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Abstract:
Understanding high-dimensional data is rapidly becoming a central challenge in many areas of
science and engineering. Most current techniques either rely on manifold learning based techniques
which typically create a single embedding of the data or on subspace selection to find subsets
of the original attributes that highlight the structure. However, the former creates a single,
difficult-to-interpret view and assumes the data to be drawn from a single manifold, while the
latter is limited to axis-aligned projections with restrictive viewing angles. Instead, we introduce
ideas based on subspace clustering that can faithfully represent more complex data than the
axis-aligned projections, yet do not assume the data to lie on a single manifold. In particular,
subspace clustering assumes that the data can be represented by a union of low-dimensional
subspaces, which can subsequently be used for analysis and visualization. In this paper, we
introduce new techniques to reliably estimate both the intrinsic dimension and the linear basis of
a mixture of subspaces extracted through subspace clustering. We show that the resulting bases
represent the high-dimensional structures more reliably than traditional approaches. Subsequently,
we use the bases to define different viewpoints, i.e., different projections onto pairs of basis vectors,
from which to visualize the data. While more intuitive than non-linear projections, interpreting
linear subspaces in terms of the original dimensions can still be challenging. To address this
problem, we present new, animated transitions between different views to help the user navigate
and explore the high-dimensional space. More specifically, we introduce the view transition graph
which contains nodes for each subspace viewpoint and edges for potential transition between
views. The transition graph enables users to explore both the structure within a subspace and
the relations between different subspaces, for better understanding of the data. Using a number
of case studies on well-know reference datasets, we demonstrate that the interactive exploration
through such dynamic projections provides additional insights not readily available from existing
tools.



SCI Technical Report UUSCI-2014-003

Visual Exploration of High-Dimensional Data:
Subspace Analysis through Dynamic Projections
Shusen Liu∗

SCI Institute, University of Utah
Bei Wang†

SCI Institute, University of Utah
Jayaraman J. Thiagarajan ‡

Lawrence Livermore National Laboratory

Peer-Timo Bremer §

Lawrence Livermore National Laboratory
Valerio Pascucci ¶

SCI Institute, University of Utah

Abstract— Understanding high-dimensional data is rapidly becoming a central challenge in many areas of science and engineering.
Most current techniques either rely on manifold learning based techniques which typically create a single embedding of the data
or on subspace selection to find subsets of the original attributes that highlight the structure. However, the former creates a single,
difficult-to-interpret view and assumes the data to be drawn from a single manifold, while the latter is limited to axis-aligned projections
with restrictive viewing angles. Instead, we introduce ideas based on subspace clustering that can faithfully represent more complex
data than the axis-aligned projections, yet do not assume the data to lie on a single manifold. In particular, subspace clustering
assumes that the data can be represented by a union of low-dimensional subspaces, which can subsequently be used for analysis
and visualization. In this paper, we introduce new techniques to reliably estimate both the intrinsic dimension and the linear basis
of a mixture of subspaces extracted through subspace clustering. We show that the resulting bases represent the high-dimensional
structures more reliably than traditional approaches. Subsequently, we use the bases to define different “viewpoints”, i.e., different
projections onto pairs of basis vectors, from which to visualize the data. While more intuitive than non-linear projections, interpreting
linear subspaces in terms of the original dimensions can still be challenging. To address this problem, we present new, animated
transitions between different views to help the user navigate and explore the high-dimensional space. More specifically, we introduce
the view transition graph which contains nodes for each subspace viewpoint and edges for potential transition between views. The
transition graph enables users to explore both the structure within a subspace and the relations between different subspaces, for better
understanding of the data. Using a number of case studies on well-know reference datasets, we demonstrate that the interactive
exploration through such dynamic projections provides additional insights not readily available from existing tools.

Index Terms—High-dimensional data, Subspace, Dynamic projection

1 INTRODUCTION

As our ability to collect a wide variety of large, complex datasets
grows, techniques to understand and mine such data are becoming in-
creasingly important. Typically, data is given as a large number of
points in high dimension describing anything from physical experi-
ments to collections of images or social network connections. For-
tunately, the vast majority of these datasets appear to describe struc-
tures of low intrinsic dimension that are embedded in high dimensional
space. This has led to the development of a large number approaches
aimed at finding and exploiting the low dimensional structures. In par-
ticular, the two most common concepts are manifold learning [19, 27]
and subspace finding [2, 9]. Manifold learning assumes the data can
be described by a single (smooth) manifold and a number of differ-
ent ideas have been proposed to find non-linear projections that best
preserve the high dimensional structure. However, the resulting pro-
jection(s) are difficult to interpret with respect to the original dimen-
sions, results can vary drastically between techniques, and the single
manifold assumption is often violated in practice.

