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Abstract

Orthogonal polynomials of several variables have a vector-valued three-term recurrence rela-
tion, much like the corresponding one-dimensional relation. This relation requires only knowl-
edge of certain recurrence matrices, and allows simple and stable evaluation of multivariate
orthogonal polynomials. In the univariate case, various algorithms can evaluate the recurrence
coefficients given the ability to compute polynomial moments, but such a procedure is absent
in multiple dimensions. We present a new Multivariate Stieltjes (MS) algorithm that fills this
gap in the multivariate case, allowing computation of recurrence matrices assuming moments
are available. The algorithm is essentially explicit in two and three dimensions, but requires
the numerical solution to a non-convex problem in more than three dimensions. Compared
to direct Gram-Schmidt-type orthogonalization, we demonstrate on several examples in up to
three dimensions that the MS algorithm is far more stable, and allows accurate computation of
orthogonal bases in the multivariate setting, in contrast to direct orthogonalization approaches.

Keywords. Multivariate orthogonal polynomials, Recurrence coefficient matrices, Stieltjes
procedure

1 Introduction

Orthogonal polynomials are a mainstay tool in numerical analysis and scientific computing, and serve
as theoretical and computational foundations for numerical algorithms involving approximation and
quadrature [25, 9, 10].

It is well-known even in the multivariate setting that such families of polynomials satisfy three-
term recurrence relations [12, 15, 14, 13, 28, 29, 6], which are commonly exploited for stable eval-
uation and manipulation of such polynomials. Identification or numerical approximation of the
coefficients in such relations is therefore of great importance, and in the univariate setting many
algorithms for accomplishing such approximations exist [9, 18]. Such procedures are absent in the
multivariate setting; this paper provides one algorithmic solution to fill this gap.

1.1 Challenges with computing multivariate orthogonal polynomials

Throughout, we assume the ability to compute generalized polynomial moments, i.e., there is some
algorithm available to us that evaluates p 7→

∫
Rd p(x)dµ(x) for a given positive measure µ on Rd.

This assumption is required for univariate algorithms as well.
With moment information, one could devise a linear algebraic scheme that orthogonalizes some

known basis (say monomials) into an orthonormal basis, seemingly providing a solution to the eval-
uation of orthogonal polynomials. But in finite precision, even stable orthonormalization algorithms
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can be ineffective due to the high condition number of the map from integral moments to the or-
thonormal basis; we demonstrate this in Figure 7. Thus, even computational identification of an
orthonormal polynomial basis is challenging, let alone computation of recurrence matrices.

Although computing moments with respect to fairly general multivariate measures µ is certainly
an open challenge, it is not the focus of this article: We focus on the separate, open challenge of
computing recurrence coefficients (allowing stable evaluation of multivariate polynomials) given the
ability to compute moments.

1.2 Contributions

The main contribution of this paper is to extend existing methods for computing recurrence coeffi-
cients from the univariate case to the multivariate case. Recognizing that the Stieltjes algorithm for
computing recurrence coefficients in univariate problems has shown tremendous success [22, 23, 8],
we devise a new, Multivariate Stieltjes (MS) algorithm for computing recurrence coefficients (matrices
in the multivariate setting), and hence also for computing a multivariate orthonormal basis. Thus,
our contribution, the Multivariate Stieltjes algorithm, is a new method for tackling the challenge
identified in 1.1. We demonstrate with several numerical examples the (substantially) improved sta-
bility of the MS algorithm compared to alternative Gram-Schmidt-type approaches for computing
an orthonormal basis.

The tools we employ are, qualitatively, direct multivariate generalizations of existing univariate
ideas. However, the technical details in the multivariate case are so disparate from the univariate
case that we must employ somewhat different theory and develop new algorithms. Our MS algorithm
has explicit steps in two and three dimensions, but requires non-convex optimization in four or more
dimensions. We first review some existing methods to compute univariate recurrence coefficients (see
Section 2.1) and introduce notation, properties, and the three-term relation for multivariate polyno-
mials in Section 2.2. In Section 3, we identify non-uniqueness issues for multivariate polynomials and
propose a canonical basis that removes much of this ambiguity and identifies a computational strat-
egy for direct evaluation of multivariate polynomials. We follow this by Section 4, which shows that
if µ is tensorial, then a tensor-product basis is in fact a canonical basis. Algorithms are discussed
in Section 5; Section 5.1 describes a direct procedure using orthonormalization given polynomial
moments. The new multivariate Stieltjes procedure is described in Section 5.2. Finally, we present a
wide range of numerical examples in Section 6, which compares these approaches, and demonstrates
the improved accuracy of the MS procedure.

We mention that our goals are similar to the results in [1, 26], which produce explicit recurrence
relations. However, these results are either specialized to certain domains, or use recurrence matrices
as known ingredients. Our procedures compute recurrence matrices, and hence are quite different.

1.3 Assumptions and caveats

Throughout this manuscript, we assume that integral moments of arbitrary polynomials are avail-
able/computable. For “simple” domains, we realize this through mapped/tensorized quadrature
(which is sometimes exact and sometimes approximate). For more complicated domains, we dis-
cretize the measure µ as the empirical measure associated to a large number of realizations that are
independently and identically distributed according to µ. Thus, sometimes our numerical examples
compute orthogonal polynomials with respect to an approximate measure. We emphasize that this
approximation error is not the focus of this article; our goal is to devise a scheme that, given the
ability to compute moments, accurately computes an orthonormal polynomial basis (via recurrence
matrices).

The new MS algorithm we develop is effective compared to direct orthonormalization schemes
when the condition number of the Gram moment matrix is large. For, e.g., small dimensions d
and polynomial degree, this moment matrix typically is not too ill-conditioned, and so there is
little benefit in the MS algorithm for such situations. However, when one requires polynomials of
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moderately large degree, or when the Gram matrix is extremely ill-conditioned, we show that the
MS algorithm is effective.

Finally, we note that the technique we present leverages theories associated with total-degree
spaces of polynomials, and does not directly apply to more exotic spaces. In particular, we assume
that µ is non-degenerate with respect to d-variate polynomials. This is ensured if, for example, µ
has a positive Lebesgue density over any open ball in Rd.

2 Background and notation

We use the standard multi-index notation in d ∈ N dimensions. With N0 the set of nonnegative
integers, a multi-index is denoted by α = (α1, . . . , αd) ∈ Nd

0. For α ∈ Nd
0, and x = (x1, . . . , xd) ∈ Rd,

a monomial in variables x1, . . . , xd of an index α is defined by xα = xα1
1 , . . . , xαd

d . The number
|α| := α1 + · · · + αd is the degree of xα. We denote the space of d-variate polynomials of exactly
degree n ∈ N0, and up to degree n, respectively, by

Pdn := span {xα : |α| = n, α ∈ Nd
0}, Πd

n := span {xα : |α| ≤ n, α ∈ Nd
0},

The dimensions of these spaces are, respectively,

rn = rdn := dimPdn =

(
n+ d− 1

n

)
, Rn = Rdn := dim Πd

n =

(
n+ d

n

)
=

n∑
j=0

rj ,

Since the dimension d will be arbitrary but fixed in our discussion, we will frequently suppress
notational dependence on d and write rn, Rn. We will also require differences between dimensions
of subspaces,

∆rn := rn − rn−1 =

(
n+ d− 2

n

)
, n ≥ 0, d ≥ 2,

where we define r−1 := 0. We will only be concerned with ∆rn when d = 3.
Throughout we assume that µ is a given probability measure on Rd, with d ∈ N. The support

of µ may be unbounded. We assume that for any nontrivial polynomial p,

0 <

∫
Rd

p2(x)dµ(x) <∞, (1)

and we implicitly assume that
∫
p(x)dµ(x) is computationally available. Our main goal is to compute

an orthonormal basis for L2
µ(Rd;R), where orthonormality is defined through the inner product,

〈f, g〉 =

∫
f(x)g(x)dµ(x).

