty on the magnitude of the
coefficients,

min /1Xβ −Y /12 + λ/1β /12
β

where large λ leads to smaller coefficients and a more robust solution
to collinearity.

Our attributes and measures approach allows us to accommodate
different regression models and freely switch between them during an
investigation. We first define a set of model computational functions and
then assign one as the current model measure, see Listing 1. Measures
that depend on the regression model in a partition can fetch the ’model’
attribute as shown in Listing 2. The model can be replaced at run-time,
which in turn invalidates all the models that were already computed, as
well as all other measures that depend on it.

Higher order regression models can also be used although they are
more complex and in some sense defeat the purpose because they are
not monotonic and it is difficult to interpret their coefficients. High-
order model also suffers from the curse of dimensionality; a linear
model requires d+1 parameters to describe an d-dimensional data but a

quadratic model requires O(d2) parameters.

Vlaerio's PC
Stamp

Vlaerio's PC
Stamp

7

∑(y−yˆ)2

Listing 1. Using different regression models.

6.3 Measures

Basic measures we often use include the lifespan, minimum and maxi-
mum value, and normalize size. We also define measures to assign a
unique id (encoded as different colors) to minima and maxima critical
points that are shared between partitions. A shared minima/maxima
measure shows the tree from a perspective of merges of minimum/-
maximum critical points, which in some sense is similar to a merge
tree.

6.3.1 Fitness

Given a linear regression model for a partition, the first question is
how well the linear model actually fits the data. The More-Smale
complex guarantees that the data is monotonic within a partition at per-
sistence level 0 but it does not imply linearity. Level 0 partitions that do
not have a good linear model fit imply the function was undersampled.
At higher persistence levels, multiple partitions with good but different
linear models might merge into a single partition with a bad fit (e.g.
partitions 0 and 45 in Fig. 7). Identifying such instances can be used to
determine to locally choose a persistence value lower than the merged
partition.

We evaluate the fitness of a regression model using coefficient of

determination: R2 = 1 − ∑
(y−y˜)2

, where y˜ is the predicted value and yˆ

is the mean value. The score value range between 1.0 (perfect fit) to
−∞. A model that always predicts the expected value of y disregarding
the input would have a score of 0.

Example: Fig. 7 (middle right) shows the Regulus Tree of the 2D
function from Fig. 4. In this case, we encode the fitness score of the
linear model in each partition as color after we clamped it to the range
0 (blue) to 1 (red). The details view, Fig. 7 left, shows projections of
data points in several selected partitions.

In general, the higher a partition is positioned alone the vertical axis
the lower the fitness score will be (less red) as each merger add more
points, which by definition can only reduce the fitness. The numerical
value of the current attribute is displayed via a tooltip along with
additional information. Partitions 21 and 34 have very good models
(0.94 and 0.96 respectively) although they are very different from each
other with respect to the x1 dimension. This difference is reflected in
their parent, partition 20, which has a lower fitness score (0.77) due to
the nonlinearity the merge introduced in the x1 dimension.

The shallow hill (top left in the 3d view) contains over half the data
points and is captured by partition 45 as a merge of four partitions with
very good but very different linear models, leading to a fitness score
of only (0.42). Close examination (zooming) confirms that two of the
partitions merge first, followed by a merge with the third and fourth.
The two intermediate partitions are not stable and have a very short
lifespan. Finally, the root of the tree, partition id 0, consists of the entire
domain (2000 sample points), and represent the case where we simplify
the More-Smale complex all the way down to a single partition. As can

Listing 2. Fitness score (not suitable for derived trees)

Fig. 7. Left: details view showing points in selected partitions. Right:
Three views of the Regulus Tree, each showing separate fitness measure

(blue = 0, red = 1)

be expected, the fitness score is only 0.38 since there is no good global
linear model for the data.

