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Abstract. Associated to a finite measure on the real line with finite moments are recur-
rence coefficients in a three-term formula for orthogonal polynomials with respect to this
measure. These recurrence coefficients are frequently inputs to modern computational tools
that facilitate evaluation and manipulation of polynomials with respect to the measure,
and such tasks are foundational in numerical approximation and quadrature. Although
the recurrence coefficients for classical measures are known explicitly, those for nonclas-
sical measures must typically be numerically computed. We survey and review existing
approaches for computing these recurrence coefficients for univariate orthogonal polyno-
mial families and propose a novel “predictor-corrector” algorithm for a general class of
continuous measures. We combine the predictor-corrector scheme with a stabilized Lanc-
zos procedure for a new hybrid algorithm that computes recurrence coefficients for a fairly
wide class of measures that can have both continuous and discrete parts. We evaluate the
new algorithms against existing methods in terms of accuracy and efficiency.

Keywords. Orthogonal polynomials; Recurrence coefficients; General measures; Adaptive
quadrature; Lanczos

1. Introduction

Univariate orthogonal polynomials are a mainstay tool in numerical analysis and scientific
computing. These polynomials serve as theoretical foundations for numerical algorithms
involving approximation and quadrature [32, 8, 23, 15, 16]. Given a positive measure µ
on the real line R, if µ has finite polynomial moments of all orders along with an infinite
number of points of increase, then a family of orthonormal polynomials {pn}∞n=0 exists,
satisfying deg pn = n, and ∫

R

pn(x)pm(x)dµ(x) = δm,n,

where δm,n is the Kronecker delta. If we further assume that each pn has a positive leading
coefficient, then these polynomials are unique. Such families are known to obey a three-term
recurrence formula,

xpn(x) = bnpn−1(x) + an+1pn(x) + bn+1pn+1(x), n ≥ 0,(1)

with the starting conditions p−1 ≡ 0 and p0(x) = 1/b0. The coefficients (an)∞n=1 ⊂ R and
(bn)∞n=0 ⊂ (0,∞) depend only on the (polynomial) moments of µ. In practical settings,
knowledge of these coefficients is the only requirement for implementing stable, accurate
algorithms that achieve evaluation and manipulation of polynomials that are core compo-
nents of approximation and quadrature algorithms. For example, the n eigenvalues of the
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n × n Jacobi matrix Jn are precisely the abscissae of a µ-Gaussian quadrature rule, with
Jn the symmetric tridiagonal matrix given by

Jn(µ) =


a1 b1
b1 a2 b2

. . .
. . .

. . .

bn−2 an−1 bn−1

bn−1 an

 .(2)

Therefore, the recurrence coefficients an and bn must be computed stably and accurately.
Some classical probability measures µ give rise to classical families of orthogonal polyno-

mials pn: A Gaussian measure results in Hermite polynomials; the uniform measure on a
compact interval results in Legendre polynomials; a Beta measure corresponds with Jacobi
polynomials; and a one-sided exponential measure gives rise to Laguerre polynomials. These
classical polynomial families are among a few for which explicit formulas are available for
the recurrence coefficients an and bn, see, e.g., [15, Tables 1.1, 1.2].

However, for even modestly complicated measures µ outside this classical collection, the
task of determining these coefficients can be quite difficult. For example, an application
in which this situation arises is in polynomial Chaos methods, which are techniques in sci-
entific computing problems for modeling the effect of uncertainty in a model [35, 38]. An
output’s dependence on a finite number of random variable inputs is modeled with polyno-
mial dependence on those inputs. With one random input, the polynomial approximation
is typically constructed using a basis of polynomials orthogonal to the distribution of the
random input, which requires building orthogonal polynomials with respect to a given, often
nonclassical, probability measure.

A simple example that illustrates how computation of orthogonal polynomials is difficult
for even fairly simple measures is furnished by the class of Freud weights,

dµ(x) = exp (−|x|α) dx, α > 0,(3)

with support equal to all of R. (In what follows, we will refer to µ as a measure and dµ as
a weight.) When α = 2, corresponding to the Gaussian measure (and Hermite polynomial
family), the three-term recurrence coefficients are known exactly. However, when α = 1,
no closed-form analytical formula for the coefficients an and bn exists, even though the
moments of µ are known explicitly in terms of well-studied special functions. (For example,
note that under a change of variable, the moments of the measure above correspond to
evaluations of the Euler Gamma function.)

In such general cases when no known closed-form expression for the three-term recurrence
coefficients exists, numerical methods are employed to approximate them. The main goal
of this article is to survey and extend existing methods for computing these recurrence
coefficients associated to measures for which explicit formulas are not available.

1.1. Existing approaches. When µ is not a measure for which the coefficients have explic-
itly known formulas, one typically resorts to numerical methods to approximately compute
these coefficients. A summary of the methods we consider in this article is presented in
Table 1, which indicates later sections in this article where we give a formal description of
each algorithm. A brief description of these procedures is given in Section 2, but an excel-
lent and more detailed historical survey is provided in [15, Section 2.6]. Below we present
a nontechnical summary of the approaches that we survey.

A classical approach to computing recurrence coefficients from moments is via determi-
nants of Hankel matrices [15, Section 2.1.1]. A second classical approach, the Chebyshev
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Method Abbreviation Section Citation

Discrete Painlevé I equations method DP 2.1 [3]

Hankel Determinants HD 2.2 [15, Section 2.1.1]

Arbitrary polynomial chaos expansion method aPC 2.3 [24, Section 3.1]

Modified Chebyshev algorithm MC 2.4 [15, Section 2.1.7]

Stieltjes procedure SP 2.5 [15, Section 2.2.3.1]

Stabilized Lanczos algorithm LZ 2.6 [15, Section 2.2.3.2]

Predictor-corrector method PC 3.1 —

Predictor-corrector-Lanczos method PCL 3.3 —

Table 1. Abbreviation, subsection, and algorithm for each method. Also included is a
modern citation that explains each algorithm

algorithm, transforms monomial moments by expressing the recurrence coefficients in terms
of moments involving monomials and pn [5]. A more effective approach, the modified
Chebyshev algorithm, uses moments involving pn and another arbitrary set of polynomials
[27, 33, 11]. Yet another procedure, the Stieltjes algorithm [29], computes recurrence coef-
ficients directly assuming moments involving pn can be computed. Finally, given a measure
with discrete support, the Lanczos algorithm can be used to compute the Jacobi matrix for
µ, yielding the recurrence coefficients; although this is typically unstable, a stable variant
is given in [26].