2.1 Univariate orthogonal polynomials

In the univariate case, let µ be a positive Borel measure onR with finite moments, mn :=
∫
R
xndµ(x).

The standard Gram-Schmidt process applied to the moment sequence {mn} yields a sequence of
orthonormal polynomials {pn(x)}∞n=0 satisfying 〈pn, pm〉 = δm,n, where δm,n is the Kronecker delta.
In practice, it is well-known that utilizing the three-term recurrence formula for evaluation is more
computationally stable compared to direct orthonormalization techniques. There exist coefficients
b0 and {an, bn}n∈N, with an = an(µ) and bn = bn(µ), such that

xpn(x) = bn+1pn+1(x) + an+1pn(x) + bnpn−1(x), n ≥ 0, (2)

where bn > 0 for all n ∈ N0, and p0 = 1/b0, p−1 ≡ 0. Availability of the coefficients (an, bn) not
only enables evaluation via the recurrence above, but also serve as necessary ingredients for various

3



computational approximation algorithms, e.g., quadrature. Thus, knowledge of these coefficients
is of great importance in the univariate case. In some cases these coefficients are explicitly known
[24], and in cases when they are not, several algorithms exist to accurately compute approximations
[4, 19, 20, 27, 7, 11, 9, 18]. The procedure we present in this paper is generalization of the (univariate)
Stieltjes procedure [22, 23, 8].

2.2 Multivariate orthogonal polynomials

Now let µ be a probability measure on Rd with finite moments. For α ∈ Nd
0, let µα =

∫
Rd x

αdµ(x)
be the moments of µ. Again a Gram-Schmidt process applied to the multivariate monomials xα

produces a sequence of orthogonal polynomials in several variables. In order to directly apply a
Gram-Schmidt process, a linear order of the moments µα is required, translating to a required order
of multi-indices α in Nd

0. No such ordering is unique, but we will proceed in a graded total degree
fashion. We shall say that p ∈ Πd

n is an orthogonal polynomial of degree n > 0 with respect to dµ if

〈p, q〉 = 0, ∀q ∈ Πd
n−1.

Of course, p ≡ 1 is the unique unit-norm degree-0 polynomial with positive leading coefficient. The
definition above allows us to introduce, Vdn, the space of orthogonal polynomials of degree of exactly
n; that is

Vdn = {p ∈ Πd
n : 〈p, q〉 = 0,∀q ∈ Πd

n−1}.
Our assumption (1) on non-degeneracy of µ implies that dimVdn = dim Πd

n = rn. This allows us to
state results in terms of size-rn vector functions containing orthonormal bases of Vdn for n ≥ 0.

Let {pα : α ∈ Nd
0} be a sequence of orthogonal polynomials in d variables identified through the

Gram-Schmidt procedure with the partial order |α| on multi-indices. Then {pα : |α| = n} is a basis
of Vdn, motivating the vector notation:

pn = (pα)|α|=n = (pα(n,1) , . . . , pα(n,rn))T (3)

where α(n,1), . . . , α(n,rn) is any arrangement of elements in the set Jn := {α ∈ Nd
0 : |α| = n}, This

fixed basis pn has a three-term recurrence relation analogous to (2): There exist unique matrices
An+1,i ∈ Rrn×rn , Bn+1,i ∈ Rrn×rn+1 , such that

xipn(x) = Bn+1,ipn+1(x) +An+1,ipn(x) +BTn,ipn−1(x), 1 ≤ i ≤ d. (4)

where we define p−1 = 0 and p0(x) = 1. Note that if d = 1, then pn = pn, and (An,1, Bn,1) =
(an, bn).

Given an orthonormal basis {pn}n≥0, there are certain recurrence matrices that make the re-
lation (4) true. However, polynomials generated by (4) for an arbitrary set of matrices An,i and
Bn,i need not be orthogonal polynomials. The conditions on the recurrence matrices that define
the appropriate feasible set corresponding to multivariate polynomials can be described through
a multivariate version of Favard’s Theorem. The first Favard-like condition is a set of necessary
conditions called the commuting conditions.

Theorem 2.1 ([30, Theorem 2.4]). If An,i and Bn,i for i ∈ [d] and n ∈ N0 are recurrence matrices
corresponding to an orthonormal polynomial sequence, then they satisfy the following conditions for
every i, j ∈ [d]:

Bn+1,iB
T
n+1,j +An+1,iAn+1,j +BTn,iBn,j = Bn+1,jB

T
n+1,i +An+1,jAn+1,i +BTn,jBn,i, n ≥ 0,

(5a)

Bn,iAn+1,j +An,iBn,j = Bn,jAn+1,i +An,jBn,i, n ≥ 1,
(5b)

Bn,iBn+1,j = Bn,jBn+1,i, n ≥ 1.
(5c)
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One way to informally motivate these conditions is as follows: Note that (4), for a fixed n,
corresponds to d sets of conditions of size rn that determine the rn+1 degrees of freedom in pn+1.
In order for all these conditions to be consistent, the recurrence matrices must satisfy certain con-
straints. Mechanically, these constraints (5) are identified through two different computations of
identical matrix moments. Note that if d = 1 then the commuting conditions (5) are vacuous since
the recurrence matrices reduce to scalars.

The multivariate Favard Theorem combines the commuting condition with a rank condition on
the Bn,i matrices.

Theorem 2.2 ([30, Theorem 2.3]). If

rankBn = rn, Bn :=


Bn,1
Bn,2

...
Bn,d

 ∈ Rdrn−1×rn , (6)

and the recurrence matrices satisfy the commuting conditions (5), then (4) generates a set of poly-
nomials orthonormal with respect to some positive-definite functional. Furthermore, recurrence ma-
trices corresponding to any orthogonal family satisfy the rank condition above.

The starting point for our multivariate Stieltjes algorithm is the following direct observation:
Inspection of the recurrence relation (4) reveals that the coefficient matrices can be computed via:

An+1,i =

∫
Rd

xipn(x)pTn (x)dµ, Bn+1,i =

∫
Rd

xipn(x)pTn+1(x)dµ. (7)

Note that An+1,i is determined by (quadratic moments of) pn, but Bn+1,i does not have a similar
characterization using only degree-n polynomials.

3 Non-uniqueness and evaluation of polynomials

There are two computational hurdles we must address before discussing algorithms for computing
recurrence matrices. The first hurdle is the non-uniqueness of elements in the basis pn, even though
Vdn is unique. In one dimension, the only non-uniqueness corresponds to a multiplicative sign,
but in more than one dimension we have non-uniqueness corresponding to arbitrary orthogonal
transformations. The second challenge is that (4) does not provide a direct strategy for evaluating
orthogonal polynomials since Bn+1,i is a rectangular, possibly rank-deficient matrix. We address
these challenges simultaneously by introducing a canonical form for the basis vectors.