Parent and Child Fitness Partitions 20, 21 and 34 in the above
example, highlight the case where a merger of two partitions, both with
very good linear models, can lead to a partition with a much worse
fitness score. In this case, we should avoid simplifying further at least
locally. The different situation can arise where the parent model is
very similar one of the children but not the other one. Fig. 8 depict
a potential merger between two partitions for a 1d scalar function,
where both the children and the parent have good linear models. If
we rely only on the fitness score of the parent, we may conclude that
the parent represents a good simplification choice, a decision we may
not take if we examine at the actual data. This scenario can occur, for
example, when one partition contains a lot more data points then the
second partition. In some applications, this can be addressed by giving
different weights to the points in the two partition. In the context of
this work, we specifically want to identify and flag situations like this
as they are likely pointing region where the scalar function have unique
characteristics. Furthermore, we would like to be able to detect these
cases directly in the Regulus Tree without the need to examine the data
points.

To address this issue we introduce two relative fitness measures as
shown in Listing 2. The Parent Fitness is the fitness score of the parent’s
model with respect to the partition data. Conversely, the Child Fitness
is the fitness score of the partition model with respect the parent’s
data. Referring back to Fig. 7, the parent fitness is shown in the top
right tree and the child fitness in the bottom right tree. The parent
fitness indicates that the model of partition 20 moderately fits the data
in partitions 21 and 34 (0.79 and 0.65 respectively). The child fitness
scores clearly show that the models for partitions 21 and 34 do not fit
well with their parent’s data (0.2, -1.8 respectively), strongly implying
that this simplification step should not be used.

Example part II: Using the combination of fitness and child fitness
scores, we can see that a persistence level of 0.2 provides a very good
simplification value. Fig. 9 shows a top down projection of the full

+

Fig. 8. A merge of two partitions with good but different models can lead
to a partition with a model that is similar to only one of them.

def linear_ model(tree , node):
return LinearRegresssion().fit(node.x, node.y)

def ridge_model(tree , node):
return Ridge().fit(node.x, node.y)

tree. add_attr(ridge_model , name=’model’)
Parent Fitness: parent’s model, node’s data

Fitness

Child Fitness: node’s model, parent’s data

def fitness(tree , node):
model = tree[’model’][node]
return model.score(node.x, node.y)

def parent_fitness(tree , node):
parent_model = tree[’ m odel’][node.parent]
return parent_ model.score(node.x, node.y)

def child_fitness(tree , node):
model = tree[’model’][node]
return model.score(node.parent.x, node.parent.y)

8

Fig. 9. Left: Graph view of the full More-Smale complex and the data

points as viewed from above. Middle: Simplification for persistence level

= 0.2 Right: Adding the y-axis and slightly rotating the x1- and x2 axis

generates a pseudo 3D projection.

More-Smale complex and both top down and side view projections of
the simplified More-Smale complex . We designed our visual explo-
ration environment specifically to cater to this kind of workflow where
multiple measures need to be considered at the same time. The user
can visualize multiple Regulus Tree instances, each encoding different
measures, or simply define a new measure that returns a value based
on evaluation of the the fitness, child fitness, and parent fitness in the
partition.

Reference Model Fitness: The parent and child fitness measures
play an important role in our workflow despite being limited to only the
local neighborhood of a node. As a side note, we do not define a fitness
measure between siblings because in the case of derived trees (see
Sect. 4.3 a partition can have more than two children. The advantage
of the local nature of the parent and child fitness measures is that we
can depict each measure over all the nodes in the tree at once. There
are cases, however, where we want to compare and contrast models
for more distanced ancestors and even between partitions in different
parts of the tree (recall that the tree is organized with respect to the list
of merges generated using persistence homology not based on local
geometry). Depicting many independent global comparisons at once
is not possible. Instead, we define a reference model fitness measure
that applies a reference model to the data in each partition. When the
user hovers over the tree we set the reference model to the model of
the node under the mouse and reset the cache to cause the values to be
recomputed.

Dimension Fitness: Regression methods fit linear regression mod-
els by minimizing cost functions that take into consideration all the
dimensions of the data. In that sense the cost (error) is spread over
all the dimensions. Within the context of this work, we are trying
to identify unique partitions, which means we aim to find maximum
discrepancies between partitions and in particular with respect to indi-
vidual dimensions.

Our dimension fitness approach is to compute a vector of regression
models for each partition, one per dimension, instead of a single model.
Scoring in this case means applying each model in the vector to the
data, resulting in a vector of scores instead of one value. Given two
partitions, we apply and score the model vector of one partition to both
data sets and finally compute the cosine similarity between the two
score vectors (Listing 3).

