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Abstract
Dimension reduction techniques are essential for feature selection and feature extraction of complex high-
dimensional data. These techniques, which construct low-dimensional representations of data, are typically ge-
ometrically motivated, computationally efficient and approximately preserve certain structural properties of the
data. However, they are often used as black box solutions in data exploration and their results can be difficult to
interpret. To assess the quality of these results, quality measures, such as co-ranking [LV09], have been proposed
to quantify structural distortions that occur between high-dimensional and low-dimensional data representations.
Such measures could be evaluated and visualized point-wise to further highlight erroneous regions [MLGH13].
In this work, we provide an interactive visualization framework for exploring high-dimensional data via its two-
dimensional embeddings obtained from dimension reduction, using a rich set of user interactions. We ask the
following question: what new insights do we obtain regarding the structure of the data, with interactive manipula-
tions of its embeddings in the visual space? We augment the two-dimensional embeddings with structural abstrac-
tions obtained from hierarchical clusterings, to help users navigate and manipulate subsets of the data. We use
point-wise distortion measures to highlight interesting regions in the domain, and further to guide our selection of
the appropriate level of clusterings that are aligned with the regions of interest. Under the static setting, point-wise
distortions indicate the level of structural uncertainty within the embeddings. Under the dynamic setting, on-the-
fly updates of point-wise distortions due to data movement and data deletion reflect structural relations among
different parts of the data, which may lead to new and valuable insights.

1. Introduction

High-dimensional data arise naturally in many scientific ap-
plications and real-world phenomena. For instance, in a
jet flame combustion simulation, half a million samples of
chemical composition are extracted point-wise in space and
time. These samples can be modeled as a high-dimensional
point cloud where the chemical species involved in the sim-
ulation correspond to the dimensions of the data. In nu-
clear reactor safety analysis, complex simulator and con-
troller codes are coupled to model system dynamics in the
case of an accident scenario (e.g., a plane crashing into a
power plant), where hundreds of deterministic and stochas-
tic elements are encoded in the simulation. In order to con-
sider the complete system dynamics, time evolution data of
core temperature are collected under various uncertain con-
ditions, and such temperature profiles can be modeled as
a high-dimensional point cloud for transient analysis. In e-
commerce, online browsing records and purchase transac-

tions from millions of users are collected to predict con-
sumer behavior and market trends. Such data are modeled as
a point cloud in high dimensions where categorical attributes
may represent the various dimensions.

Dimension reduction (DR) techniques, combined with
analysis and visualization, are among the most common
approaches to explore high-dimensional data. Under the
general setting, DR techniques transform point cloud data
in high dimensions into their low-dimensional representa-
tions (typically 2D and 3D for visual mapping), while strik-
ing a balance between structural preservation and compu-
tational efficiency. For example, principal component anal-
ysis (PCA) minimize the cost of structural transformation
via projection, measured by sum of squared errors. Clas-
sic multidimensional scaling (cMDS) [Tor52] and Isomap
[TDSL00] encode Euclidean (for cMDS) or geodesic (for
Isomap) distance proximities among pairs of points through
inner product matrices and minimizes their dissimilarities
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between high-dimensional and low-dimensional spaces. Lo-
cally liner embedding (LLE) [RS00] and Laplacian Eigen-
maps (LE) [BN03] both focus on preserving local neighbor-
hood structures, by exploring linear or spectral properties in
matrices that encode pair-wise relations.

However, DR techniques are typically used as black box
solutions in data exploration and their results can be hard to
interpret. Users typically face several challenges in applying
DR in practice: (a) how to access the quality of results ob-
tained by a DR technique; (b) how to choose among multi-
ple DR techniques; (c) and for a fixed DR, how to choose
its appropriate parameters. These challenges are partially
addressed by the introduction of quality measures, such as
rank-based criteria [LV09], to quantify the extent of struc-
tural preservation during the DR process. Global distortion
measures could be adapted to access the quality of the em-
beddings, across different DR techniques, or among various
parameter settings of a single DR technique. Their point-
wise extensions are further computed and visualized to high-
light erroneous regions of the data [MLGH13].

Ultimately, we are interested in the following question:
How do we obtain insights regarding the structures of the
data via explorations of its low-dimensional embeddings?
We impose structural context onto the embeddings via point-
wise quality measures and hierarchical clusterings. Point-
wise distortion measures not only assess the fine-grained
quality of the DR techniques but also highlight potential in-
teresting regions of the data. Regions with high distortions
across multiple metrics are worth further investigation as
they correspond to regions with large structural uncertainty,
which potentially reflect nontrivial structures of the data. On
the other hand, low-dimensional point representations alone
lack structural context as they are typically visualized as an
unstructured point cloud; and point occlusion commonly oc-
curs in practice. One would want to obtain a structural ab-
straction in high-dimensional space that summarizes the data
in a certain way, e.g., via hierarchical clusterings, while ex-
ploring and exploiting such an abstraction via its embed-
dings.