3.1 Canonical bases

The three-term recurrence (4) for a fixed i ∈ [d] is an underdetermined set of equations for pn+1,
and hence this cannot be used in isolation to evaluate polynomials. To make the system determined,
one could consider the equations (4) for all i ∈ [d] simultaneously. To aid in this type of procedure,
we make a special choice of orthonormal basis that amounts to choosing a particular sequence of
unitary transformations in section 3.

Definition 3.1. Let {pn}n∈N0
be an orthonormal set of polynomials with recurrence matrices An,i

and Bn,i for i ∈ [d], n ∈ N0. We say that {pn}n∈N0
is a canonical (orthonormal) basis, and that

the matrices An,i and Bn,i are in canonical form if the following is true: For every n ∈ N we have
the condition

BTnBn =
∑
i∈[d]

BTn,iBn,i = Λn, (8)
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where Bn is as defined in (6), and the matrices {Λn}n∈N are a sequence of diagonal matrices with
elements of each matrices appearing in non-decreasing order.

Although the condition for canonical form appears only explicitly through a condition on Bn,i,
the matrices An,i are coupled with Bn,i through the commuting conditions in Theorem 2.1 so that
canonical form is implicitly a condition on the An,i matrices as well.

The utility of a canonical basis is revealed by the following result.

Theorem 3.1. Let the orthonormal basis {pn}n∈N0
be a canonical basis so that the associated

matrices An,i and Bn,i satisfy (8). Then,

Λn+1pn+1 =

∑
i∈[d]

xiB
T
n+1,i

pn −
∑
i∈[d]

BTn+1,iAn+1,i

pn −
∑
i∈[d]

BTn+1,iB
T
n,i

pn−1, (9)

for each n ≥ 0, where Λn+1 ∈ Rrn+1×rn+1 is diagonal and positive-definite (and hence invertible).

Proof. The relation (9) is computed by (vertically) stacking the d relations (4) for i ∈ [d]. Although
this stacked system is overdetermined, it is consistent since (4) must hold for all i ∈ [d]. Multiplying
both sides of the stacked system by BTn+1 yields (9), and we need only explain why Λn+1 = BTn+1Bn+1

is diagonal and positive-definite. The diagonal property is immediate since the basis is canonical,
and clearly is positive semi-definite. That it is in fact positive-definite is a consequence of the rank
condition (6), ensuring that rn+1 = rank (Bn+1) = rank (Λn+1).

The theorem above, in particular (9), demonstrates how knowledge of (An+1,i, Bn+1,i)i∈[d] trans-
lates into direct evaluation of pn+1: the right-hand side of (9) is computable, and need only be scaled
elementwise by the inverse diagonal of Λn+1. An alternative procedure in [1] explicitly transforms
known recurrence matrices into a relation that can be used to evaluate monic polynomials. The
main requirement for our evaluationtechnique above is that the recurrence matrices are in canonical
form. Fortunately, it is fairly simple to transform any valid recurrence matrices into canonical form.

3.2 Transformation to canonical form

Although the recurrence matrices An,i and Bn,i are unique if we fix the basis pn, there is substantial
freedom in how the basis is chosen. In particular, let {Un}n≥0 be an arbitrary family of unitary
matrices with sizes,

Un ∈ Rrn×rn , UTn Un = I.

Then a new orthonormal basis qn can be defined,

qn(x) := Unpn(x). (10)

The bases {pn}n≥0 and {qn}n≥0 satisfy a type of (total degree-)graded biorthogonality property:

• 〈pα, pβ〉µ = δα,β for every α, β ∈ Nd
0

• 〈qα, qβ〉µ = δα,β for every α, β ∈ Nd
0

• 〈pα, qβ〉µ = 0 if |α| 6= |β|.

In addition, a manipulation of (4) shows that the basis elements qn satisfy a three-term recurrence,

xiqn(x) = Dn+1,iqn+1(x) + Cn+1,iqn(x) +DT
n,iqn−1(x), 1 ≤ i ≤ d,

6



where the new recurrence matrices Cn,i and Dn,i can be explicitly derived from the unitary matrices
Un and the recurrence matrices for pn,

Cn,i = Un−1An,iU
T
n−1, Dn,i = Un−1Bn,iU

T
n , (11)

for every i ∈ [d] and n ∈ N0. Our goal now is to take arbitrary valid recurrence matrices (An,i, Bn,i)
and identify the unitary transform matrices {Un}n∈N so that (Cn,i, Dn,i) are in canonical form.

Since BTnBn is symmetric, then it has an eigenvalue decomposition,

BTnBn = VnΛnV
T
n , (12)

with diagonal eigenvalue matrix Λn and unitary matrix Vn, where we assume the diagonal elements
of Λn are in non-increasing order. Then by defining,

Un = V Tn , n ≥ 1,

which identifies Cn,i and Dn,i through (11), then we immediately have that∑
i∈[d]

DT
n,iDn,i =

∑
i∈[d]

(V Tn B
T
n,iVn−1)(V Tn−1Bn,iVn) = V Tn B

T
nBnVn = Λn,

and hence qn is a canonical basis, with Cn,i and Dn,i the associated recurrence matrices in canonical
form. Thus, for each fixed n, a transformation to canonical form is accomplished via a single size-rn
symmetric eigenvalue decomposition.

The discussion above also reveals how much non-uniqueness there is in the choice of canonical
form through non-uniqueness in the symmetric eigenvalue decomposition: each row of Un is non-
unique up to a sign, and arbitrary unitary transforms of sets of rows corresponding to invariant
subspaces of BTnBn are allowed. If the non-increasing diagonal elements of Λn have distinct values,
then each of the functions in the vector qn is unique up to a multiplicative sign.

4 Recurrence matrices and canonical form for tensorial mea-
sures

We take a slight detour in this section to identify recurrence matrices and associated canonical forms
for tensorial measures µ. If µ is a tensorial measure, i.e.,

µ =

d⊗
j=1

µj ,

where each µj is a probability measure on R satisfying the non-degeneracy condition (1), then there
exists a sequence of univariate orthonormal polynomials for each j ∈ [d]. In particular, fixing j, there
exist coefficients {aj,n}n∈N ⊂ R and {bj,n}n∈N0

⊂ (0,∞) such that the sequence of polynomials
defined by the recurrence,

xjpj,n(xj) = bj,n+1pj,n+1(xj) + aj,npj,n(xj) + bj,npj,n−1(xj), n ≥ 0,

with starting conditions pj,−1 ≡ 0 and pj,0(xj) = 1/bj,0, are L2
µj

(R)-orthonormal,∫
R

pj,n(xj)pj,m(xj)dµj(xj) = δm,n, n,m ∈ N0,

with deg pj,n = n. With these univariate polynomials, we can directly construct multivariate or-
thonormal polynomials,

pα(x) :=

d∏
j=1

pj,αj
(xj), α ∈ Nd

0, (13)
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with deg pα = |α|. We now construct vectors containing polynomials of a specific degree as in (3).
Specifically, let Jn denote any ordered set of the multi-indices α satisfying |α| = n,

Jn :=
(
α(n,1), . . . , α(n,rn)

)
, n ≥ 0.