Subspace finding/search techniques, instead, assume that there ex-
ists a (small) subset of the original dimensions which adequately de-
scribes the data. Typically, these approaches will first cluster and then
rank different subsets of dimensions according to how “interesting”
the corresponding projection appears to be and then use axis-aligned
2D projections, i.e., scatterplots to explore these subspaces. However,
even for structures of low intrinsic dimension the required number of
original dimensions can be quite large making the subsequent analysis
and visualization intractable. Furthermore, especially in the presence
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of non-linear structures axis aligned projections may contain signifi-
cant artifacts which can severely distort the ranking.

Our proposed analysis and visualization techniques are based on
recent advances in subspace clustering. Subspace clustering attempts
to strike a middle ground between the two traditional approaches by
assuming the data to be well represented through a collection of lin-
ear (or affine) subspaces not necessarily of uniform dimensions. This
removes the single manifold assumption yet restricts the subspace to
be linear. However, in practice this restriction is often an advantage as
linear subspaces are easier (though not necessarily easy) to interpret
than non-linear ones and non-linear subspaces can always be approxi-
mated by a collection of linear ones. Furthermore, subspace clustering
naturally produces a number of interesting projections, given by the
subspace bases, without the potential artifacts of evaluating interest-
ingness after a projection.

Nevertheless, a number of open challenges remain. First, existing
techniques in subspace clustering are designed to cluster, not to find in-
trinsic dimensions or linear subspaces. Since the clustering, especially
for intersecting subspaces, cannot be perfect, applying traditional di-
mension estimation and subspace finding techniques directly to the
clusters produces suboptimal results (see Section 3.2). Second, the
user is still left with a collection of non-intuitive subspaces and their
bases vectors that must be explored and analyzed. This paper presents
a new framework for the visual exploration of high-dimensional data
that addresses both these problems.

In this work, we introduce a new dimension and bases estimation
method directly tied into the subspace clustering and less suscepti-
ble to outliers or intersecting subspaces than traditional techniques.
Furthermore, in order to better understand and analyze the subspace
clustering and basis estimation result, we propose adopting animated
view transitions to interactively explore individual subspaces as well
as the relationship between subspaces. For each pair of basis vectors
within or between subspaces we create a 2D view defined as the cor-
responding projection into the plane defined by the given vectors. We
then generate the view layout for intuitive navigation among views
between and within subspaces. One can analyze and infer the relation-
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ship between views by exploiting the smooth and continuous dynamic
projection seamlessly connecting these two views. Using several well-
known reference datasets, we demonstrate that our framework is able
to recover complex subspaces and that the animated transitions reveal
insights not easily accessible with traditional techniques.
Conventions and notations. To eliminate any possible confusion
from the naming convention, here we define some of the fundamen-
tal concepts and names used in this paper. In our work, we consider
any linear projection as a “view” for peeking into the high-dimensional
space, therefore, a view means a linear projection. Also, our proposed
method uses subspace clustering to identify a subset of data that shares
a similar bases. A cluster corresponds to a subspace, therefore, cluster
and subspace may be used interchangeably. Subspace search/finding
most commonly refers to the subspace discovery method proposed in
database community. However, they also use subspace clustering to
describe the searching operation for a subset of dimensions. To avoid
the confusion we will not refer to them as subspace clustering algo-
rithms, but as subspace searching/finding algorithms.

2 BACKGROUND

In this section, we reviewed several topics closely related to our pro-
posed method.

2.1 Subspace Clustering

Several of the advances in analyzing high-dimensional data have relied
on the observation that, even though these samples were drawn from
a high-dimensional space, their intrinsic dimension is much smaller
than the ambient dimensions. For example, the number of pixels in
an image may be large. However, we typically use only a few pa-
rameters such as the geometry or the dynamics to describe the appear-
ance. Data models inferred with such assumptions are often simple,
in the number of parameters, and interpretable. This has motivated
the design of techniques that can provide meaningful low-dimensional
representations for the high-dimensional data. A wide variety of low-
dimensional models have been considered in the machine learning
and data analysis literature, and they have found widespread appli-
cations in pattern recognition, data compression, bio-informatics etc.
Conventional approaches such as the Principal Component Analysis
(PCA) [13] assume the data lies along a single, linear (or affine) low-
dimensional subspace of the ambient dimensions. However, in prac-
tice, this assumption could be restrictive, and hence we often use a
more general assumption that the data samples are drawn from a union
of subspaces. The memberships of the samples to the subspaces are
unknown, and each of the subspaces can be of different dimensions.
This is more challenging as there is a need to simultaneously cluster
the data into multiple subspaces and find a low-dimensional subspace
fitting each group of samples.