For very special forms of weight functions, other procedures can be derived. A primary
example of this are iterative recurrence-type algorithms resulting from discrete Painlevé
equations when dµ(x) ∝ exp(−xα) for α/2 ∈ N. These Painlevé equations, which deter-
mine the recurrence coefficients for pn, are remarkably simple and direct to implement, but
are quite unstable [3]. A final approach we consider amounts to using a linear orthogonal-
ization procedure, such as (modified) Gram-Schmidt, to compute the expansion coefficients
of pn in terms of the monomials. However, this procedure is known to produce quite ill-
conditioned matrices, especially for large n, making the computation of pn, and hence the
recurrence coefficients, suffer roundoff errors. Therefore, although this approach has often
been used [36, 37], it is less useful in the context of this article. Nevertheless, we consider
one recent related approach, an “arbitrary polynomial chaos” approach suggested in [24],
which amounts to solving a linear system involving a modified Hankel matrix.

1.2. Contributions of this article. Several algorithms exist to compute the recurrence
coefficients, but a few clear and direct recommendations are available for researchers with-
out substantial experience and/or knowledge of the field. The main contribution of this
paper is to summarize, evaluate, and extend existing methods for computing recurrence
coefficients for univariate orthogonal polynomial families. We first provide a survey and
comparison of many existing algorithms (see Section 2). In Section 3.1 we propose a novel
“predictor-corrector” algorithm and evaluate its utility. Finally, by modifying the “multiple
component” approach in [9, 13], we consider a new hybrid algorithm in Section 3.3 that
combines our predictor-corrector scheme with a stabilized Lanczos procedure. Our algo-
rithm can be used to compute recurrence coefficients for the fairly general class of measures
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whose differentials are given by

dµ(x) =
C∑
j=1

wj(x)1Ij (x)dx+
M∑
j=1

νjδτjdx,(4)

where C and M are finite (either possibly 0), δτj is a Dirac mass located at τj ∈ R, {νj}Mj=1

are positive scalars, each Ij is a (possibly unbounded) nontrivial interval, and wj is a
continuous (ideally smooth) non-negative function on Ij . Specification of the wj , Ij , τj , and
νj is sufficient to utilize most of the algorithms we consider, but having extra information
that characterizes wj , particularly prescribed behavior at finite endpoints of Ij , will increase
the accuracy of the procedures. In other words, with Ij = [`j , rj ] and either of the endpoints
`j , rj is finite, we assume knowledge of exponents βj , αj > −1 such that wj has polynomial
singular strength βj , αj at endpoints `j , rj , i.e.,

0 < lim
x↓`j

wj(x)(x− `j)−βj <∞, 0 < lim
x↑rj

wj(x)(rj − x)−αj <∞.(5)

Note that our assumption that αj , βj > −1 is natural since if the inequality above is true
with, say, αj ≤ −1, then µ is not a finite measure and therefore is not a probability measure.

Note that the form of µ we assume in (4) is quite general, and includes all classical
measures, those with piecewise components, measures with discrete components, measures
with unbounded support, and measures whose densities have integrable singularities.

This paper is structured as follows: In section 2 we briefly survey the existing approaches
summarized in Table 1. Section 3 contains the discussion that leads to our proposed hybrid
“PCL” algorithm: Section 3.1 discusses the predictor-corrector scheme; section 3.2 briefly
describes how we compute moments, which leverages the specific form of the measure µ
assumed in (4) and (5); section 3.3 combines these with a stabilized Lanczos procedure.
Finally, we present a wide range of numerical examples in Section 4, which compares many
of the techniques in Table 1, and demonstrates the accuracy and efficiency of the “PCL”
algorithm.

2. Existing approaches

We review here some existing methods for computing recurrence coefficients. In order to
compute the required coefficients, having some knowledge about the measure µ is neccessary.
The following are two of the more common assumptions that one makes, with the latter
assumption being stronger:

• The (monomial) moments of all orders of µ are known, i.e., the moment sequence

mn :=

∫
xndµ(x), n ≥ 0,(6)

is known and available. In practice, the integrals can be obtained by the composite
quadrature approach introduced in Section 3.2, but sometimes they can also be
computed directly in terms of special functions, such as Gamma function given the
Freud weights.
• General polynomial moments, i.e.,∫

q(x)dµ(x),(7)

are computable for a general, finite-degree polynomial q that is often identified only
partway through an algorithm.
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No particular prescription exists for how the moments above are computed, but typically
this is accomplished through a quadrature rule. In some “data-driven” scenarios, this
quadrature rule often comes as a Monte Carlo rule from an empirical ensemble.

We discuss six procedures below; in practice, only the last two are computationally stable,
but they are all useful for comparison purposes. The first procedure works only for very
special Freud weights, i.e., those with exponential behavior.

2.1. DP: Freud weights and discrete Painlevé equations.
Freud weights, named after Géza Freud who studied them in the 1970s [7], have the

following form:

dµ(x) = |x|ρ exp(−|x|α)dx, ρ > −1, α > 0.(8)

Observe that Freud weights are symmetric, which implies that an = 0 for n ≥ 0, and
therefore only the bn coefficients need be computed. Freud gave a recurrence relation for
the recurrence coefficients bn when α = 2, 4, 6. The connection between Freud weights and
discrete Painlevé equations was first pointed out by Magnus [22]. In the case of α = 4, one
can derive the following recurrence relation for n ≥ 1 by letting xn := 2b2n:

xn+1 =
1

xn

(
n+

ρ

2
(1 + (−1)n)

)
− xn − xn−1, x0 = 0, x1 =

2Γ(3+ρ
4 )

Γ(1+ρ
4 )

.(9)

See, e.g., [3, Section 2.2]. This recurrence relation is a discrete Painlevé I equation [22] that
is useful for theoretical analysis. For example, it can be used to prove Freud’s conjecture,
which is a statement about asymptotic behavior of the bn coefficients. For α = 4 in this
section, Freud’s conjecture states

(10) lim
n→∞

bn

n1/4
=

1
4
√

12
.

A more general resolution of Freud’s conjecture using alternative methods is provided in
[21].

Similarly, when α = 6, by letting yn := b2n, a fourth-order nonlinear recurrence relation
for n ≥ 2 [3, Section 2.3] is given by

6yn
(
yn−2yn−1 + y2

n−1 + 2yn−1yn + yn−1yn+1 + y2
n + 2ynyn+1 + y2

n+1 + yn+1yn+2

)
= n+

ρ

2
(1 + (−1)n) ,

(11)

with initial condition

y0 = 0, y1 =
Γ(3+ρ

6 )

Γ(1+ρ
6 )

,

y2 =
Γ(5+ρ

6 )

Γ(3+ρ
6 )
− y1, y3 =

Γ(7+ρ
6 )

y2y1Γ(1+ρ
6 )
−

2(y1 + y2)Γ(5+ρ
6 )

y2y1Γ(1+ρ
6 )

+
(y1 + y2)2Γ(3+ρ

6 )

y2y1Γ(1+ρ
6 )

.