We have |α(n,k)| = n for each k ∈ [rn]. Then we define pn(x) as a vector of size rn,

pn = (pα(n,1) , . . . , pα(n,rn))
T
. (14)

Clearly this set {pn}n∈N0 is a sequence of multivariate orthogonal polynomials. The next subsection
explicitly computes the associated recurrence matrices.

4.1 Recurrence matrices

Given the ordering of multi-indices defined by the sets (Jn)n∈N0
, we require a function that identifies

the location of the index α(n,k) + ej in the set Jn+1. Fixing the sets {Jn}n≥0, we define a function
c : Nd

0 × [d]→ N defined as

c
(
α(n,k), i

)
= The index q such that α(n,k) + ei = α(n+1,q).

Note that c(α, i) is well-defined for all α ∈ Nd
0 and i ∈ [d]. We can now identify recurrence matrices

for the polynomials pn explicitly in terms of univariate recurrence coefficients.

Theorem 4.1. With the set of polynomials (pn)
∞
n=0 defined by (14) and (13), then the recurrence

matrices are given by,

An+1,i = diag
(
a
i,α

(n,k)
i +1

)rn
k=1

, i ∈ [d], (15a)

where α
(n,k)
i is the ith component of α(n,k), and

Bn+1,i =

rn∑
k=1

b
i,α

(n,k)
i +1

ern,ke
T
rn+1,c(α(n,k),i), (15b)

where em,j is an m-dimensional vector with entry 1 in location j and zeros elsewhere.

Proof. Fixing any n ∈ N0 and i ∈ [d], and for each k ∈ [rn], the kth component of the vector pn
satisfies,

xipα(n,k)(x) =
(
xipα(n,k)

i
(xi)

)∏
j 6=i

p
α

(n,k)
j

(xj)

=
(
b
i,α

(n,k)
i +1

p
α

(n,k)
i +1

(xi) + a
i,α

(n,k)
i +1

p
α

(n,k)
i

(xi) + b
i,α

(n,k)
i

p
α

(n,k)
i −1

(xi)
)∏
j 6=i

p
α

(n,k)
j

(xj)

= bi,n+1pα(n,k)+ed,i(x) + ai,n+1pα(n,k)(x) + bi,npα(n,k)−ed,i(x).

By comparing the final expression above with the three-term recurrence (4), the components of the
matrices An+1,i and Bn+1,i can be identified and are given as in (15).

The result above is not necessarily new (see a specialized case in, e.g., [6, Section 3.3.4]), but we
have not seen this formula in its generality appearing in the literature. When µ is tensorial, then
computational methods for evaluating pn need not explicitly use recurrence matrices: the relations
(14) and (13) show that one needs only knowledge of univariate recurrence coefficients aj,n, bj,n.
Computation of these coefficients from the marginal measure µj is well-studied and has several
solutions (cf. section 2.1). However, if one wanted the recurrence matrices for this situation, they
are explicitly available through the result above. We next show that, up to a permutation, such
tensorized basis elements form a canonical basis.
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4.2 Canonical form for tensorial measures

The explicit formulas in (15) allow us to investigate the canonical condition (8):

BTnBn =
∑
i∈[d]

BTn,iBn,i = diag

(
d∑
i=1

b2
i,α

(n−1,1)
i +1

,

d∑
i=1

b2
i,α

(n−1,2)
i +1

, . . . ,

d∑
i=1

b2
i,α

(n−1,rn−1)

i +1

)

In order for pn to be a canonical basis, the diagonal elements above must be non-increasing. While it
is not transparent on how to accomplish this for generic univariate coefficients (ai,n, bi,n)i×n∈[d]×N,
one can always computationally achieve this by reordering the elements of pn, equivalently by
reordering the elements of Jn, according to the elements on the right-hand side above.

Corollary 4.1.1. Define permutation operators Pn : [rn−1]→ [rn−1] given by,

P (k + 1) ≥ P (k) =⇒
d∑
i=1

b2
i,α

(n−1,k+1)
i +1

≥
d∑
i=1

b2
i,α

(n−1,k)
i +1

,

for each k ∈ [rn]. Defining a new basis,

qn := (pα(n,P (k)))
rn
k=1 ,

then {qn}∞n=0 is a canonical basis.

We re-emphasize that identifying a canonical basis through an algorithmic version of the proce-
dure above is not computationally advantageous compared to direct usage of (14) and (13). However,
the procedure above gives us a method for oracle evaluation of recurrence matrices associated to
a tensorial measure µ, allowing us to compute errors relative to exact matrices in some numerical
examples.

5 Algorithms for computing recurrence coefficient matrices

We discuss two strategies for computing the recurrence matrices (An,i, Bn,i). The first is a straight-
forward Moment Method (MM) that directly uses moments to compute an orthonormal basis that can
be used directly with (7) to compute the matrices. However, this approach is very ill-conditioned
for moderately large degree and hence has limited utility. The second approach we present is the
main novel advancement of this paper, a multivariate Stieltjes (MS) algorithm that computes the
recurrence matrices through an alternative procedure. The MS algorithm is substantially more
complicated than its univariate counterpart.

5.1 The moment method (MM)

A straightforward way to compute recurrence coefficients in the univariate case is to first perform an
orthogonalization step to numerically generate orthogonal polynomials as linear expansions in some
specified basis (say monomials), and second to exploit the linear expansion expressions to compute
the recurrence coefficients. We describe the analogous multivariate procedure here.

First, we suppose that a(ny) polynomial basis {φj}j∈N is given with the properties,

span {φj}Rn

j=1 = Πd
n, n ∈ N0.

rn < j ≤ rn+1 =⇒ deg φj = n+ 1.

Again, a simple example is that φj(x) is a multivariate monomial xα for some total ordering of
the multi-indices α that respects the partial order induced by the `1(Nd

0) norm1. We assume that

1Degree-graded lexicographic ordering over multi-indices is an example of one such ordering.

9



quadratic φj moments are available, i.e., we have access to a function such that

m(i, j) =

∫
φi(x)φj(x)dµ(x), α ∈ Nd

0. (16)

This implies in particular that we can compute the Gram matrices,

Gn ∈ RRn×Rn , (Gn)i,j =

∫
φi(x)φj(x)dµ(x) = m (i, j) . (17)

Given this matrix, we can compute monomial expansion coefficients for the orthonormal basis pn.
Algebraically, this can be accomplished by orthogonalizing the columns of an identity matrix with
respect to the quadratic form 〈v, w〉n = wTGnv. As a consequence, the monomial expansion coeffi-
cients are given by the inverse Cholesky factor of Gn,

Gn = LnL
T
n , (p0, . . . , pn)

T
= L−1

n Φn, Φn = (φ1, . . . , φRn
)
T ∈ RRn , (18)

where pj is an rj-vector containing degree-j orthonormal polynomials. Combining this with (7), the
recurrence matrices can be directly computed,

An+1,i = L̃−1
n Gn,iL̃

−T
n , Bn+1,i = L̃−1

n G̃n+1,iL̃
−T
n+1, i ∈ [d], (19)

where L̃−1
n is the rn ×Rn matrix formed from the last rn rows of L−1

n , Gn,i ∈ RRn×Rn has entries

(Gn,i)i,j =

∫
xiφi(x)φj(x)dµ(x), i, j ∈ [Rn], (20)

and G̃n+1,i ∈ RRn×Rn+1 equals the first Rn rows of Gn+1,i. Thus, so long as the polynomial moments
m(i, j) and (20) can be evaluated, then this allows direct computation of the recurrence matrices.
Of course, if only an orthonormal basis (without recurrence matrices) is desired, then one may stop
at (18).