Listing 4. Chained attributes. Parent/child relation depends on the current

tree structure

to avoid recomputing them for each tree. On the other hand, relative
measures are defined with respect to a tree structure and thus should be
stored at the nodes. This means that when looking for an attribute or
measure for a partition, we need to know where to search for it, which
undermine the notion of separation of concerns. Derived trees, such as
when one tree is a simplification of another, add further complication.
The new derived tree will most likely have a similar structure to the
original tree but will be composed of new nodes. We would rather not
have to copy or recompute and instead reuse those relative attributes
the are valid for the new tree.

Our solution is to chain attributes by maintaining a pointer to the
attributes of the parent tree. When the value of an attribute is not found
in the new tree, we first consult the parent’s attributes before computing
the value. To avoid recomputing relative measures, we stored such
measures using a key consisting of the ids of both partitions. We can
then reuse a previously computed value if the same parent-child pair
exist in the original tree. To support this we set the node id to its
partition id so that keys stays the same in derived trees. Listing 4 show
how we redefine parent and child fitness in terms of a relative measure
(compare to Listing 2)

8 USE CASES

8.1 Combustion

In this example we look at sample data extracted from a time dependent
jet simulations of turbulent CO/H2-air flame, where each sample point
consists of chemical composition and temperature [17]. The data
includes extinction and reignition phenomena where several chemical
components form and evolve during the combustion reaction and in
turn effect the amount of heat released. In this analysis we explore the
temperature in relation to the chemical composition.

The data consist of 5172 samples with 10 chemical species. Fig. 10,
depicts fitness for a Regulus Tree after filtering out partitions with less
then 100 data points. The root of the tree demonstrates that a single
linear model describe the whole data with an exceptional score of 0.998.
We fit good models in most other partitions but they are not necessarily
similar to each other. A zoom-in to persistence range [0, 0.15] (middle)
reveals a large partition containing 30% of data points all of which lie
outside of the active combustion zone and should have been removed.
This fact wasn’t noticed in previous works.

Using child and parent fitness doesn’t reveal much but once we
switch to child dimension fitness the tree comes to life, Fig. 1. The
figure also shows the data points of the (four) top-most partitions that
are different than their parents. Partition 494 (right most in the tree,
bottom in the grid) is distinctly different from the other partitions. The

Listing 3. Dimension Fitness

7 CHAINED ATTRIBUTES

Since several trees can point to the same collection of partitions, we
would have preferred to store attributes in their respective partition

Fig. 10. Combustion: Initial tree (left) shows that a single linear model
describes all the data points(score = 0.998). Right: a zoom to persistence

range [0:0.15] reveal a previously unknown partition containing large

number (30%) of sample points that are outside of the active combustion

zone and should have been removed (top).

d e f r e l a t i v e f i t n e s s (t r e e , has model , h a s p t s) :

r e t u r n t r e e [’ model ’] [has model]

. s c o r e (h a s p t s . x , h a s p t s . y)

d e f p a r e n t f i t n e s s (t r e e , node) :

r e t u r n t r e e [’ r e l a t i v e f i t n e s s ’] [node . p a r e n t , node]

d e f c h i l d f i t n e s s (t r e e , node) :

r e t u r n t r e e [’ r e l a t i v e f i t n e s s ’] [node , node . p a r e n t]

def relative_dim(tree , models , data):
return [models[i]. score(data.x[i], data.y)

for i in range(len(models)]
def child_dim _fitness(tree , node):

models = tree[’dim _ models’][node]
return cosine_similarity(

tree[’relative_dim’][models , node],
tree[’relative_dim’][models , node.parent])

9

a

Power ratio Pu U Am

a b c d

Fig. 11. Graph views of the combustion data. a) Highlighting the points
of each partition. b) Without the HO2 only the two expected minima are

apparent. c) The three minima separates along the HO2 direction. d)

Regression curves follow the shape of the manifold.

three other partitions differ mainly with respect of HO2, though the
points in the first and third partitions (5 and 488) are mostly in the lower
value. Fig. 11 shows the critical points graph. Note that the edges for
the first three partitions overlap in (b) but are clearly separated in (c).