Contributions. We provide an interactive visualization
framework for exploring high-dimensional data via its low-
dimensional embeddings. We ask the following question:
what new insights do we obtain regarding the structure of
the data, with interactive manipulations of its embeddings in
the visual space? Our core contributions are:

• We augment two-dimensional embeddings with structural
abstractions obtained from classical and topological hier-
archical clusterings, to help users navigate and manipulate
subsets of the data.

• We use point-wise distortion measures to highlight inter-
esting regions in the domain, and further to guide our
selection of the appropriate level of clusterings that are
aligned with the regions of interest.

• Most importantly, our system allows users to move and

delete subsets of the data in the visual space, where on-
the-fly updates of point-wise distortion measures reflect
structural relations among different parts of the data and
potentially lead to new insights.

First, we give a systematic overview of global and point-
wise distortion measures for several popular DR techniques.
To the best of our knowledge, we introduce, for the first
time, DR-dependent point-wise distortion measures derived
from the cost of structural transformations. We review DR-
independent distortion measures based on distance distor-
tions and ranking discrepancies. In addition, we introduce
two new distortion measures based on robust distance and
kernel density estimate. Second, we focus on our motiva-
tion for distortion-guided, structure-driven data exploration.
Third, we provide descriptions of design choices and im-
plementation details. Finally, we showcase the utility of
our framework through case studies involving real-world
datasets. Our framework is highly modular and easily exten-
sible to incorporate new DR techniques, distortion measures
and interaction/visualization components, according to user
demand, making it a robust tool for data exploration.

2. Related Work

Quality assessment for DR. Various quality assessments of
DR have been proposed primarily in the machine learning
community, for both labeled and unlabeled data. For labeled
data, quality measures that focus on classification error (e.g.,
[SR03]) or group memberships [GZ10] seem to be obvious
choices. For instance, quality of group compactness [GZ10]
measures consistency among group memberships in a local
neighborhood of a point-based on labeled information. For
unlabeled data, some criteria for evaluation relate pair-wise
distances through direct comparison between high- and low-
dimensional space. For example, quality of distance map-
ping [GZ10] computes the correlation coefficient between
the pair-wise distance matrices before and after DR. Mea-
surements such as strain [Tor52] and stress [BSL∗08] (de-
scribed in Section 3) capture absolute differences between
distance matrices. Other criteria do not directly compare
lengths but rather ranks of pair-wise distances. Criteria such
as precision and recall [VPN∗10], co-ranking [LV09], qual-
ity of point neighborhood preservation [GZ10] and agree-
ment rate [FC07] all focus on calculating the average num-
ber of neighbors that agree in high and low dimensions.
Such rank-based criteria are typically scale-independent in
the sense that they are invariant under linear transforma-
tions of distances. Specific measurements of geometrical and
topological distortions due to manifold compression, stretch-
ing, gluing and tearing, have been proposed and visualized
in [Aup07]. For a recent survey of quality measures, see
[MLGH13]. As pointed out in [LV09], a simplistic way to
assess the quality of DR is to look at the value of the ob-
jective function after optimization. We adapt this idea and
derive both global and local distortion measures from a for-
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malized objective. We also implement a scale-independent
distortion measure based on co-ranking [LV09, MLGH13].

Interactive DR. A number of interactive DR systems have
been introduced to fill the gap between visual perception of
the data and in-depth understanding of its underlying struc-
ture. Besides relying on existing DR techniques as black box
solutions, some recent methods use customized projections
updated by user interactions for feature discovery. Interac-
tive PCA (iPCA) [JZF∗09] provides a rich set of interactions
to help users better understand relationships between the
data and the calculated Eigenspace. The system introduced
in [JJ09] combines user-defined quality metrics to preserve
important features during DR, and offers automatic ordering
of variables to enhance perception of patterns selected by
the user. The dimension projection matrix (tree) [YRWG13]
demonstrates an interactive framework that allows users
to hierarchically split both data points and dimensions, to
do subspace visual exploration. In [BLBC12], a concept is
coined V2PI (visual to parameter interaction), where the un-
derlaying statistical model is updated when the user changes
point positions in the projected view. Similar interactive pro-
jection designs can be found in [CLKP10, PEP∗11, Gle13].
In our work, instead of focusing on a single DR technique
such as iPCA, or data-dependent customized projections, we
propose a general framework that is applicable to any ex-
isting DR techniques and is easily extendible with various
distortion measures. Part of our interaction design resem-
bles those found in iPCA, although core contributions of our
work arise from coordinated interplay among DR, data ma-
nipulation, structural skeleton and on-the-fly update of dis-
tortion measures.

Structural abstractions. One approach for understand-
ing high-dimensional data is to generate some form of
structural abstraction. Topology-based hierarchical cluster-
ing [CGOS11, SMC07, LSL∗13, CBL11, GBPW10a] have
been proposed to construct useful combinatorial representa-
tions for the analysis and visualization of high-dimensional
datasets. Such techniques could be integrated into interac-
tive visual environments (e.g., Mapper [SMC07] and HD-
Viz [GBPW10a]). Our framework is designed to employ var-
ious structural abstractions preprocessed or obtained from
both classical (e.g., average-linkage) hierarchical clustering
and topological methods based on Morse-Smale decompo-
sitions [GBPW10a]. Such structural summaries augmented
with DR results help users better navigate and manipulate
the points within the embeddings.