In this case, Freud’s conjecture states

(12) lim
n→∞

bn

n1/6
=

1
6
√

60
.

Note the computation of recursion coefficients via (9) and (11) is quite straightforward,
but is also very unstable. Nevertheless, there is a unique positive solution [20]; hence, a
small (e.g., machine roundoff) error in x1 or y1 quickly results in the loss of positivity of xn
or yn. Numerical solutions follow the exact asymptotic behavior well until large deviations
from the true solution eventually appear, cf. Figure 1.
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2.2. HD: Hankel Determinants. Orthogonal polynomials as well as their recursion coef-
ficients are expressible in determinantal form in terms of the moments of the underlying
measure. Indeed, much of the classical theory of orthogonal polynomials is moment-oriented.
One classical technique to express recurrence coefficients in terms of moments is via matrix
determinants.

We introduce the Hankel determinant ∆n of order n in terms of the finite moments (6),
defined as

∆−1 = 1, ∆0 = 1, ∆n = detHn, Hn :=


m0 m1 · · · mn−1

m1 m2 · · · mn
...

...
. . .

...
mn−1 mn · · · m2n−2

 , n ∈ N.(13)

These determinants of Gram matrices are associated to the µ-inner product, using a basis
of monomials. In addition, we define determinants ∆′n of modified Hankel matrices, where
the modification is to replace the last column of Hn by the last column of Hn+1 with the
trailing entry removed,

∆′0 = 0, ∆′1 = m1, ∆′n =

∣∣∣∣∣∣∣∣∣
m0 m1 · · · mn−2 mn

m1 m2 · · · mn−1 mn+1
...

...
...

...
...

mn−1 mn · · · m2n−3 m2n−1

∣∣∣∣∣∣∣∣∣ , n = 2, 3, . . . .

Along with b0 =
√
m0, the orthogonal polynomial recurrence coefficients can be computed

explicitly from these determinants, cf.[15, Theorem 2.2],

an =
∆′n
∆n
−

∆′n−1

∆n−1
, bn =

√
∆n+1∆n−1

∆2
n

, n ∈ N.(14)

The formulas (14) are not practically useful as an algorithm to compute reucrrence co-
efficients since the Hankel matrices above are typically ill-conditioned. In particular, the
map that computes recurrence coefficients from moments can be severely ill-conditioned
[15, Section 2.1.6].

2.3. aPC: “Arbitrary” polynomial chaos expansions. The arbitrary polynomial chaos
(aPC), like all polynomial chaos expansion techniques, approximates the dependence of
simulation model output on model parameters by expansion in an orthogonal polynomial
basis. As shown in [24], aPC at finite expansion order demands the existence of only a finite
number of moments and does not require the complete knowledge of a probability density
function. Once we construct the polynomials such that they form an orthonormal basis for
arbitrary distributions from the moment-based analysis, the recurrence coefficients can be
derived using the aPC expansion coefficients.

Our goal is, firstly, to construct the polynomials in (15) such that they form an or-
thonormal basis for arbitrary distributions. Instead of the normality condition, we will first
introduce an intermediate auxiliary condition by demanding that the leading coefficients of
all polynomials be equal to 1.

We define the monic orthogonal polynomial πn(x) as

(15) πn(x) =
n∑
i=0

c
(n)
i xi,
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where c
(n)
i are expansion coefficients, and specifically, c

(n)
n = 1,∀n. The general conditions

of orthogonality for πn(x) with respect to all lower order polynomials can be written in the
following form [24, Section 3.1]:∫

Ω
xk

(
n∑
i=0

c
(n)
i xi

)
dµ(x) = 0, k = 0, 1, . . . , n− 1.(16)

For each n, the system of equations given by (16) defines the unknown polynomial expansion
coefficients in (15). Using finite moments in (6), the system can be reduced to

n∑
i=0

c
(n)
i mi+k = 0.

Alternatively, the system of linear equations can be written in the more convenient matrix
form,

(17)


m0 m1 · · · mn

m1 m2 · · · mn+1
...

...
. . .

...
mn−1 mn · · · m2n−1

0 0 · · · 1




c

(n)
0

c
(n)
1
...

c
(n)
n−1

c
(n)
n

 =


0
0
...
0
1

 .

By defining the coefficient vector c(n) =
(
c

(n)
0 , c

(n)
1 , . . . , c

(n)
n

)T
, the normalized coefficients

c̄
(n)
i can be expressed in terms of c(n) and Hankel matrices Hn+1,

c̄
(n)
i =

c
(n)
i√

c(n)THn+1c(n)

.(18)

Together with b0 =
√
m0 and c

(0)
−1 := 0, the recurrence coefficients can be obtained from

(18) using (1),

an =
c̄

(n−1)
n−2 − bnc̄

(n)
n−1

c̄
(n−1)
n−1

, bn =
c̄

(n−1)
n−1

c̄
(n)
n

, n ∈ N.(19)

Thus, given the moments mi, we first solve for the c
(n)
k via (17) and subsequently uses

(19) to compute the recurrence coefficients. As with the Hankel determinant procedure in
Section 2.2, this procedure is susceptible to instability since the moment matrices in (17)
are typically unstable.

2.4. MC: Modified Chebyshev algorithm. The previous techniques have used (mono-
mial) moments directly and suffer from numerical stability issues. The classical Chebyshev
algorithm [5] still uses monomial moments, but it employs them through an iterative recur-
sive approach to compute the recurrence coefficients. The technique in this section modifies
the classical Chebyshev algorithm by using µ-moments computed with respect to some
other set of polynomials {qk}. Typically, qk is chosen as a sequence of polynomials that
are orthogonal with respect to another measure λ, where we require that the recurrence
coefficients cn, dn for λ are known. The Modified Chebyshev algorithm is effective when λ
is chosen “close” to µ.
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We define the “mixed” moments as

σn,k =

∫
πn(x)qk(x)dµ(x), n, k > −1,(20)

where πn(x) are the monic orthogonal polynomials with respect to µ. We denote an, bn as
the recurrence coefficients of orthonormal polynomials pn(x) with respect to µ. They can
be used to formulate the three-term recurrence relation for monic orthogonal polynomials
πn(x),

πn+1(x) = (x− an+1)πn(x)− b2nπn−1(x).(21)

We define ck, dk as recurrence coefficients of orthonormal polynomials qk(x). Plugging
(21) into (20), the mixed moments σn,k, in turn, satisfies the recurrence relation below:

σ0,k = mk,(22)

σn,k = dkσn−1,k−1 + (ck+1 − an)σn−1,k + dk+1σn−1,k+1 − b2n−1σn−2,k.