The main drawbacks to the procedures above stem from accuracy concerns due to ill-conditioning
of the Gn matrices. If the φi are selected as “close” to an orthonormal basis, then the Gn matrices
can be well-conditioned, but a priori knowledge of such a basis is not available in general scenar-
ios. However, this method is flexible in the sense that with minor modifications one may compute
an orthonormal basis (but not recurrence matrices) for very general, non-total-degree, polynomial
spaces, such as hyperbolic cross spaces.

5.2 The Multivariate Stieltjes algorithm (MS)

In this section we describe a Stieltjes-like procedure for computing recurrence matrices, which par-
tially overcomes ill-conditioning issues of the moment method. Like the univariate procedure, we
directly compute the recurrence matrices instead of attempting to orthogonalize the basis, and the
procedure is iterative on the degree n. Thus, throughout this section we assume that the recur-
rence matrices {Am,i, Bm,i}i∈[d],m≤n are available, and our goal is to compute An+1,i and Bn+1,i for

i ∈ [d].
The availability of the matrices for index m ≤ n implies that pm for all m ≤ n can be evaluated

through the procedure in Theorem 3.1. (In practice we transform Am,i, Bm,i for m ≤ n to be in
canonical form.) We will compute An+1,i directly, but compute factorized components and subblocks
of Bn+1,i, and we identify those subblocks now. Consider the truncated singular value decomposition
of Bn+1,i,

Bn+1,i = Un+1,iΣn+1,iV
T
n+1,i, i ∈ [d], (21)

10



where Un+1,i, Vn+1,i have orthonormal columns and are of sizes,

Un+1,i ∈ Rrn×rn , Σn+1,i ∈ Rrn×rn , Vn+1,i ∈ Rrn+1×rn ,

and Σn+1,i is diagonal with non-negative entries in non-increasing order. We furthermore decompose

the right-singular Vn+1,i matrices into blocks, with V̂ the first rn rows, and Ṽ the remaining rows:

Vn+1,i =

(
V̂n+1,i

Ṽn+1,i

)
, V̂n+1,i ∈ Rrn×rn Ṽn+1,i ∈ R∆rn+1×rn (22)

Thus, all together we have rewritten (21) as,

Bn+1,i = Un+1,iΣn+1,i

(
V̂ Tn+1,i Ṽ

T
n+1,i

)
. (23)

We do not assume that the Bn+1,i are in canonical form, and therefore have freedom to specify the
unitary transform for degree n+1. Without loss we implicitly choose the unitary transform Un+1 in
(11) so that Vn+1,1 is equal to the first rn columns of the size-rn+1 identity matrix. This uniquely
identifies the blocks of Vn+1,1,

V̂n+1,1 = Irn , Ṽn+1,1 = 0. (24)

We therefore need only compute V̂n+1,i, Ṽn+1,i for i ≥ 2.
The remainder of this section is structured as follows: We define certain moment matrices through

a modified polynomials basis in Section 5.2.1, which immediately yields the An+1,i matrices. Section
5.2.2 shows how more moment matrices provides a way to compute the U and Σ SVD matrices of
B. We introduce “mixed” moments in Section 5.2.3 that allow us to obtain the V̂ block of the V
matrices. The remaining block Ṽ is computed using different strategies depending on the dimension
d of the problem. For d = 2, Section 5.2.4 shows that Ṽ can be computed almost directly. For
d ≥ 3 dimensions, we must enforce the commuting conditions (5a), which is easily done in d = 3
dimensions, but requires nontrivial optimization for d > 3.

5.2.1 Moment matrices – computing An+1,i

The MS algorithm begins by considering moments of polynomials that are not explicitly known a
priori, but are easily generated during an algorithmic procedure. In particular we introduce the
moment matrices,

Sn,i :=

∫
xipnp

T
ndµ(x) ∈ Rrn×rn , Tn,i,j :=

∫
p̃n+1,ip̃

T
n+1,jdµ(x) ∈ Rrn×rn , (25)

where the modified polynomial basis p̃ is defined as,

p̃n+1,i(x) := xipn −An+1,ipn −BTn,ipn−1. (26)

Note that availability of {Am,i, Bm,i}i∈[d],m≤n along with the ability to evaluate pn imply that the

moment matrices Sn,i in (25) can be approximated via quadrature, just as is frequently done for the
φj moments of Section 5.1.

Inspection of (7) immediately reveals that,

An+1,i = Sn,i, (27)

and hence An+1,i is directly computable. This then allows p̃n+1,i to be evaluated, and hence allows
Tn,i,j to be computed. While evaluating An+1,i is fairly straightforward from Sn,i, computing Bn+1,i

from Tn,i,j is more involved.
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5.2.2 Stieltjes symmetric moments – computing Un+1,i,Σn+1,i

The matrices Tn,i,i of symnmetric moments allow us to compute the U and Σ matrices in the SVD
of B. A direct computation with the three-term recurrence (4) and the definition (25) reveals that

Tn,i,i = Bn+1,iB
T
n+1,i = Un+1,iΣ

2
n+1,iU

T
n+1,i. (28)

Therefore for each i ∈ [d], we can first compute the square, symmetric matrix Tn,i,i, and subsequently
its eigenvalue decomposition, ordering the eigenvalues in decreasing order. Then the eigenvector
matrix of Tn,i,i is Un+1,i and the square root of the eigenvalue matrix equals Σn+1,i. Thus, we are
left only to compute the rectangular Vn+1,i matrices.

5.2.3 Stieltjes mixed moments – computing V̂n+1,i

Using mixed moments Tn,i,j with i 6= j, we can compute the square matrices V̂n+1,i, which are
subblocks of Vn+1,i. (Recall from (24) that Vn+1,j is already known for j = 1, so we can consider
j > 2 without loss.) A similar computation as the Stieltjes procedure in (28) yields that Tn,i,j =
Bn+1,iB

T
n+1,j . By using the decomposition of Bn+1,i in (23), we conclude that

V̂ Tn+1,iV̂n+1,j + Ṽ Tn+1,iṼn+1,j = Σ−1
n+1,iU

T
n+1,iTn,i,jUn+1,jΣ

−1
n+1,j , i, j ∈ [d]. (29)

Letting i = 1 and utilizing (24), we have,

V̂n+1,j = Σ−1
n+1,1U

T
n+1,1Tn,1,jUn+1,jΣ

−1
n+1,j , j ≥ 2, (30)

where everything on the right-hand side is known and computable.
Note that here we have only utilized Tn,i,j for 1 = i 6= j. The case 1 6= i 6= j is vacuous for d = 2,

and we will see that the remaining block Ṽ can already be computed. When d ≥ 3, we do require
1 6= i 6= j to identify Ṽ .