3. Point-wise Distortion Measures

Point-wise (local) distortion measures provide the founda-
tions for our interactive method. In this section, we give
a systematic overview of global and point-wise distor-
tion measures for several popular DR techniques. The first
type of distortion measures quantifies the cost on structural
transformation from high-dimensional to low-dimensional

spaces. It is derived from the particular objective function a
given DR technique is formulated to optimize; thus it is DR-
dependent, as described in Section 3.1. The second type of
distortion measures is DR-independent and focuses on com-
puting distance distortions, density differences or ranking
discrepancies [MLGH13], applicable across DR techniques,
as described in Section 3.2.

The basic setting for DR is as follows: given a set of n
points X = {x1,x2, ...,xn} in Rl , find a set of points Y =
{y1, ...,yn} in Rm where m� l, such that Y represents X by
preserving certain structural properties of X . For the purpose
of our visualization tool, m = 2, with possible extension to
m= 3. For a given DR technique, a global distortion measure
assigns a real-valued number to the pair (X ,Y ), which gives
an overall, coarse quality assessment, whereas a point-wise
distortion measure is a function that maps points in X to R,
which provides localized, fine quality assessment.

3.1. DR-Dependent Distortion Measures

Most DR techniques can be formulated as optimization
problems formalized with objectives. For the popular DR
techniques described below, optimizing the objectives is typ-
ically formulated as minimizing certain cost functions. A
cost function incorporates a natural quality measure that as-
sesses how much structure, in terms of relations among data
points in high dimensions, stays consistent with the one in-
ferred by the low-dimensional embedding; or alternatively,
how much cost is needed in transforming one to another.
Such a cost function gives rise to a natural global distor-
tion measure E to assess the overall quality of the DR, and
its point-wise derivation leads to a local distortion measure
ε : X → R that captures how much a point contributes to the
global distortion and how well it agrees with its neighbors.
We further enforce E = ∑i ε(xi).

Principle Component Analysis. PCA finds the directions
of projection such that the squared distance of the points to
these directions is minimized. Let µ : Rl → Rl be a certain
projection map. PCA seeks to minimize the global cost over
µ, E = ∑i ||xi− µ(xi)||2, and the corresponding local cost ε

is defined as, ε(xi) = ||xi−µ(xi)||2.

The map µ is defined by the orthogonal direction with
respect to a hyperplane defined by a collection of orthog-
onal basis {u1,u2, ...,um} (where ui · ui = 1 and ui · u j = 0
for i 6= j). The projection x̂i := µ(xi) ∈ Rl of a given point
xi ∈ X under µ could be written as x̂i = x̄+∑

m
j=1 zi

ju j, where
the mean x̄ = 1

m ∑i xi, and zi
j = (xi− x̄) · u j. Now the global

cost can be written as E = ∑i ||xi− x̂i||2 and the local cost
ε(xi) = ||xi− x̂i||2.

Classic Multidimensional Scaling. MDS is commonly re-
ferred to as a class of techniques rather than a specific algo-
rithm. cMDS [Tor52], also known as Principle Coordinate
Analysis (PCoA) or Torgerson Scaling, is closely related to
PCA. In cMDS, the distance is converted to inner production
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dissimilarity and strain is optimized though an Eigenvalue
decomposition.

Let bi j be the inner product between a pair of points xi,x j

in Rl and b̂i j be the corresponding inner product in Rm. That
is, treating points as vectors, bi j = xi · x j and b̂i j = yi · y j.
The relationship between distance matrix and inner product
matrix can be defined as, d2

i j = bii − 2bi j + b j j, where di j
corresponds to the Euclidean distance between xi and x j .
We define the global cost to be equal to the strain, that is,

E =
∑i, j(bi j−b̂i j)

2

∑i, j b2
i j

. The local cost corresponds to the point-

wise strain, ε(xi) =
∑ j(bi j−b̂i j)

2

∑i, j b2
i j

.

Laplacian Eigenmap. LE [BN03] seeks to minimize a
global cost function, E = ∑i, j ||yi− y j||2wi j, under appro-
priate constraints. The corresponding local cost is ε(xi) =
1
2 ∑ j ||yi − y j||2wi j. The algorithm proceeds by first con-
structing an adjacency graph on X based on either k-nearest
neighbor (KNN) graph or ε-neighborhood. If xi and x j are
connected by an edge, the weight wi j is either defined as a
heat kernel, that is, wi j = exp(−||xi− x j||2/t) (with diffu-
sion parameter t), or simply defined as wi j = 1; otherwise
wi j = 0.