The four partitions share a single maxima but feature four distinct
minima. The minima in partition 494 captures a situation where fuel
(H2 and CO) is available but the lack of oxidizer (O2) prevents a chemi-
cal reaction. The situation is reversed in partition 5 where oxidizer (O2)
is available but the lack of fuel prevents a reaction. In partitions 460
and 488, the mixing of fuel and oxidizer is highly turbulent and blows
the flames out, resulting in large amount of HO2. The clear separation
between these two minima could be due to undersampling or possible
the boundary of the manifold.

8.2 Nuclear Fuel Cycle Simulations

Nuclear fuel cycle analysis focuses on modeling the nuclear industry
and ecosystem at a macroscopic level. This example studies scenarios
for transitioning from one technology, Light Water Reactors (LWR)
to a newer Sodium-cooled Fast breeder Reactor (SFR) technology.
LWR reactors can use either enriched uranium (UOX, Uranium Oxyde)
or a mixture of Uranium and Plutonium (MOX, Mixed Oxyde) as
fuel but produce Minor Actinides waste. Minor Actinides have a
long lifetime and high activities, which make such wastes difficult
to deal with. In contrast, SFR reactors mainly use a mix of Natural
Uranium and Plutonium as a fuel (MOX). The SFR reactors have the
ability to breed Plutonium from the Uranium and energy production
is based on the fission of the Plutonium. This breeding capability
allows the fuel to stay longer in the fuel, reducing the amount of Minor
Actinides ultimately present in the waste. Some combination of fuel
and SFR reactor configuration allows to breed more Plutonium than
it will burn . A sufficiently large number of SFR reactors (used in
’breeder’ configuration) can thus be self sustained.

The study consists of 3300 simulation runs, using four input param-
eters (breeding ratio, start year of LWR fuel reprocessing, first year
an SFR can be deploy and a bias measure). The aim here is to find a
deployment schedule that transitions from an ecosystem consisting of
LWRs to one with only SFR reactors, while minimizing some objective
function. To this end we computed several objective functions at the
end of each simulation including: the ratio of total power generated
by LWRs reactors to the total energy generated over the simulation’s

Fig. 12. Transition scenario: Partitions selected based on dimension

fitness (left). Partition 1342 exhibits unique behaviour (mid and right)
though its minimum (simulation 2330) is not the lowest (right).

Fig. 13. Encoding other output variables as color demonstrates the

advantages of simulation 2330 which exhibits low power ration and
consistently generates low volumes of excess radio active materials.

Fig. 14. Simulation 2330 exhibits an excellent and smooth transition (left),

while simulation 1758 does not lead to a transition (right).

200 years span, the mean ratio of plutonium to generated power, and
amount of nuclear waste such as Plutonium, Uranium and Americium.
Of the 3300 simulation only 2007 led to a complete transition within
the first 120 years). In the following we looked at the mean ration of
Plutonium to power objective function. Fig. 12 show a reduced Regulus
Tree (remove partitions with less than 100 simulations or a lifespan
less then 0.001) depicting child dimension fitness. Several partitions
that stand out are also shown. The graph view on the right shows
that partition 1342 exhibits a unique behaviour, although its minima
(simulation run 2330) doesn’t have the lower value. Fig. 13 shows
that adding ’bias’ in the graph view affects only one of the minima.
However, when we use the same partitions and graph, but change the
colors to encode other output values, we can see that simulation 2330
is unique in that it consistently exhibits low values (blues) for power
ration and the amount of the nuclear waste generated. Fig. 14 shows
the deployment schedule of simulation 2330 (top) and an example of a
simulation that doesn’t lead to a complete transition.

9 CONCLUSIONS

The Regulus Tree addresses the important, though often neglected,
’why’ question by proposing a new perspective of the topology simpli-
fication process. The Regulus Tree visualization offers both a concise
broad view of the simplification landscape and a guide for an interac-
tive visual exploration of the underlying scalar function. We describe
the Regulus Tree in the context of Morse-Smale complexes, but the
partition’s perspective and the tree are equally applicable to Morse
complexes. Some of the measures as well as the inverse regression
curves are not directly applicable and one will have to use high order
regression models.