5.2.4 d = 2: Orthonormality conditions for Ṽn+1,i

For d = 2, we now need only compute Ṽn+1,2. Since ∆rn = 1 for every n when d = 2, then Ṽn+1,2

is a 1× rn vector. To reduce notational clutter, we consider fixed n and use the following notation,

y := Ṽ Tn+1,2 ∈ Rrn .

Then since Vn+1,2 has orthonormal columns, i.e., V Tn+1,2Vn+1,2 = Irn , we have,

yyT = Irn − V̂ Tn+1,2V̂n+1,2, (31)

which defines y up to a sign. More precisely, we have

y = ±z, (32)

where z is computed either as a rank-1 Cholesky factor or as the positive semi-definite square root
of the right-hand side of (31). Although it appears the multiplicative sign needs to be chosen, but
if we choose (i, j) = (1, 2) in (5c), then we have(

Bn,1Un+1,2Σn+1,2V̂n+1,2 ±Bn,1Un+1,2Σn+1,2z
)

= Bn,2Bn+1,1.

Such a choice of signs makes no difference because the last column of Bn+1,1 is a zero vector.
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5.2.5 d > 2, n = 0: Falling back on moments

For d > 2 and n = 0, then Bn+1,i ∈ R1×d, and hence Ṽn+1,i ∈ R1×d−1. We have two conditions to
impose on this vector of length d− 1 ≥ 2:

• The scalar-valued commuting condition (5a) (the others do not apply for n = 0).

• A unit-norm condition on the column vector Vn+1,i (as is used in the previous section)

This amounts to 2 conditions on this vector (although the second condition does not determine
a multiplicative sign). However, as this approach combining all these conditions can be relatively
cumbersome to simply determine a vector, in this case we fall back to using MM routines. When
n = 0, the MM Gramians are typically well-conditioned. Therefore, when d > 2 and n = 0, we use
(19) to compute the Bn+1 matrix.

5.2.6 d > 2, n > 0: The commuting conditions – computing Ṽn+1,i

We recall that our remaining task is to compute Ṽn+1,i ∈ R∆n+1×rn for 2 ≤ i ≤ d. Our tools to
accomplish this will be (i) the commuting conditions (ii) orthonormality conditions on the columns
of Vn+1,i, and (iii) the mixed moments Tn,i,j for 1 6= i 6= j. For n > 0, the commuting condition
(5c) with i = 1 implies:

Bn,1Un+1,jΣn+1,j

(
V̂ Tn+1,j Ṽ Tn+1,j

)
= Bn,jBn+1,1, j ≥ 2, (33)

where only Ṽn+1,j is unknown. Note that we have made the choice (24) for Ṽn+1,1, which implies
that the last ∆rn+1 columns of Bn,jBn+1,1 vanish, i.e., the last ∆rn+1 columns of (33) read,

Kn+1,j Ṽn+1,j = 0, Kn+1,j := Bn,1Un+1,jΣn+1,j ∈ Rrn−1×rn . (34)

Thus, the columns of Ṽn+1,j lie in the kernel of the known matrix Kn+1,j . I.e., we have,

Ṽ Tn+1,j = ΨjCj , Ψj ∈ Rrn×∆rn , Cj ∈ R∆rn×∆rn+1 , (35)

where Cj is unknown and Ψj is known (computable), containing an orthonormal basis for ker(Kn+1,j),

range(Ψj) = ker(Kn+1,j), ΨT
j Ψj = I∆rn×∆rn .

We now use orthonormality of the columns of Vn+1,j . In particular this implies,

CjC
T
j = Dj := I∆rn −ΨT

j V̂
T
n+1,j V̂n+1,jΨj .

Since Dj is a symmetric, positive semi-definite matrix, then Cj must be given by,

Cj = EjWj , Ej :=
(√

Dj 0∆rn×(∆rn+1−∆rn)

)
, Wj ∈ R∆rn+1×∆rn+1 , (36)

where Wj is a unitary matrix, and
√
Dj is the symmetric positive semi-definite matrix square root of

Dj . We therefore need only determine Wj . The final linear conditions we impose are the remaining
mixed moment conditions from Section 5.2.3 involving Tn,i,j for 1 6= i 6= j ≥ 2. Using (29) and
writing in terms of the unknown Wi,Wj yields,

EiWiW
T
j E

T
j = Hn,i,j 2 ≤ i, j ≥ d, i 6= j (37)

subject to WT
j Wj = I∆rn+1

2 ≤ j ≤ d.

where,

Hn,i,j = ΨT
i (Σ−1

n+1,iU
T
n+1,iTn,i,jUn+1,jΣ

−1
n+1,j − V̂

T
n+1,iV̂n+1,j)Ψj ,
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is a computable matrix. This optimization problem for {Wj}dj=2 must be solved to determine the

Wj matrices. Once these are determined, then Ṽn+1,i is determined through (35) and (36). This is a
non-convex optimization, appearing as a generalization of a weighted orthogonal Procrustes problem
(WOPP). Even the original WOPP has no known direct solution, so that numerical optimization
must be employed to solve the above problem. Fortunately, when d = 3 some extra manipulations
do yield a direct solution.

5.2.7 d = 3: Circumventing the WOPP

When d = 3, the problem (37) simplifies substantially since we need only compute W2,W3. First
we note that if any pair of orthogonal matrices (W2,W3) satisfies (37), then so does the pair
(I∆rn+1

,W3W
T
2 ). Therefore, we may choose W2 = I∆rn+1

without loss. This then determines

Ṽn+1,2 through (35) and (36).
The determination of W3 in (37) now reduces to instance of a WOPP:

E2W
T
3 E

T
3 = Hn,2,3, subject to W3 ∈ O(∆rn+1) (38)

We now notice that Ej defined in (36) is rectangular, but when d = 3 has only one more column
than row, i.e., ∆rn = n = 1 and thus ∆rn+1 = 1 + ∆rn. Then with

Ej = Xj

(
Yj 0(n+1)×1

)
ZTj ,

the reduced singular value decompositions of E2 and E3, then (38) can be rewritten as

I(n+1)×(n+2)WI(n+2)×(n+1) = Y −1
2 XT

2 Hn,2,3X3Y
−1
3 , W = ZT2 W3Z3,

where W is an orthogonal matrix of size ∆rn+1 = n + 2. Determining W uniquely identifies W3,
but the above relation shows that the (n + 1) × (n + 1) principal submatrix of W is given by
Y −1

2 XT
2 Hn,2,3X3Y

−1
3 . To determine the last row and column of W , we write,

W =

 Y −1
2 XT

2 Hn,2,3X3Y
−1
3

v
wT


and since W is an orthogonal matrix and must have orthonormal columns, then the first n + 1
entries of w are determined up to a sign, and the signs can be determined by enforcing pairwise
orthogonality conditions among the first n + 1 columns. The final column v can be determined
(up to an inconsequential sign) as a unit vector orthogonal to the first n + 1 columns. Thus, W is
computable, which in turn determines W3, and completes the solution to (37) for d = 3.

6 Numerical test

We present numerical results showcasing the effectiveness of the MS algorithm for computing orthog-
onal polynomials on two and three-dimensional domains. All the algorithms are implemented in
Python and all the computations are carried out on a MacBook Pro laptop with a 3.1 GHz Intel(R)
Core(TM) i5 processor and 8 GB of RAM.