Isomap. Isomap [TDSL00] is a nonlinear DR technique
based on cMDS. In Isomap, the distance between pairs
of points is geodesic distances approximated by the short-
est paths between pairs of points in a neighborhood graph.
Therefore the cost function is the same as cMDS except the
Euclidean distance matrix is replaced by an approximated
geodesic distance matrix.

Locally Linear Embedding. LLE [RS00] represents each
point (in Rl) as a weighted linear combination of its neigh-
bors and tries to preserve this linear relationship in the re-
duced dimension Rm. It optimizes the following global cost,
E =∑i ||yi−∑ j Wi jy j||2, where Wi j is the weight matrix that
stores such a linear relationship. The local cost can be writ-
ten as, ε(yi) = ||yi−∑ j Wi jy j||2.

3.2. DR-Independent Distortion Measures

DR-independent criteria, on the other hand, can be appli-
cable to a collection of DR techniques, and are inspired by
measurements of distance distortions, density differences or
ranking discrepancies. Some nonlinear DR techniques, such
as LE, use constraints in their algorithms to remove an arbi-
trary scaling factor in the embedding. Points in the reduced
dimension are therefore computed under a fixed scale, which
means that ranges of values in Rl and Rm differ drastically,
rendering the scale-dependent distortion measures such as
local stress, robust distance distortion and kernel density es-
timate distortion meaningless. To address this issue, we use
two types of scaling factors. The first one computes the ratio
between the radiuses of minimum enclosing balls [G9̈9] of
the data in Rl and Rm to rescale the embedding. The second

type, which is also less sensitive to outliers, computes the
ratio of average distances to the centroid.

Kernel Density Estimate distortion. We introduce a novel
class of distortion measures based on a kernel density es-
timate (KDE). Each of these measures (based on a cho-
sen kernel) quantifies differences in densities among lo-
cal neighborhoods. In addition, a multiscale version of the
measure is easily attainable by varying the parameters as-
sociated with a given kernel; thus it allows adaptive data
explorations. A kernel is a non-negative similarity mea-
sure K : Rl × Rl → R+ where more similar points have
higher value. We consider a Gaussian kernel here, where
K(p,x) = exp(−||p− x||2/2σ

2). A KDE is a way to esti-
mate a continuous distribution function over Rl for a finite
point set P⊂Rl . Specifically, KDE P(x)= 1

|P| ∑p∈P K(p,x).
The distortion function measures differences between KDE
in Rl and KDE in Rm. That is, the global KDE distortion,
K = ∑i |KDE X (xi)−KDE Y (yi)|. and the local KDE dis-
tortion, k (xi) = |KDE X (xi)−KDE Y (yi)|.

Stress. This distortion measure is based upon an objective
function used in a distance scaling version of MDS, referred
to as stress. We use the stress to measure distance distortions.
Let di j be the distance between a pair of points i, j in Rl

and d̂i j be the corresponding distance in Rm. Global stress

is defined as, S =
∑i, j(di j−d̂i j)

2

∑i, j d2
i j

. Local stress is, s(xi) =
1
2 ·

∑ j(di j−d̂i j)
2

∑i, j d2
i j

.

Robust distance distortion. We also introduce a distortion
measure inspired by robust MDS (rMDS) [APV10,CD06]. It
shares similarities with stress but is proved to be more robust
with respect to noise and outliers. The global robust distance

distortion is defined as, R =
∑i, j |di j−d̂i j|

∑i, j |di j| . The local robust

distance distortion is, r (xi) =
∑ j |di j−d̂i j|

∑i, j |di j| .

Co-ranking distortion. For completeness, we include in
our system a rank-based, scale-independent criterion derived
from co-ranking matrices [LV09, MLGH13]. Let di j be the
distance between a pair of points xi,x j in Rl and d̂i j be the
corresponding distance between yi,y j in Rm. The rank of
x j with respect to xi is ρi j = |{k | dik ≤ di j or (dik =
di j and 1 ≤ k < j ≤ N)}|. Similarly, the rank of y j

with respect to yi is γi j = |{k | d̂ik ≤ d̂i j or (d̂ik =

d̂i j and 1≤ k < j≤N)}|, where | · | denotes set cardinal-
ity. The difference Ri j = ri j−ρi j is considered rank errors.
The co-ranking matrix C is defined by Ckl = |{(i, j) | ρi j =
k and γi j = l}|. A DR with no errors would produce a
diagonal co-ranking matrix.

In [LV09], a quality for dimension reduction is proposed
as a sum of partial entries in the co-ranking matrix, Q =

1
Kn

K
∑

k=1

K
∑

l=1
Ckl , where K corresponds to the number of neigh-

bors under consideration. Therefore every co-ranking ma-
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trix C can be decomposed into a per-point permutation ma-
trix Ci for every point xi, with C = ∑

N
i=1 Ci and Ci

kl = |{ j |
ρi j = k and ri j = l}|. The point-wise contributions is

Qi =
1
K

K
∑

k=1

K
∑

l=1
Ci

kl , where Q = (∑N
i=1 Qi)/N. For a given

point, a larger Qi corresponds to less local distortion. There-
fore, we define global co-ranking distortion asQ =−Q and
local co-ranking distortion as q =−Qi.