(22) gives a routine to compute the first N recurrence coefficients, which requires as input

the first 2N − 1 modified moments {mk}2N−2
k=0 and {ck, dk}2N−1

k=0 .
Together with (21), (22) and the fact that σ−1,k = 0, we have the expression of the

recurrence coefficients,

a1 = c1 +
d1σ0,1

σ0,0
, an = cn +

dnσn−1,n

σn−1,n−1
− dn−1σn−2,n−1

σn−2,n−2
, n = 2, 3, ...,(23)

b0 =
√
d0m0, bn =

√
dnσn,n
σn−1,n−1

, n ∈ N.

Given a positive measure µ on R, by choosing λ near µ in some sense, we expect the
algorithm is well, or better, conditioned [15, Section 2.1.3].

2.5. SP: The Stiltjies procedure. The previous procedures have used either monomial
moments or general (mixed) moments with respect to a prescribed, fixed alternative ba-
sis qk. In constrast, the Stieltjes procedure [30, 9] requires “on-demand” computation of
moments, i.e., the moments required are determined during the algorithm. Starting with

b0 =
(∫

dµ
)1/2

and p0(x) = 1/b0, a1 can be computed from (7) with q(x) = xp0(x)2, which
allows us to evaluate p1(x) by means of (1). p1(x), in turn. can be used to generate b1.
The formulae [15, Section 2.2.3]

an =

∫
xp2

n−1(x)dµ, bn =

(∫
((x− an)pn−1(x)− bn−1pn−2(x))2dµ

) 1
2

, n ∈ N,(24)

for the recursion coefficients provides a natural iterative framework for computing them.

2.6. LZ: A Lanczos-type algorithm. We assume that the measure dµ is a discrete mea-
sure with finite support, i.e., (4) holds with C = 0 and 0 < M < ∞. We wish to compute
recurrence coefficients (an, bn) up to n < M , ensuring that orthogonal polynomials up to
this degree exist. We could also consider applying this procedure to a finite discretization
of a continuous measure; see [15, Section 2.2.3.2 and Theorem 2.32].

The Lanczos procedure produces recurrence coefficients for the discrete measure µ, and
utilizes the Lanczos algorithm that unitarily triangularizes a symmetric matrix. With
(τj , νj)

M
j=1 the quadrature rule associated to the measure µ in (4), we define
√
ν := (

√
ν1,
√
ν2, . . .

√
νM )T , D := diag (τ1, τ2, . . . , τM ) .
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We define Q as a scaled M ×M Vandermonde-like matrix,

Q = diag
(√
ν
)
V , (V )j,k = pj−1(τk),

for j, k = 1, . . . ,M . Then, Q is an orthogonal matrix by orthonormality of pn. The
orthogonality and the three-term recurrence further imply that,(

1 0T

0 Q

)(
1
√
ν
T

√
ν D

)(
1 0T

0 QT

)
=

(
1 b0e

T
1

b0e1 JM (µ)

)
,

where e1 = (1, 0, 0, . . .)T ∈ RM . The Lanczos algorithm, given the middle matrix on the left-
hand side, computes the unitary triangularization above and outputs the right-hand side,
which identifies the Jacobi matrix JM in (2), and, hence, the recurrence coefficients. See
[15, Section 2.2.3.2] for more details. It is well known that the standard Lanczos algortihm
is numerically unstable, so that stabilization procedures must be employed [26, 19]. We
use a “double orthogonalization” stabilization technique to avoid instability. Our results
suggest that, for discrete measures, this procedure is more accurate than all the alternatives,
see Section 4.3.

3. PCL: A hybrid predictor-corrector Lanczos procedure

The main goal of this section is to describe a procedure by which we compute recurrence
coefficients for µ of the form (4). The procedure entails knowledge of the continuous weights
{wj}Cj=1 and their respective supporting intervals, {Ij}Cj=1, along with the discrete part of

the measure encoded by the nodes and weights (τj , νj)
M
j=1. In section 3.2, we will also utilize

the singularity behavior of the weights wj dictated by the constants αj and βj in (5) to
compute moments.

Section 3.1 first introduces a new procedure to compute recurrence coefficients for a mea-
sure with a continuous density using polynomial moments. Section 3.2 then discusses our
particular strategy for computing these moments. Finally, section 3.3 introduces a proce-
dure based on the multiple component approach in [9] for computing recurrence coefficients
for a measure of general form (4).

3.1. PC: Predictor-corrector method. In this section, we describe a Stieltjes-like pro-
cedure for computing recurrence coefficients. Although this works for general measures,
we are mainly interested in applying this technique for measures µ that have a continuous
density. The high-level algorithm, like the previous ones we have discussed, is iterative.
Suppose for some n ≥ 0 we know the coefficient tableau,

a1(µ) a2(µ) · · · an(µ)
b0(µ) b1(µ) b2(µ) · · · bn(µ).

These coefficients, via (1), define p0, . . . , pn that are orthonormal under a dµ-weighted in-
tergral. In order to compute an+1 and bn+1, we make educated guesses for these coefficients,
and correct them using computed moments. The procedure is mathematically equivalent

to the Stieltjes procedure: We define a new set of recurrence coefficients {ãj , b̃j}n+1
j=0 , where

ãj = aj , b̃j = bj , j = 0, . . . , n,(25a)

ãn+1 = an, b̃n+1 = bn,(25b)

In particular, corrections ∆an+1 ∈ R and ∆bn+1 > 0 exist such that

an+1 = ãn+1 + ∆an+1, bn+1 = b̃n+1∆bn+1.(25c)
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Our procedure will compute the corrections ∆an+1 and ∆bn+1. The tableau of coefficients

ãn+1 and b̃n+1

a1(µ) · · · an(µ) ãn+1(µ)

b0(µ) b1(µ) · · · bn(µ) b̃n+1(µ),

can be used with (1) to generate the polynomials p0, . . . , pn, along with p̃n+1, defined as

b̃n+1p̃n+1 := (x− ãn+1)pn − bnpn−1.(26)

Since p̃n+1 and pn+1 were generated using the same coefficients (aj , bj) up to index j = n,
then they are both orthogonal to all polynomials of degree n− 1 or less. However, p̃n+1 is
not orthogonal to pn in general. We can choose ∆an+1 to enforce this orthogonality, which
requires computing a polynomial moment.