Existing subspace clustering methods can be broadly classified into
three classes: (a) algebraic, (b) iterative, and (c) spectral clustering-
based. All these methods are typically developed for noise-free data
and their behavior in presence of noise and outliers vary significantly.
Algebraic methods for subspace clustering include performing low-
rank matrix factorization of the data matrix [29] and generalized PCA
[30] which is based on the idea that one can fit a union of n subspaces
with a set of polynomials of degree n, whose derivatives at a sample
provide a vector orthogonal to the subspace containing that sample.
Iterative methods follow the construction of traditional clustering al-
gorithms such as K-means, which given an initial segmentation, fit a
model (example: PCA) to each subspace and in the next step assign
the samples to the nearest subspace. Some examples for this class of
methods include K-planes [6] and K-subspace clustering [1]. The last
class of methods attempt to construct graph affinities, that capture the
subspace structure, for use in spectral clustering [22]. This approach
has been shown to be provably correct when the data is noise-free and
cab be effective in handling noise and outliers. Some of the recently
successful methods based on this idea include local subspace affinity
[32], sparse subspace clustering [10], low-rank representation [20] and
spectral curvature clustering [8].

2.2 Visual Exploration through Subset of Dimension
Due to the structural complexity and high-dimensionality of many
datasets, some of the recent advances in high-dimension data visu-
alization rely on selecting a related subset of dimensions for analysis.
Approaches such as representative factor generation [28] and dimen-
sion projection matrix/tree [33] can allow interactive exploration in
the dimension space, in addition to enabling analysis in the data space.
This allows the user to visually explore the relationship among di-
mensions and filter out unrelated dimensions. While other methods,
such as the TripAdvisorND [21], adopt the ENCLUS[9] algorithm to
identify related subset of dimensions (or subspaces). In [26], the au-
thors prposed an approach for summarizing the large number of “sub-
spaces” (subset of dimensions) generated from subspace search algo-
rithms. These methods introduce some very interesting exploration
strategies for high-dimensional datasets, and they can be particularly
effective when the dimensions are not closely coupled. One issue with
such approaches is that only axis-aligned features are easily discov-
erable. In addition, the subset of dimensions also means we are only
using partial information in the data, so it could be difficult to deter-
mine whether the discovered features are truthful structures in high-
dimensional space or artifacts due to the use of incomplete data. In
our proposed framework, we utilize subspace clustering techniques,
which group points that share common low dimensional linear spaces,
therefore reliably capturing the intrinsic structure in high-dimensional
space.

2.3 Informative View vs. Interpretable Axis
Informative view refers to the low dimensional embedding that reveals
the hidden innate structure of the high-dimensional data (class separa-
tion for example). Fully understanding these structures often proves to
be difficult due to the lack of interpretability of the axes. Trade-offs ex-
ist between the “informative view” and “interpretable axis”. To begin
with, let us consider the simplest projection: the axis parallel projec-
tion used in a scatterplot / scatterplot matrix. Based on the worst case
lemma[3], the axis-parallel projections will tend to be non-informative
for high-dimensional problems. This implies that even if we select the
most “interesting” view from the scatterplot matrix, as carried out by
approaches such as Scagnostics work [31], we will still lack the infor-
mation to reliably capture the intrinsic structure. However, the benefit
of axis-aligned plots is obvious: one can easily interpret them. On the
other hand, even with a linear projection such as PCA, we have no idea
about what the principle component represents, and hence there is no
meaningful label for the axes in the plot. As discussed in [14], even
a simple linear basis could be difficult to interpret. In [14], Gleicher
attempts to associate a linear basis with a certain meaningful concept.
These concepts are defined based on user defined examples. Machine
learning techniques can then be employed to find a set of simple linear
bases that could achieve accurate projection according to the example
prior. This allows for an interesting and meaningful view to be gen-
erated based on user intention. However, there is no guarantee such
a projection will reveal any interesting structure that was masked in
the high-dimensional space. For non-linear dimension reduction tech-
niques, interpreting of the axis would be almost impossible. In order to
combine the advantages of both worlds, our method tries to find an in-
formative view through subspace clustering and basis animation, and
with the the help of transitional animation, we could better interpret
and understand the subspace bases.