4. Motivation and Data Exploration Pipeline

We highlight our motivation for distortion-guided, structure-
driven data exploration. We discuss the rationale for (a) tran-
sitioning from a static setting to a dynamic setting in ex-
ploring the data via point-wise distortion measures, and (b)
using hierarchical clusterings for data abstractions. We then
describe a typical interactive data exploration pipeline, as il-
lustrated in Figure 1.

Distortion measures under the dynamic setting. Visu-
alizing point-wise distortions under the static setting illus-
trates the qualitative disparities among different regions of
the embedding, which in turn, reflects structural discrepan-
cies within the original data. Regions with higher distortions
correspond to areas with more structural uncertainty (and
equivalently, less structural preservations) in their embed-
dings. We ask the following questions: (a) Why do certain
areas of the original data have higher point-wise distortions?
(b) Are such distortions due to the structures of the original
data that are hidden in its embedding? (c) Is it possible for us
to manipulate the locations of some points in the embedding
in order to achieve better point-wise distortions locally, and
what would such a manipulation tell us about the original
data? These questions motivate us to compute and visualize
distortion measures under the dynamic setting, where on-
the-fly updates of point-wise distortions due to data move-
ment and data deletion reflect structural relations among dif-
ferent parts of the data. Such data manipulations in the visual
space do not trigger a new DR optimization process but re-
sult in updates of relevant distortion measures, which offer
valuable feedback as to how much the manipulated results
deviate from the original embedding. By moving subsets of
points, an increase (or decrease) in distortion measures in-
dicates structural dependencies (or independencies respec-
tively) among different parts of the data, which may lead to
new and valuable insights.

Structure-driven manipulation. Meaningful data manipu-
lations (e.g., data movement and data deletion) in the vi-
sual space should be structure-driven, that is, the selected
points should respect certain structures of the original high-
dimensional data. We impose structural context onto the em-
beddings via hierarchical clusterings, which serve as struc-
tural abstractions of the data at multiple scales. Our frame-
work currently allows users to choose from two classes
of built-in clustering methods: classical (e.g., single- or
average-linkage) hierarchical clustering [Def77] and topo-

logical hierarchical clustering based on Morse-Smale com-
plexes [GBPW10b]. In addition, the users can also directly
import existing hierarchical clustering results or class label-
ing of the data using a simple file format. Such clusterings
help users navigate and manipulate subsets of the data at an
appropriate level of abstraction.

Data exploration pipeline. We illustrate a typical interac-
tive exploration pipeline in Figure 1. (a) We apply a certain
DR technique to the high-dimensional dataset and obtain its
initial embedding, where global distortion measures such as
co-ranking could be employed to select a suitable DR and
its optimal parameter setting. (b) We visualize point-wise
distortions on the embedding. Regions with high distortions
across multiple measures (for example) are identified as re-
gions of interest for further investigation. (c) We apply hier-
archical clustering of the data. (d) We use point-wise distor-
tions to guide our clustering selection, where the appropri-
ate level of clustering is chosen based on its agreement with
the region of interest. (e) We allow users to move and/or
delete a subset of data that belongs to a targeted cluster
in the visual space, where on-the-fly updates of point-wise
distortion measures reflect structural relations among differ-
ent parts of the data. A decrease/increase in distortion mea-
sure of the targeted cluster typically indicates structural in-
dependencies/dependencies among the target and its neigh-
boring clusters. (f) In addition, with detailed parameter anal-
ysis across each cluster, we obtain further insights regarding
differentiating factors among different regions of the data.
Finally, we obtain a collection of structural insights.

5. Design and Implementation

In this section, we describe components of the user interface,
user interaction design and system implementation.

Figure 2: A system overview showing two views and one
control panel. (a) Embedding view. (b) Parallel coordinates
view. (c) Data panel.

5.1. Interface Design

A system overview is shown in Figure 2. The overall in-
terface consists of two views and one data operation panel.
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Figure 1: A typical interactive data exploration pipeline. We could apply different DR for an additional round of analysis, as
well as different distortions inside each analysis cycle. (a) DR; (b) Distortion-guided selection of region of interest; (c)-(d)
Hierarchical clustering of the data and distortion-guided clustering selection. (e) Data manipulations with on-the-fly update of
distortion measures reveal structural insights of the data. (f) Parameter differentiations across different clusters for additional
structural insights.

These visual components are coordinated to provide a com-
prehensive view of the data by highlighting its various
aspects. They are interconnected such that selections and
changes made in one component will be reflected in oth-
ers. The system is highly modular and is easily extendable
to include additional visual components.

Embedding view. This view is the main canvas of the in-
terface where the results of DR, points embedded in 2D, are
visualized. It contains a rich set of user interactions for data
exploration. One could apply different colormaps to visu-
alize points by values of a particular dimension, clustering
labels or point-wise distortion measures.