Once an+1 = ãn+1 + ∆an+1 is successfully computed, we can similarly define another
degree-(n+ 1) polynomial p̂n+1 through the relation,

b̃n+1p̂n+1 := (x− an+1)pn − bnpn−1.(27)

This polynomial differs from pn+1 by only a multiplicative constant, which can again be
determined through a moment computation and used to compute ∆bn+1. We formalize the
discussion above through the following result:

Lemma 3.1. With p̃n+1 and p̂n+1 defined as in (26) and (27), respectively, let

Gn,n+1 :=

∫
R

pn(x)p̃n+1(x)dµ(x),(28a)

Gn+1,n+1 :=

∫
R

p̂2
n+1(x)dµ(x),(28b)

Then,

∆an+1 = Gn,n+1bn, ∆bn+1 =
√
Gn+1,n+1.(29)

Proof. Starting from the definition (26) for p̃n+1, we replace xpn with the right-hand side
of (1), yielding,

p̃n+1 = ∆bn+1

[
1

bn+1
(x− an+1) pn − bnpn−1 + ∆an+1

1

bn+1
pn

]
= ∆bn+1pn+1 +

∆an+1∆bn+1

bn+1
pn(30)

Thus, due to orthogonality of {pj}j≥0, we have

Gn,n+1 =

∫
pn(x)p̃n+1(x)dµ(x)

(30)
=

∆an+1∆bn+1

bn+1

(25c)
=

∆an+1

bn
,

which shows the first relation in (29). To show the second relation, first we combine (1)
and (27) to show,

b̃n+1p̂n+1(x) = (x− an+1)pn − bnpn−1 = bn+1pn+1,

so that

Gn+1,n+1 =

∫
p̂2
n+1(x)dµ(x) =

(
bn+1

b̃n+1

)2 ∫
p2
n+1(x)dµ(x) = (∆bn+1)2,

proving the second relation. �
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The results (29) and (29) are the proposed approach: The moments Gn,n+1 and Gn+1,n+1

in (28a) and (28b) are polynomial moments that can be computed. We can subsequently
use (29) and (25c) to compute the desired an+1 and bn+1.

The methodology of this section can then be iterated in order to compute as many
recurrence coefficients an and bn as desired. However, we must compute the Gn,n+1 and
Gn+1,n+1 coefficients (which are similar to the moments required by the Stieltjes procedure).
The main difference in our algorithm is that we use moments to compute an+1 − an and
bn+1/bn that are typically close to 0 and 1, respectively, instead of simply an and bn, which
in general can be arbitrarily small or large numbers. We next summarize one particular
strategy for computing these moments assuming that a type of characterization of µ is
available.

3.2. Computation of polynomial moments. The previous section shows that we can
compute recurrence coefficients for the measure µ if we can compute some of its moments,
in particular Gn,n+1 and Gn+1,n+1. We briefly describe in this section how we compute
moments for measures of the form (4) with knowledge of the singularity behavior in (5).
The moment of a polynomial q for µ can be written as∫

q(x)dµ(x) =
C∑
j=1

∫
Ij

q(x)wj(x)dx+
M∑
j=1

νjq(τj),

so that the only difficult part is to compute
∫
Ij
q(x)wj(x)dx for each j.

Suppose first that Ij is compact, i.e., that Ij = [`, r] for finite `, r. Then we rewrite the
integral as∫

Ij

q(x)wj(x)dx =
r − `

2

∫ 1

−1
q(A(u))wj(A(u))du, A(u) :=

(
r − `

2

)
u+

r + `

2
.

wj obeying the limiting conditions (5) with constants αj , βj implies that wj(A(u)) behaves

like (1− uαj ) near u = 1, and like (1 + uβj ) near u = −1. When αj = βj = 0, then a global
dx-Gaussian quadrature rule will be efficient in evaluating this integral, but the accuracy
will suffer when either constant differs from 0. To address this problem, we can further
rewrite the integral as:∫

Ij

q(x)wj(x)dx =
r − `

2

∫ 1

−1
q(A(u))ωj(u)dµ(αj ,βj)(u),

where µ(αj ,βj) is a Jacobi measure on [−1, 1], and ωj is wj multiplied by the appropriate
factors,

dµ(αj ,βj)(u) = (1− u)αj (1 + u)βjdx, ωj(u) := wj(A(u))(1− u)−αj (1 + u)−βj .

The advantage of this formulation is that ωj is now smooth at the boundaries u = ±1,
and if in addition it is smooth on the interior of [−1, 1], then a Jacobi (αj , βj)-Gaussian

quadrature rule will efficiently evaluate the integral. Therefore, if (uk, λk)
K
k=1 is a K-point

Jacobi (αj , βj)-Gaussian quadrature rule, we approximate the integral as∫
Ij

q(x)wj(x)dx ≈
K∑
k=1

λkωj(uk)q(A(uk)),

where the nodes and weights can be computed through the spectrum of JK(µ(αj ,βj)) since
the recurrence coefficients of these measures are explicitly known. In particular, all the



12 ZEXIN LIU AND AKIL NARAYAN

quadrature nodes uk lie interior to [−1, 1], so that the above procedure does not require
evaluation of ωj at u = ±1. We adaptively choose K, i.e., increasing K until the difference
between approximations is sufficiently small.

3.3. PCL: A hybrid Predictor-corrector Lanczos method. The full procedure we de-
scribe in this section combines the strategies in Sections 3.1 and 3.2, along with the (stabi-
lized) Lanczos procedure in Section 2.6. Assuming that we a proiri know that the first N

recurrence coefficients {an, bn}N−1
n=0 are required for µ, then the main idea here is to construct

a fully discrete measure ν whose moments up to degree 2N − 2 match those of µ.
We accomplish this as follows: Recall that the continuous densities {wj}Cj=1 of the mea-

sure µ in (4) are known, along with their boundary singularity behavior in (5). Then for
each j, the PC procedure in sections 3.1 and 3.2 can be used to compute the first N + 1
recurrence coefficients for wj , {aj,n, bj,n}Nn=0. Using these recurrence coefficients, an N -
point Gaussian quadrature rule (xj,k, λj,k)

N
k=1 can be computed that exactly integrates all

polynomials up to degree 2N − 1 with respect to the weight wj :∫
Ij

q(x)wj(x)dx =

N∑
k=1

λj,kq (xj,k) , deg q ≤ 2N − 1.