We measure the efficacy of any particular method through a numerical orthogonality condition.
Each method first generates computational approximations to the matrices {An,i, Bn,i}, and subse-
quently can generate computational approximations p̂n to an orthonormal basis pn. We then use
quadrature (approximate or exact as described) to evaluate the Gram matrices,

Mm,n =

∫
pm(x)pTn (x)dµ(x), (39)
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Example Abbreviation Section

tensorized Jacobi weight measure JAC 6.1.1

Measure on an annulus ANN 6.1.2

Measure within polar curves CUR 6.1.3

Measure on a rectangle with a hole HOL 6.2.1

Measure on map of Madagascar MAP 6.2.2

Measure on a torus TOR 6.1.4

Table 1: Abbreviation, subsection, and algorithm for each method. Also included is a modern citation that explains
each algorithm

and given a maximum degree N , subsequently construct a Gramian error matrix,

E =

M0,0 · · · M0,N

...
. . .

...
MN,0 · · · MN,N

− IRN
∈ RRN×RN (40)

We will both show plots of this error matrix and also report entrywise maximum values, ‖E‖∞,∞ =
maxi,j∈[RN ] |Ei,j |. In all experiments, we set N = 39 for d = 2, and N = 15 for d = 3. (These
choices result in RN = 820 and RN = 816, respectively.) We compare four methods:

• (Exact) When µ is a tensor-product measure, we use the procedure in section 4 to first explic-
itly compute the recurrence matrices, and subsequently to evaluate polynomials through the
procedure in section 3.

• (MS) The novel algorithm of this manuscript, the Multivariate Stieltjes algorithm, described in
section 5.2 and summarized in Algorithm 1.

• (MM-M) The moment method of section 5.1, involving direct orthogonalization of the monomial
basis, i.e., the functions φj are monomials xα.

• (MM-L) The moment method of section 5.1, involving direct orthogonalization of the tensorial
Legendre polynomial basis, i.e., the functions φj are tensorial Legendre polynomials with
respect to the uniform measure ν whose support is a bounding box of the support of µ.

All methods assume the ability to compute (general) polynomial moments in order to carry out
computations, and we describe in subsections below how we approximately or exactly compute
these moments via quadrature. Each experiment uses the same quadrature rule for all methods. A
summary of the experiments (i.e., the various measures µ) are given in Table 1

6.1 Experiments with moments via tensorized Gaussian quadrature

In this subsection we compute polynomial moments with respect to the measure µ via tensorized
Gaussian quadrature. In all cases except subsection 6.1.3, this quadrature is exact (in infinite
precision).

6.1.1 JAC: Tensorized Jacobi measure

For an initial investigation, we consider a tensorial measure,

dµ(x) =

d∏
i=1

B(αi, βi)(1− xi)αi(1 + xi)
βi , x ∈ [−1, 1]d αi, βi > −1,

where B(·, ·) is the Beta function, which is a tensorized Jacobi (or Beta) measure. To compute
moments, we utiilze tensorized Gauss quadrature of sufficiently high order so that all integrals are
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exact (in exact arithmetic). We randomly generated the αi, βi parameters by uniformly sampling
over the interval (−1, 10), resulting in the following choices:

(α1, α2) = (3.80, 0.78), (β1, β2) = (7.34, 8.26), d = 2

(α1, α2, α3) = (1.61, 0.32, 3.01), (β1, β2, β3) = (−0.89, 9.83, 7.67), d = 3

Figure 1: JAC results, 6.1.1: Visualization of the error matrix E in dimension d = 2 (top) and d = 3 (bottom). From
left to right in each row: the Exact, MS, MM-M, and MM-L algorithms. We choose 100 as the upper saturation point for
all colormaps as values beyond this indicate O(1) error; we continue to impose this saturation value for all subsequent
error plots.

Figure 1 visualizes the Gramian error matrix E in (40) for d = 2, 3. One observes that the Exact
and MS algorithms performs very well, but both the MM-M and MM-L algorithms suffer accumulation
of roundoff error. Even in this case, when the MM-L algorithm uses a “reasonable” choice of basis for
orthogonalization, instabilities develop quickly. In this simple case when quadrature is numerically
exact, a standard orthogonalization routine produces unstable results.

6.1.2 ANN: Measure on an Annulus

Our second test is the uniform measure µ with support in an annular region in d = 2 dimensions
centered at the origin. In polar coordinates (r, θ), this is represented as,

supp(µ) =
{

(r, θ)
∣∣θ1 ≤ θ ≤ θ2, r1(θ) ≤ r ≤ r2(θ)

}
, (41)

where (θ1, θ2) = (0, 2π) and (r1(θ), r2(θ)) = (0.5, 1.0). Quadrature with respect to the uniform
measure on this domain can exactly integrate polynomials (in the x variable) using a tensor-product
quadrature over (r, θ) space using Fourier quadrature in θ and Legendre-Gauss quadrature in the r
variable. We use a large enough quadrature rule so that all integrals are numerically exact.

In this case we do not know exact formulas for the recurrence matrices, so we rely on the metric
E. Figure 2 shows again that the MS algorithm performs better than the MM-M and MM-L methods
for large degrees.
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Figure 2: ANN results, 6.1.2. Top: Visualization of the error matrix E for the MS, MM-M, and MM-L algorithms from
left to right. Bottom: Evaluations of the rn’th entry of pn for degree n = 1, 3, 5 using the MS algorithm.

6.1.3 CUR: Measure within polar curves

We now consider a more difficult example again in d = 2 dimensions. We again use a curve defined
as (41), but this time it is a region bounded between two Archimedean spirals. In particular, we set,

(θ1, θ2) = (0, 6π), (r1(θ), r2(θ)) = (0.8θ, θ).

Again we choose µ as the uniform measure over the region defined in (41).
We write integrals as iterated, with the inner integral over r exactly computable using Legendre-

Gauss quadrature. But the outer integral in θ involves terms both polynomial and trigonometric
polynomial in θ, and we approximately integrate these values with a 106-point Fourier quadrature
rule. As can be seen in Figure 3, the novel MS procedure once again is much more stable than the
MM-M and MM-L approaches.

6.1.4 TOR: Uniform measure inside a torus

We consider the uniform measure over the interior of a torus, whose parametric representation of
the boundary is given by,

x1(θ, φ) = (R+ r cos(θ)) cosφ

x2(θ, φ) = (R+ r cos(θ)) sinφ

x3(θ, φ) = r sin(θ).

for θ, φ ∈ [0, 2π). The interior of the torus is defined by (
√
x2

1 + x2
2 − R2)2 + x2

3 < r2. We choose
r = 1 and R = 2.

Quadrature with respect to the uniform measure on this domain can exactly integrate polynomials
using a tensor-product quadrature over (r, θ, φ) space using Fourier quadrature in θ and φ and an
Legendre-Gauss quadrature in the r variable. We use a large enough quadrature rule so that all
integrals are numerically exact. In Figure 4 we again observe that MS outperforms MM-M and MM-L.
However, these two moment-based procedures give more reasonable results in this case since the
polynomial degree is relatively low.
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Figure 3: CUR results, 6.1.3. Top: Visualization of the error matrix E for the MS, MM-M, and MM-L algorithms from
left to right. Bottom: Evaluations of the rn’th entry of pn for degree n = 1, 3, 5 using the MS algorithm.