Parallel coordinate view. This view displays the original
data with each of its dimensions as a vertical axis and each
point as a line drawing through each of the axes. A normal-
ization of the range for each axis is optional to increase read-
ability of the data.

Data panel. This panel contains various data operations
such as DR and clustering. The panel is part of the inter-
linked system so that changes made to the dataset are in-
stantly reflected through other views. The panel consists of
three sub-panels. The meta-information panel gives a direct
view of the data, in terms of its dimensions and statistics,
and includes the ability to filter (hide) certain dimensions
for analysis; the clustering panel allows the user to select dis-
tance metrics, data standardization schemes (see supplemen-
tal material) and hierarchical (e.g., classical single-, average-
linkage, topology-based) clustering methods, while also al-
lowing loading of existing clustering; and the DR panel en-
ables the user to choose DR techniques and specify their pa-
rameters in an online fashion.

5.2. Interaction Design

The fundamental principle behind our interaction design is
to obtain fresh insights regarding the structure of the data

via distortion-guided, structure-driven, interactive manipu-
lations. We provide a list of interaction semantics in the em-
bedding view to aid our manipulations and explorations.

View interactions. Interactions in this category do not cause
re-calculation of distortion measures. Typical operations in-
clude, point selection through the Lasso tool or cluster-
level selection; view zooming and panning; filtering of data
points; and selection highlighting. We provide some details
regarding the structure-driven cluster-level operations. In the
embedding view, a solid circle represents each cluster cen-
ter, whose radius scales with the size of the cluster. Cluster
selection allows the user to select points in a cluster in the
view through selection of the cluster center. Cluster expan-
sion enables the user to expand a selected cluster on-the-fly
to reveal its child clusters. Cluster compression merges se-
lected child clusters into their shared parent cluster. A neigh-
borhood graph could also be constructed connecting cluster
centers based on their distance proximities, which functions
as a structural skeleton.

Data interactions. To visually assist the user to obtain new
insights, we introduce a set of data manipulations that cause
re-computation of distortion measures, namely, data move-
ment and data deletion. Data movement changes the loca-
tion of selected points via mouse movement. Upon releas-
ing the mouse, both global and point-wise distortion mea-
sures are re-calculated and visualized. The increase or de-
crease of global distortion measure informs the user of the
amount of global structural change, while on-the-fly updates
of point-wise distortion measures provide valuable informa-
tion to users regarding structural relations among different
parts of the data. Data deletion allows users to remove points
from the dataset and re-run DR and clustering. Data dele-
tion can remove outliers affecting the DR quality, points with
high/low distortions, or hidden/occluded clusters and allow
focused analysis of subsets of the data.
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5.3. System Implementation

We would like to provide an easily extensible framework that
allows additions of new DR techniques, distortion measures
and interaction/visualization components by following the
standard Model-View-Controller paradigm. For DR, we use
an open source C++ library named Tapkee [LWG13]. This
template-based, easily extensible library provides more than
a dozen commonly known DR techniques. We modify this
library to incorporate point-wise distortion calculations so
they fit seamlessly in our modular design. We chose Clus-
ter3.0 library for the hierarchical clustering. Cluster3.0 is
implemented in ANSI C and provides fast routines to calcu-
late hierarchical clustering with different distance metrics.
Qt is used for general GUI design and drawing function-
alities in views. In addition, we provide topological hierar-
chical clustering based on approximated Morse-Smale seg-
mentation [GBPW10b]. Both clustering and DR modules are
based on APIs that are oblivious to the underlying imple-
mentation, and as a result the library implementations could
be easily updated or replaced. For interactive applications,
responsiveness is essential to the usability of the tool; there-
fore, we have recorded the detailed interaction performance
information in the supplementary material.

6. Results

We showcase the utility and effectiveness of our frame-
work through case studies involving real-world datasets
from combustion and nuclear simulations, see the supple-
mentary video for interactive details.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 3: Parabola. (a) 3D embedding colored by z-
coordinate. (b) 2D embedding colored by KDE distortion.
(b)-(d) Distortion-guided clustering selection. On-the-fly up-
date of distortion measures for data movement (e)-(f), and
data deletion (g)-(h). Distortion measures adopt spectral
colormap.

Synthetic Dataset: Parabola. We first demonstrate, via a
synthetic dataset, distortion-guided clustering selection, data
movement and data deletion in combination with an on-
the-fly update of point-wise distortion measures. We use a
parabola dataset as a proof-of-concept example, which con-
tains trivial structural information that is easily interpretable
in the embedding view. We follow our pipeline illustrated in
Figure 1. Step (a)-(c): We apply PCA to the data and obtain

a 2D embedding colored by KDE distortions (Figure 3(b)).
Both KDE distortion and local cost (not shown here) iden-
tify a central region of interest (enclosed by the red circle)
with low distortion. Step (d): We use point-wise distortion
to guide our clustering selection where we arrive at a con-
figuration with five clusters after cluster expansions (Figure
3(b)-(d)). Step (e): We allow the user to move points that
belong to the blue (central) cluster and update the distortion
on-the-fly (Figure 3(e)-(f)). A drastic increase in distortion
along its boundary indicates a structural dependency among
the blue cluster and its neighbors. Finally, through deletion
of the blue cluster (Figure 3(g)-(h)), we could re-apply DR
on the remaining points for focused structural analysis.