After this quadrature rule is computed for every j = 1, . . . , C, the discrete measure ν,
defined as

ν :=
C∑
j=1

N∑
k=1

λj,kδxj,k +
M∑
j=1

νjδτj ,(31)

and has moments that match those of µ up to degree 2N − 1. Once this procedure is com-
pleted, we employ the Lanczos procedure in Section 2.6 to compute the first N recurrence
coefficients for ν, which equal those for µ. The main reason we employ the Lanczos scheme
(as opposed to any other approach) is that, for discrete measures, the Lanczos procedure
appears more empirically stable than all other procedures we consider, cf. Section 4.5.

Note that if C = 1 and M = 0, then the Lanczos procedure is not needed at all since
(a1,n, b1,n)N−1

n=0 are the desired coefficients, and if C = 0, then only the Lanczos procedure
need be queried since no quadrature is required.

The above is essentially a complete description of the PCL algorithm. However, we include
one additional adaptive procedure to ensure correct computation of the moments. Let
{Ns}s≥0 be an increasing sequence of positive integers. A strategy for determining the
sequence of Ns can be found in [14, 15],

N0 = N, Ns = Ns−1 + ∆s, s = 1, 2, . . . ,

∆1 = 1, ∆s = 2b
s
5
cN, s = 2, 3, . . . .

We define νs as the measure (31) with N ← Ns. We use PCL to compute numerical approx-

imations {a[s]
n , b

[s]
n }n≥0 to the recurrence coefficients for νs. (I.e., we use PC to compute the

Ns-point quadrature rule (xj,k, λj,k)
Ns
k=1 and subsequently use LZ to compute the recurrence

coefficients for νs.) With the (approximate) coefficients for νs and νs−1, if the condition∣∣∣b[s]n − b[s−1]
n

∣∣∣ ≤ ε|b[s]n |, n = 0, 1, . . . , N − 1.

is satisfied, then we return the computed coefficients for νs. Otherwise, we set s ← s + 1
and test the condition above again. This adaptive procedure is similar to those employed
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in [14, 15]. In our computations we set ε = 10−12, and we set an upper limit of Ns as
Nmax
s = 10N for all s, which will usually be satisfactory.

4. Numerical Experiments

We now present numerical examples to illustrate the performance of our algorithm by
computing the first N three-term recurrence coefficients for different types of measures µ.
Our results will consider all the algorithms in Table 1: the first six in section 2 and the last
two new procedures proposed in Section 3. We implement all the algorithms in Python.
All the computations are carried out on a MacBook Pro laptop with a 3.1 GHz Intel(R)
Core(TM) i5 processor and 8 GB of RAM.

Examples can be classified according to whether we have a way to compute the exact
recurrence coefficients. When this is the case, we define {ân, b̂n}N−1

n=0 as the first N exact

coefficients and {an, bn}N−1
n=0 as coefficients that are computed from any particular algorithm.

The error eN can be denoted by an `2-type norm,

(32) eN =

(
N−1∑
n=0

[
(an − ân)2 +

(
bn − b̂n

)2
]) 1

2

.

If the exact coefficients are not available, we consider another error metric. If {pn(x)}N−1
n=0

is a polynomial basis produced through the three-term recurrence (1) using the computed

coefficients by {an, bn}N−1
n=0 , then let A be an N ×N matrix with entries

Am,n =

∫
R

pn−1(x)pm−1(x)dµ(x), n,m = 1, . . . , N,

which equals δn,m if ân = an and b̂n = bn. The new error indicator fN we compute is

(33) fN = ‖A− I‖F ,
where ‖ · ‖F is the Frobenius norm on matrices and I is the N ×N identity matrix.

The computational timing results that measure efficiency are averaged over 100 runs of
any particular algorithm.

4.1. Freud weights. One computational strategy for determining the recurrence coeffi-
cients for Freud weights of the form (3) on the entire real line is to use the (“non-modified”)
Chebyshev algorithm, which requires monomial moments and employs a recurrence similar
to (22). The monomial moments of (3) are explicitly computable as simple evaluations
of the Euler Gamma function, but numerical instabilities typically develop in such an ap-
proach due to roundoff error; to combat this limitation, computations may be completed
in variable precision arithmetic, resulting in a procedure that correctly computes the recur-
rence coefficients [17]. In this section, we use this VPA procedure to generate recurrence
coefficients treated as “exact” for use in computing errors. In particular, we employ the
sr freud.m routine from [10] that utilizes variable-precision arithmetic in Matlab [1].

We compute recurrence coefficients using the DP, HD, aPC, and MC methods for Freud
exponents α = 4, 6. The DP recursion for each of the two cases is simple, given by (9) and
(11), respectively. For the MC method, we use Hermite orthogonal family for qk in (20) that
is orthogonal with respect to λ. The top two plots in Figure 1 show that each of these
methods is not computationally useful since instabilities develop quickly. In contrast, both
the SP and PC approaches can effectively compute recurrence coefficients, which we show in
the bottom two plots of Figure 1. In terms of efficiency, Table 2 illustrates that the “exact”
VPA procedure is several orders of magnitude more expensive than all other approaches,
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Figure 1. Example for Section 2.1: the top two plots are recursion coefficients bN com-
puted by DP, HD, aPC, MC and Freud conjecture in (10) and (12). The two plots at the
bottom show errors eN of SP and PC

Method N = 20 N = 40 N = 60 N = 80 N = 100

VPA 18.86 19.13 99.38 101.10 293.44 300.41 631.20 633.20 1196.29 1362.86

SP 0.24 0.21 0.75 0.63 1.60 1.32 2.72 2.24 4.12 3.42

PC 0.25 0.22 0.75 0.65 1.60 1.34 2.72 2.27 4.12 3.40

Table 2. Example for Section 2.1: elapsed time (s) for Freud weight when α = 4 (sub-
columns on the left) and α = 6 (subcolumns on the right).

and that SP and PC are competitive. Code that reproduces this example is available in the
routine ex freud 4.py and ex freud 6.py from [2].

4.2. Piecewise smooth weight. We consider the measure dµ(x) = w(x)dx on [−1, 1],
where

ω(x) =

{
| x |γ (x2 − ξ2)p(1− t2)q, x ∈ [−1,−ξ] ∪ [ξ, 1]

0, elsewhere, 0 < ξ < 1, p > −1, q > −1, γ ∈ R.