The Regulus Tree has several limitations. First, it does not preserve
spatial locality or even adjacency relation between partitions. Mapping
spatial locality is a complex issue for multi-dimensional data in general.
Adjacency information can be retrieved from the Morse-Smale com-
plexes, though how to depict it is not clear and is especially problematic
in a setting with many levels of details. Second, Morse-Smale partitions
can have complex twisting shapes that are not captured directly in the
tree structure and the tree does not address the notion of topological
holes.

We have begun exploring methods for using the inverse regression
curves to facilitate adaptive sampling, both for validation purposes
and for improving spatial resolutions in areas that are undersampled.
We are also looking at using t-SNE and other dimensional reduction
and clustering techniques to analyze the linear models and provide
additional measures for identifying and highlighting potential unique
partitions.

 Partition #1342

Simulation 2330

mean (Pu / Power)

Manifold
boundary?

10

REFERENCES

[1] S. Bergner, M. Sedlmair, T. Moller, S. N. Abdolyousefi, and A. Saad.

Paraglide: Interactive parameter space partitioning for computer simu-

lations. IEEE Transactions on Visualization and Computer Graphics,

19(9):1499–1512, Sep. 2013. doi: 10.1109/TVCG.2013.61

[2] H. Bhatia, A. G. Gyulassy, V. Lordi, J. E. Pask, V. Pascucci, and P. Bre-

mer. Topoms: Comprehensive topological exploration for molecular and

condensed-matter systems. Journal of Computational Chemistry, 0(0),

2018. doi: 10.1002/jcc.25181

[3] P. . Bremer, B. Hamann, H. Edelsbrunner, and V. Pascucci. A topological

hierarchy for functions on triangulated surfaces. IEEE Transactions on

Visualization and Computer Graphics, 10(4):385–396, July 2004. doi: 10.

1109/TVCG.2004.3

[4] P.-T. Bremer, G. Weber, V. Pascucci, M. Day, and J. Bell. Analyzing

and tracking burning structures in lean premixed hydrogen flames. IEEE

Transactions on Visualization and Computer Graphics, 16(2):248–260,

2010.

[5] P. Bubenik. Statistical topological data analysis using persistence land-

scapes, 2012.

[6] H. Carr, J. Snoeyink, and U. Axen. Computing contour trees in all dimen-

sions. Computational Geometry, 24(2):75–94, 2003.

[7] W. S. Cleveland and S. J. Devlin. Locally weighted regression: An

approach to regression analysis by local fitting. Journal of the American

Statistical Association, 83(403):596–610, 1988. doi: 10.1080/01621459.

1988.10478639

[8] D. Cohen-Steiner, H. Edelsbrunner, and J. Harer. Stability of persistence

diagrams. Discrete & Computational Geometry, 37(1):103–120, Jan 2007.

doi: 10.1007/s00454-006-1276-5

[9] H. Edelsbrunner, J. Harer, and Zomorodian. Hierarchical morse smale

complexes for piecewise linear 2-manifolds. Discrete and Computational

Geometry, 30:87–107, 07 2003. doi: 10.1007/s00454-003-2926-5

[10] H. Edelsbrunner, D. Letscher, and A. Zomorodian. Topological persistence

and simplification. Discrete Comput Geom, 28:511–533, 2002.

[11] S. Gerber, P. Bremer, V. Pascucci, and R. Whitaker. Visual exploration of

high dimensional scalar functions. IEEE Transactions on Visualization and

Computer Graphics, 16(6):1271–1280, Nov 2010. doi: 10.1109/TVCG.

2010.213

[12] S. Gerber and K. Potter. Data analysis with the morse-smale complex:

The msr package for r. Journal of Statistical Software, 50(2):1–22, 7 2012.

[13] S. Gerber, O. Ru¨bel, P.-T. Bremer, V. Pascucci, and R. T. Whitaker. Morse-

smale regression. Manuscript, 2011.