(a) (b) (c)

(d) (e) (f)

Figure 4: Combustion. (a) Points colored by temperature.
(b)-(f) All five distortion measures (local cost, local stress,
robust distance distortion, KDE distortion and co-rank dis-
tortion) indicate an interesting region with high distor-
tion around a temperature minima. Temperature image uses
spectral colormap and distortion measure images adapt hot
colormap.

Combustion Simulation. This dataset consists of 2.8K sam-
ples of chemical composition and temperature extracted
point-wise from time-varying jet simulations of turbulent
CO/H2-air flames [HSPC06]. The simulation records 10
chemical compounds: H2, O2 (Oxygen gas / Oxidizer), O
(Oxygen), OH (Hydroxide), H2O (Water), H (Hydrogen),
HO2, CO (Carbon monoxide), CO2 (Carbon dioxide) and
HCO. The dataset can be modeled as a 10D point cloud with
temperatures as observations. The domain scientists are in-
terested in understanding conditions that trigger extinction
and re-ignition phenomena, which correspond to points (pa-
rameter settings) with minimal temperatures.

Our interactive data exploration process follows a typical
pipeline illustrated in Figure 1. Step (a): We apply cMDS to
the dataset, and color the points by temperature. The result
is shown in Figure 4(a), where two areas are visible with
minimal temperatures (marked by arrows), which may cor-
respond to extinction scenarios. Step (b): In order to better
understand the DR result and identify the area of interest for
further analysis, we visualize various point-wise distortion
measures (Figure 4(b)-(f)). All five of our distortion mea-
sures indicate that relatively large distortion exists among
points near one of the temperature minima (top area enclosed
by the red circle). Such a region becomes our primary tar-
get for further investigation. Steps (c)-(d) We apply classi-
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cal (average-linked) hierarchical clustering to the data. As il-
lustrated in Figure 5(a)-(b), we use point-wise distortions to
guide our clustering selection, where the appropriate level of
clustering is chosen based on its agreement with the region
of interest. Through cluster expansion, we arrive at a reso-
lution with five clusters (Figure 5(b)), where the red cluster
(pointed by red arrow) agrees well with the region of inter-
est (area enclosed by the red circle in Figure 4(b)). Steps (e):
We allow the user to move a subset of the data that belongs
to the red cluster away from its neighboring clusters, as il-
lustrated in Figure 5(c)-(e). We observe a drastic decrease
of point-wise distortion in the area of interest under mod-
erate movement (Figure 5(d)). This indicates a certain level
of structural independencies between the red cluster and its
neighborhood points. Therefore, the points in the red clus-
ter may potentially correspond to a distinct extinction phe-
nomenon that is different from its nearby cluster. However,
further data movement substantially increases the distortion
measure (Figure 5(e)), which indicates that the red cluster is
not completely separated from the rest of the data. Step (f):
To further investigate the nearby red and purple clusters that
both contain points with local minimal temperatures, we dis-
play summary statistics of parameters associated with each
cluster in Figure 5(g) (where the red and yellow bars corre-
spond to the mean values and the data range of the labeled
parameters). Such summary statistics indicate that the dif-
ferentiating factor between those two clusters is the vastly
different HO2 concentration (marked by pink arrows). In ad-
dition, our tool provides alternative topological hierarchical
clustering results to further validate the separation of these
local minima, as illustrated in Figure 5(f) where the blue
cluster (pointed by blue arrow) is a topologically different re-
gion (based on the Morse-Smale segmentation) with respect
to its neighbors, see [GBPW10a] for details. Finally, it turns
out that the red cluster in Figure 5(b) represents an indepen-
dent temperature local minima that correspond to parameter
configurations of a special extinction condition (previously
unknown to domain scientists as described in [GBPW10a]),
where the mixing of fuel and oxidizer is highly turbulent and
blows the flame out, resulting in a large amount of HO2.