Figure 4: TOR, 6.1.4. Visualization of the error matrix E for the MS, MM-M, and MM-L algorithms from left to right.
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6.2 Moments via Monte Carlo techniques

We now consider two more complicated domains, where integration is performed approximately
using a Monte Carlo quadrature rule. I.e., we approximate moments with repsect to a uniform
measure over a domain D via, ∫

D

p(x)dx ≈ 1

M

M∑
m=1

p(xm),

where D is a two-dimensional domain and {xm}Mm=1 are iid random samples from µ. In all exam-
ples we use a single, fixed instance of the Monte Carlo samples. Therefore one can consider this
computing approximately orthogonal polynomials with respect to the uniform measure over D, or
as computing (numerically) exactly orthogonal polynomials with respect to a size-M discrete mea-
sure. We emphasize again that our goal is not to construct accurate quadrature rules, but rather to
construct orthogonal polynomials given some quadrature rule. In all simulations in this section we
take M = 108.

6.2.1 HOL: Square with a hole

We consider the uniform measure µ over the two dimension domain [−1, 1]2\B1(0), where B1(0) is
the origin-centered unit ball of radius 1. Figure 5 shows the three procedures MS, MM-M, and MM-L

perform. The MSprocedure is still the best among these three, but we see a notably increased error in
the orthogonality metric compared with the previous examples. We attribute this increased error to
an increase in the condition number of the associated matrices of the MS algorithm. We investigate
this in more detail in section 6.3.

Figure 5: HOL results, 6.2.1: Visualization of the error matrix E for the MS, MM-M, and MM-L algorithms from left to
right. Bottom: Evaluations of the rn’th entry of pn for degree n = 1, 3, 5 using the MS algorithm.

6.2.2 MAP: Measure on map of Madagascar

Our final two-dimensional example is the region of the country of Madagascar. We draw random
samples from this region via rejection sampling over a latitude-longitude bounding box, where the
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rule for inclusion in the domain is defined by positive elevation, which can be sampled via the data
in [21]. We map the bounding box to [−1, 1]2 for simpler plotting.

As can be seen in Figure 6, our orthogonality metric explodes very quickly for the MM-M and
MM-L, even for relatively small polynomial degree. The MS succeeds to a much greater degree, but
produces relatively large errors. Again we attribute this to increased ill-conditioning of associated
matrices in our procedure, see the uptrend of condition number in 6.3.

Figure 6: MAP results, 6.2.2: Top: Visualization of the error matrix E for the MS, MM-M, and MM-L algorithms from
left to right. Bottom: Evaluations of the rn’th entry of pn for degree n = 1, 3, 5 using the MS algorithm.

6.3 Stability investigation via condition numbers

We justify the accuracy of the MS, MM-M, and MM-L algorithms by investigating the condition numbers
of some of the associated matrices in each procedure. For the MM-M and MM-L algorithms, we inves-
tigate the condition number of the Gram matrix Gn in (17). For MS, we investigate the condition
number of the moment matrix Tn,i,i in (25) plotting the average of condition number of Tn,i,i over
all i.

Figure 7 shows these condition numbers for all our previous examples. We note that the Gn
matrices are badly ill-conditioned for larger degrees, but the Tn matrices are much better conditioned.
In addition, we see that for the MAP and HOL cases the condition number of Tn is larger than for
other cases, which motivates why even the MS algorithm struggles for these domains.

6.4 The Christoffel function

The ability to stably compute an orthogonal basis in multiple dimensions allows us to investigate
interesting phenomena. Let µ be uniform over a compact set in Rd, and consider the diagonal KN

of the degree-N normalized reproducing kernel, and its inverse λN , the Christoffel function,

KN (x) =
1

RN

N∑
n=0

pTn (x)pn(x), λN (x) = 1/KN (x),

so that KN (x)dµ(x) is a probability density. Random sampling from this probability measure
is known to result in near-optimal sample complexity for constructing least-squares polynomial
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Figure 7: Top row: Condition numbers of the moment matrices Tn,i,i in (25) used in the MS algorithm (averaged
over i ∈ [d]). Middle row: Condition numbers for the Gram matrices Gn in (17) used in the MM-M algorithm. Bottom
row: Same as the middle row but for the MM-L algorithm.

approximations to functions in the L2
µ norm [5]. Plotting such densities is itself interesting, but

even more so is that fact that as N ↑ ∞, such densities weakly converge to the Monge-Ampère
measure over supp(µ) [2, 17], which is a fundamental quantity of theoretical interest in polynomial
approximation in several variables [16, 3]. As analytic forms for such measures are unknown for
general domains, it is interesting to use numerical algorithms to investigate the finite but large N
behavior of KN , which is not possible directly without the ability to stably compute an orthonormal
basis. Figure 8 plots both KN and λN for four of our two-dimensional domains with N = 39.

7 Conclusions

In this paper, we extend existing approaches for computing recurrence coefficients from the univariate
case to the multivariate case. We propose a new, Multivariate Stieltjes (MS) algorithm for computing
recurrence matrices that allows stable evaluation of multivariate orthonormal polynomials.

We demonstrate with several numerical examples the substantially improved stability of the new
algorithm compared to direct orthogonalization approaches. For both small dimension and small
polynomial degree, there is little benefit, but MS outperforms other methods when one requires
polynomials of moderately large degree.

The algorithm is essentially explicit in two and three dimensions, but requires the numerical
solution to a non-convex optimization problem in more than three dimensions, whose investigation
would be a natural extension of this work.
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A Algorithms

Algorithm 1: Stieltjes procedure

Input: dimension d, max degree N , measure dµ on support Ω.
Initialization: A0,i = [0] and B0,i = [1] for 1 ≤ i ≤ d

1 for n = 0 to N − 1 do
2 for i = 1 to d do
3 evaluate orthonormal polynomials pn by (9) ;
4 compute An+1,i using moment matrices (27) ;
5 evaluate the modified polynomials basis p̃n,i by (26) ;
6 compute symmetric moments Tn,i,i by (25) ;
7 compute Un+1,i and Σn+1,i in the SVD of Bn+1,i from (28) ;
8 for j = i+ 1 to d do
9 compute the mixed moment Tn,i,j by (25) ;

10 determine V̂n+1,1 and Ṽn+1,i by (24), and assemble the matrix Vn+1,1 by (22) ;
11 compute Bn+1,1 by (21) ;
12 for j = 2 to d do

13 compute V̂n+1,j by (30) ;

14 compute yyT by (31) ;
15 if d=2 then
16 compute y by (32)
17 else if d=3 then
18 if n=0 then
19 compute Bn+1,j following the strategy in Section 5.2.5
20 else
21 compute Kn+1,j from (34) and its kernel Ψj ;
22 compute Ej from (36) ;
23 if j=2 then
24 Set W2 = I∆rn+1

25 else
26 compute W3 from (38) following the strategy in Section 5.2.7

27 assemble the matrix Vn+1,j by (22) ;

28 else
29 solve Wj from (37)

30 determine Cj by (36), and thus Ṽn+1,jby(35)

31 compute Bn+1,j by (21) ;

Output: coefficient matrices {An,i, Bn,i}Nn=0
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