For certain choices of γ, p, q, there is theory regarding the resulting orthogonal polynomi-
als [4], and such weights arise in applications [34]. In the special cases γ = ±1, p = q = ±1/2,
closed-form representations for the recurrence coefficients can be computed [12]. For exam-
ple, the exact formula for the recurrence coefficients for the case γ = 1, p = q = −1/2, η =
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Method N = 20 N = 40 N = 60 N = 80 N = 100

HD 6.05e-02 0.003 — — — — — — — —

aPC 6.05e-02 0.001 — — — — — — — —

MC 2.34e-15 0.001 1.00e+00 0.006 — — — — — —

SP 4.73e-14 0.10 2.85e-13 0.28 3.85e-13 0.57 3.99e-13 0.93 4.62e-13 1.39

PC 9.08e-15 0.10 1.80e-14 0.29 3.13e-14 0.57 5.14e-14 0.94 7.27e-14 1.40

Table 3. Example for Section 4.2: errors eN (subcolumns on the left) and elapsed time
(s) (subcolumns on the right) when γ = 1, p = q = −1/2. Here — means a NaN value due
to the numerical overflow from the instability of the corresponding method

(1− ξ)/(1 + ξ) is given by

b̂0 =
√
π, b̂1 =

√
1 + ξ2

2
,

b̂2n =

√
(1− ξ2)(1 + η2n−2)

4(1 + η2n)
, b̂2n+1 =

√
(1 + ξ2)(1 + η2n+2)

4(1 + η2n)
, n ∈ N,

with ân = 0 for all n.
A Legendre orthogonal family for qk in (20) that is orthogonal with respect to λ is chosen

for the MC method. For the choice γ = 1, p = q = −1/2 and ξ = 1/10, Table 3 illustrates
the accuracy and cost of the algorithms HD, aPC, MC, SP, and PC. We observe that only the
SP and PC approaches yield reasonable accuracy, with PC being slightly more accurate. We
omit results for other choices of (γ, p, q), which produce nearly identical results. The results
from this table can be produced from ex pws.py in [2].

4.3. Transformed discrete Chebyshev. In the previous example, we compute the re-
currence coefficients of “continuous” orthogonal polynomials with respect to µ on bounded
or unbounded supports. We now consider the support of µ that consists of a discrete set of
points.

Given a positive number M , we define the nodes τj = (j − 1)/M and νj = 1/M for
j = 1, 2, . . . ,M . Then, the transformed discrete Chebyshev [15, Example 2.26] measure is
given as

dµ(x) =
M∑
j=1

1

M
δ j−1

M
dx, j = 1, 2, . . . ,M,

i.e., an equally spaced and equally weighted discrete measure on [0, 1). The recurrence
coefficients are known explicitly if a linear transformation of variables is applied to the
discrete Chebyshev measure with canonical support points [15, Section 1.5.2]. For a given

size of supports, M , with b̂0 = 1,

ân =
M − 1

2M
, b̂n =

√√√√ 1− ( nM )2

4(4− ( nM )2)
, n = 1, 2, . . . ,M − 1.

In Figure 2, the methods HD, aPC and MC are omitted since their instabilities develop
very quickly. An NaN value appears when the required number of recurrence coefficients,
N , is less than 20. We compare the SP, LZ and PC approaches on measure support sizes
M = 40, 80, 160, 320. We observe that the LZ approach is effective for all choices of M , and
when N is comparable to M , the SP and PC approaches become inaccurate. The lower two
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Figure 2. Example for Section 4.3: the first three plots compute errors eN for different
N portion of distinct M and the last two plots for the same N but for distinct M .

plots of Figure 2 show that when M is notably larger than N , all three approaches produce
good results. In particularly, all the numerical results in this subsection are are produced
by ex discrete cheb.py in [2].

4.4. Discrete probability density function. High-dimensional integration is a common
problem in scientific computing arising from, for example, the need to estimate expectations
in uncertainty quantification [28, 31]. Many integrands for such integrals found in scientific
computing applications map a large number of input variables to an output quantity of
interest, but admit low-dimensional ridge structure that can be exploited to accelerate
integration. A ridge function [25] is a function f : Rm → R of the form

f(x) = g(aTx),

where a ∈ Rm is a constant vector called the ridge direction and g : R → R is the
ridge profile. For such functions, we clearly have that f depends only on a scalar variable
y := aTx. In applications, we frequently wish to integrate f with respect to some m-
dimensional probability measure ρ on x, which can be simplified by integrating over the
scalar variable y with respect to the univariate measure µ that is the push-forward of ρ
under the map x 7→ aTx. Thus, the goal is to compute recurrence coefficients for µ.

In practice the multivariate measure ρ is known, but computing the univariate measure
µ exactly is typically not feasible. However, an approximation to µ can be furnished using
the procedure in [18, Section 2.2] that randomly generates M i.i.d. samples {xj}Mj=1 from
ρ, and defines µ as a discrete measure supported on the projection of these samples onto
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Method N = 20 N = 40 N = 60 N = 80 N = 100

HD 1.69e-07 1.24e-07 — — — — — — — —

aPC 7.72e-08 3.80e-08 2.03e+05 7.67e+05 1.35e+27 3.90e+25 5.85e+47 2.71e+55 4.75e+67 9.70e+72

MC 3.02e-09 3.60e-09 — — — — — — — —

SP 2.74e-15 3.39e-15 9.26e-15 8.53e-15 5.94e-10 2.62e-14 4.00e+00 5.20e-14 7.48e+00 9.37e-14

LZ 4.75e-15 3.87e-15 2.95e-14 1.10e-14 3.45e-09 1.73e-14 1.86e+68 3.38e-14 2.50e+68 9.29e-14

PC 3.96e-15 4.54e-15 1.17e-14 9.57e-15 1,03e-09 1.50e-14 4.00e+00 2.47e-12 7.48e+00 1.41e-13

Table 4. Example for Section 4.4: errors fN when M = 100 (subcolumns on the left) and
M = 300 (subcolumns on the right). Here — means a NaN value due to the numerical
overflow from the instability of the corresponding method.

the real line:

dµ(x) =
M∑
j=1

1

M
δτjdx, τj := aTxj .

To compute quadrature rules with respect to this measure, we take ρ as the uniform measure
on the m-dimensional hypercube [−1, 1]m. Let m = 25, and a ∈ R25 is chosen randomly.
We then test for M = 100, 300.

Since we do not have an expression for the exact recurrence coefficients, we measure errors
using the metric fN in (33). As shown in Table 4, the computed recursion coefficients are
not as accurate when N is closer to M , no matter what method is used. However, the
methods SP, LZ and PC all perform better when M is large enough. Code that reproduces
this example is available in the routine ex discrete convolution.py in [2].