Nuclear Reactor Safety Analysis. This dataset simulates an
accident scenario when a plane crashes into a sodium-cooled
fast reactor power plant and destroys three of the four cool-
ing towers [MYA∗13], and, thus, the reactor core cooling
capabilities are disabled. A recovery crew then arrives at the
site and attempts to re-establish the cooling of the reactor by
restoring the damaged towers one by one, during which time
the core temperature keeps increasing if the cooling system
is disabled. When the reactor reaches a maximum tempera-
ture of 1000K the simulation is considered a system failure
scenario; otherwise it is a system success. A set of stochas-
tic parameters, such as crew arrival time and tower recov-
ery time, influence how the core temperature changes over
time. An ensemble of 609 transient simulations has been
generated, each consisting of a time-varying core tempera-

(a) (b)

(c) (d)

(e) (f)

(g)

Figure 5: Combustion. (a)-(b) Distortion-guided cluster se-
lection. (c)-(e) On-the-fly updates of point-wise distortion
measure (local stress) reflect structural relations between
different parts of the data. (f) Validation of two overlapped
temperature minima based on topological clustering. Distor-
tion is colored by spectral colormap. The parameter boxes in
(g) contain summary statistics of parameters in the clusters.

ture profile corresponding to a single simulation. We sample
each profile at 100 time steps and map it to a 100D space.
The domain scientists are interested in studying the struc-
ture of this dataset and understanding characteristics associ-
ated with system failures and system successes, for nuclear
reactor safety analysis.

Once again, we following the data exploration pipeline il-
lustrated in Figure 1. Step (a): We apply cMDS to obtain a
2D embedding. Step (b): Both local stress and robust dis-
tance distortion visualizations (Figure 6(a)-(b)) identify an
interesting region in the lower part of the embedding (en-
closed by the red circle) with relatively high distortions.
Step (c)-(d): We apply classical hierarchical clustering on
the data. Through cluster expansion and compression (Fig-
ure 6(c)), we obtain a hierarchical clustering with four clus-
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(a) (b) (c) (d)

(e) (f) (g)

Figure 6: Nuclear. (a) Local stress; (b) Robust distance dis-
tortion; (c) Distortion-guided cluster selection; (d) Points
colored by their labels: system failure (yellow) and system
success (purple); (e) Plot of 609 time-varying core tempera-
ture profiles in the parallel coordinate plots where x-axis is
time, y-axis is temperature. (f)-(g) On-the-fly update of local
stress before (f) and after (g) movement of points belonging
to the bottom cluster. The embedding views are re-scaled in
the paper due to space constraints.

ters where the green cluster agrees almost perfectly with the
region of interest. Step (e): We allow the user to move the
points associated with the green cluster away from its neigh-
bors in the visual space, and a small movement increases
the distortion measure drastically (Figure 6(f)-(g), distor-
tions before and after data movement). This change of dis-
tortion indicates that the green cluster is structurally depen-
dent on the rest of the data. Step (f): Now we visualize the
embedding with known labels of the data, as illustrated in
Figure 6(d), where points are colored by their labels of suc-
cess (purple) or failure (yellow). We observe that the green
cluster in Figure 6(c) agrees almost perfectly with the the
yellow cluster (failure cases) in Figure 6(d). This offers val-
idation that our distortion-guided clustering selection cap-
tures some inherent structure of the data. By further investi-
gating the local stress and robust distance distortion (Figure
6(a)-(b)), we notice there are two points with the highest dis-
tortions. These points are marked by arrows in Figure 6(a),
(b) and (e), where Figure 6(e) illustrates all the time-varying
core temperature profiles in the parallel coordinate plot. The
point marked by white arrow corresponds to a boundary sce-
nario that separates system failures from system successes,
and the other marked by pink arrow corresponds to a limiting
scenario that reaches failure temperature at the earliest sim-
ulation time. These distortion-guided observations again of-
fer valuable information of the data. Furthermore, we could
investigate just the system success scenarios by removing
all the failure cases. As shown in Figure 7(a), we delete all

the failure cases and re-apply cMDS. Through local distor-
tion visualizations (Figure 7(b)-(c)), we can identify a point
with high distortion that corresponds to a boundary scenario
among the success cases (Figure 7(d)).

(a) (b) (c) (d)

Figure 7: Nuclear. (a) Interactive deletion of failure cases;
(b)-(c) re-apply DR and visualize by local cost (b) and KDE
distortion (c). Both visualizations reveal a point (indicate
by white arrow) with high distortion that corresponds to a
boundary scenario for the success cases. (d) Success sce-
narios in parallel coordinate plots. Embedding views are
rescaled in the paper due to space constraints.

7. Conclusions and Future Work

We propose a distortion-guided and structure-driven inter-
active framework for high-dimensional data exploration via
its visual embeddings, such that: (a) The structural abstrac-
tions obtained through hierarchical clusterings allow multi-
scale data manipulations, even with hidden or occluded data
points; (b) Point-wise distortion measures are used to guide
the cluster expansion and compression process to select the
appropriate level of clustering and help users explore mean-
ingful subregions of the data; (c) Combining interactive data
manipulations in the embedding view with on-the-fly up-
dates of distortion measures provides new insights regard-
ing structural relations among different parts of the data. We
rely on the clustering algorithms to provide approximated
structural representations of the data for our interactive pro-
cess, therefore the accuracy of our inferred results depend on
the inherent characteristics of any chosen clustering method.
Currently several clustering and DR algorithms used in our
tool have a time complexity of O(n2). Therefore, main chal-
lenges for future research include system scalability (e.g.
implementations of scalable PCA [GP14, Lib13]), and dis-
tortion approximations with respect to large datasets with
millions of points.
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