[14] R. Ghrist. Barcodes: The persistent topology of data. BULLETIN (New

Series) OF THE AMERICAN MATHEMATICAL SOCIETY, 45, 02 2008.

doi: 10.1090/S0273-0979-07-01191-3

[15] A. Gyulassy, N. Kotava, M. Kim, C. D. Hansen, H. Hagen, and V. Pas-

cucci. Direct feature visualization using morse-smale complexes. IEEE

Transactions on Visualization and Computer Graphics, 18(9):1549–1562,

2012.

[16] A. Gyulassy, V. Natarajan, V. Pascucci, P.-T. Bremer, and B. Hamann.

Topology-based simplification for feature extraction from 3D scalar fields.

IEEE Transactions on Computer Graphics and Visualization, 12(4):474–

484, 2006.

[17] E. R. Hawkes, R. Sankaran, J. C. Sutherland, and J. H. Chen. Scalar mixing

in direct numerical simulations of temporally evolving plane jet flames

with skeletal co/h2 kinetics. Proceedings of the combustion institute,

31(1):1633–1640, 2007.
[18] D. Maljovec, B. Wang, P. Rosen, A. Alfonsi, G. Pastore, C. Rabiti, and

V. Pascucci. Rethinking sensitivity analysis of nuclear simulations with

topology. In 2016 IEEE Pacific Visualization Symposium (PacificVis), pp.

64–71. IEEE, 2016.

[19] K. Matkovic´, D. Gracˇanin, and H. Hauser. Visual analytics for simulation

ensembles. In Proceedings of the 2018 Winter Simulation Conference,

WSC ’18, p. 321–335. IEEE Press, 2018.

[20] K. Matkovic´, D. Gracˇanin, R. Splechtna, M. Jelovic´, B. Stehno, H. Hauser,

and W. Purgathofer. Visual analytics for complex engineering systems:

Hybrid visual steering of simulation ensembles. IEEE Transactions on

Visualization and Computer Graphics, 20(12):1803–1812, Dec 2014. doi:

10.1109/TVCG.2014.2346744

[21] T. May, A. Bannach, J. Davey, T. Ruppert, and J. Kohlhammer. Guiding

feature subset selection with an interactive visualization. In IEEE VAST,

pp. 111–120, 2011. doi: 10.1109/VAST.2011.6102448

[22] J. Milnor. Morse Theory. Princeton University Press, 1963.

[23] T. Muhlbacher and H. Piringer. A partition-based framework for building

and validating regression models. IEEE Transactions on Visualization and

Computer Graphics, 19(12):1962–1971, 2013.

[24] V. Pascucci, K. Cole-McLaughlin, and G. Scorzelli. The toporrery: com-

putation and presentation of multi-resolution topology. In T. Mo¨ ller,

B. Hamann, and R. D. Russell, eds., Mathematical Foundations of Scien-

tific Visualization, Computer Graphics, and Massive Data Exploration,

pp. 19–40. Springer Berlin Heidelberg, Berlin, Heidelberg, 2009. doi: 10.

1007/b106657 2

[25] V. Pascucci, G. Scorzelli, P.-T. Bremer, and A. Mascarenhas. Robust

on-line computation of reeb graphs: simplicity and speed. In ACM SIG-

GRAPH 2007 papers, pp. 58–es. 2007.

[26] H. Piringer, W. Berger, and J. Krasser. Hypermoval: Interactive visual

validation of regression models for real-time simulation. In Proceedings

of the 12th Eurographics / IEEE - VGTC Conference on Visualization,

EuroVis’10, pp. 983–992. Eurographics Association, 2010.

[27] S. Smale. Generalized Poincare´’s conjecture in dimensions greater than

four. Ann. of Math., 74:391–406, 1961.

[28] S. Smale. On gradient dynamical systems. Ann. of Math., 74:199–206,

1961.

[29] R. Splechtna, K. Matkovic´, D. Gracˇanin, M. Jelovic´, and H. Hauser.

Interactive visual steering of hierarchical simulation ensembles. In 2015

IEEE Conference on Visual Analytics Science and Technology (VAST), pp.

89–96, Oct 2015. doi: 10.1109/VAST.2015.7347635

[30] J. Tierny and V. Pascucci. Generalized topological simplification of scalar

fields on surfaces. IEEE Transactions on Visualization and Computer

Graphics, 18(12):2005–2013, 2012.