4.5. Multiple component: Chebyshev weight function plus a discrete measure.
The measure to be considered is the normalized Jacobi weight function on [−1, 1] with a
discrete M -point measure added to it,

dµ(x) = (βJ0 )−1(1− x)α(1 + x)βdx+
M∑
j=1

νjδτjdx, α, β > −1, νj > 0,(34)

where βJ0 =
∫ 1
−1(1− x)α(1 + x)βdx. The orthogonal polynomials belonging to the measure

(34) are explicitly known only in very special cases. The case of one mass point at one
end point, that is, M = 1, τ1 = −1, has been studied and the recurrence coefficients can
be computed with rather technical formulas [6, 14]. The exact recursion coefficients for
N = 1, 7, 18, 40 are given in [15, Table 2.11]. For each of these particular N , we compute

the fixed-N error, donated by efN =

(
(aN − âN )2 +

(
bN − b̂N

)2
)1/2

.

Table 5 shows results for the HD, aPC, MC, SP, and PC approaches for the measure µ
above. In addition, we compute results using the LZ approach; note that the LZ approach
cannot directly be utilized on the measure (34) since this measure has an infinite number of
support points. Instead, the LZ results shown in Table 5 first use the discretization approach
as described in Section 2.6, which replaces the continuous part of µ with a discrete Gaussian
quadrature measure. The reason we include this test in Table 5 is that it motivates the PCL

algorithm: if one can discretize measures, then the LZ approach is frequently more accurate
than alternative methods.

We generate the first 40 recursion coefficients for α = −0.6, β = 0.4 of the Jacobi param-
eters in two cases: one mass at τ1 = −1 with strength ν1 = 0.5 and a single mass point
of strength ν1 = 1 at τ1 = 2. The results, produced by routine ex multi component.py



18 ZEXIN LIU AND AKIL NARAYAN

Method N = 1 N = 7 N = 18 N = 40

HD 3.71e-14 2.22e-11 3.64e-12 1.81e-09 1.72e-04 — — —

aPC 3.71e-14 2.22e-11 3.54e-12 1.81e-09 1.67e-04 — — —

MC 3.71e-14 2.22e-11 3.63e-12 8.90e-11 3.02e-12 2.90e+00 3.87e-12 1.84e+00

SP 3.71e-14 2.22e-11 3.63e-12 5.44e-13 3.03e-12 3.80e-12 3.90e-12 2.48e-06

LZ 3.70e-14 2.22e-11 3.63e-12 5.44e-13 3.03e-12 3.80e-12 3.90e-12 2.10e-12

PC 3.71e-14 2.22e-11 3.63e-12 5.44e-13 3.02e-12 3.80e-12 3.90e-12 2.49e-06

Table 5. Example for Section 4.5: errors efN with one mass at τ1 = −1 with ν1 = 0.5
(subcolumns on the left) and τ1 = 2 with ν1 = 1 (subcolumns on the right). Here —
means a NaN value due to the numerical overflow from the instability of the corresponding
method.

M N = 20 N = 40 N = 60 N = 80 N = 100

20 1.09e-14 7.47e-15 6.48e-14 1.63e-14 1.46e-10 6.61e-13 2.41e-03 5.63e-12 1.66e+07 3.27e-09

40 6.50e-15 1.05e-14 2.50e-14 3.28e-14 9.34e-11 9.52e-14 8.54e-03 1.84e-13 1.95e+09 3.05e-11

80 8.80e-15 5.11e-15 1.39e-14 4.74e-14 1.68e-11 3.90e-14 4.48e-03 8.97e-14 5.10e+08 4.95e-11

160 7.73e-15 7.13e-15 1.43e-14 3.99e-14 2.90e-11 7.03e-14 1.88e-03 1.24e-13 2.34e+09 2.25e-11

Table 6. Example for Section 4.6: errors fN by procedure in 3.3 with Ns = N for all s
(subcolumns on the left) and by PCL, i.e. with a adaptive procedure (subcolumns on the
right) when M = 20, 40, 80, 160.

from [2], are shown in Table 5. SP, LZ, PC and even MC produce essentially identical results
within machine precision in the first case. However, matters change significantly when a
mass point is placed outside [−1, 1], regardless of whether or not the other mass points on
[−1, 1] are retained [15, Example 2.39]. SP and PC become extremely unstable; this empir-
ical superiority of the LZ approach for discrete measures is the reason why the last step of
the PCL algorithm in Section 3.3 is to utilize the Lanczos algorithm.

4.6. General multiple component: continuous weight function plus a discrete
measure. In the previous example, we studied the case of a combination of Chebyshev
weight and discrete measure. A quadrature for Chebyshev is trivial because it is one of
the classical weights so that we can obtain the quadrature by known recursion coefficients.
However, if the continuous weight is not of classical form, then we employ the PCL algorithm
in Section 3.3: We use PC to compute recursion coefficients, leading to Gaussian quadrature
nodes and weights for the continuous part, which is then combined with the discrete part
as input to the LZ algorithm.

We consider the positive half-range Hermite measure plus a transformed discrete Cheby-
shev measure defined on (−1, 0],

dµ(x) = e−x
2

+
M∑
j=1

νjδτjdx, τj := −j − 1

M
, νj :=

1

M
.

Using the PCL algorithm, for M = 20, 40, 80, 160, we generate the first 100 recursion coef-
ficients. Table 6 shows that the coefficients are more accurate when an adaptive procedure
is applied to determine Ns, no matter what M is. The results here are produced by routine
ex gmulti component.py in [2].
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5. Summary and extensions

In this paper, we summarize several existing numerical methods for computing these re-
currence coefficients associated to measures for which explicit formulas are not available.
We propose a novel “predictor-corrector” algorithm and study the accuracy and efficiency
by comparing with existing methods for fairly general measures. The method makes predic-
tions for the next coefficients and correct them iteratively. Finally, we introduce a hybrid
algorithm that combines the “predictor-corrector” algorithm and the (stabilized) Lanczos
procedure. It can be used to compute recurrence coefficients for a general measure with
multiple continuous and discrete components.

The predictor-corrector algorithm outperforms many other methods and is competitive
with the Stieltjes procedure when a continuous measure is given. For a discrete measure,
it can compute accurate coefficients only when the discrete support M is large enough.
However, the (stabilized) Lanczos procedure requires empirically appears to be superior for
discrete measures. Based on this observation, we propose a “predictor-corrector-Lanczos”
algorithm is that is a hybrid of the predictor-corrector and Lanczos schemes, and applies
to a fairly general class of measures.

We focus on the computation of recurrence coefficients for univariate orthogonal polyno-
mial families. Thus, a natural extension of this work would be to adapt the approaches to
address the same problem for multivariate polynomials, for which the formulations can be
substantially more complex. Such investigations are the focus of ongoing work.
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