2.4 Animation Augmented Exploration
Besides identifying suitable/informative views, navigation and ani-
mated transition between different scatterplots has been introduced
to enhance perception, and gain intuition about the high-dimensional
data. Our brain has been trained to track the correspondence in ani-
mated transitions as well as recognize high-dimensional objects (3D
mostly) by viewing a continuous 2D projection of them. This observa-
tion could be exploited for designing high-dimensional visualization
tools. The Rolling the Dice approach for navigating a scatterplot ma-
trix [11] provides a navigation interface for transition between pairs
of scatter plots, as well as a smooth 3D transformation animation to
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help visualize the point correspondence and structural changes. In ad-
dition, users can iteratively build queries using bounding volumes in
the dataset, sculpting the query from different viewpoints. In Nav-
Graph [18], an interesting subset of scatterplots in scatterplot matrix is
selected based on the measures proposed in Graph-Theoretic Scagnos-
tics [31]. Subsequently, a graph is constructed using the pair of views
with common variables. Navigating along each edge of this graph
will result in a smooth transition animation that mimics the rigid body
transformation in 3D. Compare to NavGraph, our work relies on a
very different view selection scheme. Instead of attempting to find
interesting views among all scatterplots (that may originate from ar-
tifacts), we use subspace clustering to capture the data’s intrinsic low
dimensional structure. Sanftmann et.al [24] further extended the 2D
scatterplot transition by introducing similar operation for 3D scatter-
plots. The GGobi system[25] introduced the guided tour concept, it
combines grand tour[4] with projection pursuit[12], allowing transi-
tion to be guided to the more “interesting” views (based on projection
pursuit index). Instead of relying on a fully animated transition, some
methods like the TripAdvisorND[21] use a limited rotation to create an
illustration that gives the user an impression of the high-dimensional
structure. This system provides a Focus+Context approach, where a
number of “tourist sites” corresponding to a best view of each sub-
space (the subset of dimensions) is provided as an overview and con-
text. The user can delve into each of these “tourist sites” for a more
focused study, including slightly tilting the projection plane around
their neighborhood. In comparison to the TripAdvisorND system, our
proposed approach adopts a similar navigation structure to guide the
exploration, with an important difference that our method allows tran-
siting between different subspaces, which is often crucial for under-
standing complex data.

3 METHOD

As shown in Figure 1, our system contains two major components:
the preprocessing step and the interactive exploration step. The pre-
processing is responsible for subspace identification and subspace
model estimation. First, we applied subspace clustering on the input
high-dimensional dataset. Then our proposed model estimation algo-
rithm is utilized to identify each subspaces’ intrinsic dimension and
the corresponding basis. After that we can feed all the preprocessed
information into the interactive exploration tool, where we use ani-
mated transitions between subspace view to understand the structure
of the high-dimensional space.

3.1 Subspace Clustering
Let us assume that the set of data samples {xi ∈ RD}T

i=1 are drawn
from an unknown union of n ≥ 1 linear subspaces {S j}n

j=1. The di-
mensions of the subspaces, 0 < d j < D ( j = 1, · · · ,n), are unknown
and each subspace is described as

S j = {x ∈ RD : x = U jy}, (3.1.1)

where U j ∈RD×d j is a basis for the subspace S j and y∈Rd j is the low-
dimensional representation of the sample x. When n = 1, this problem
reduces to Principal Component Analysis (PCA). In this case, the ba-
sis U and the low-dimensional representation Y can be easily obtained
using the rank-d singular value decomposition of the mean-removed
data matrix. The dimension d can be fixed as the rank of X when
the data is noise-free, and a suitable model selection technique can
be adopted for noisy data [29]. Ideally, when the clusters are known,
PCA can be directly used to estimate the basis. However, when n > 1,
the problems of identifying subspaces and model estimation are cou-
pled. One primary challenge with this general setting is that in extreme
cases we can either fit T one-dimensional subspaces to the data, i.e.,
one subspace for each sample, or a single D−dimensional subspace,
and neither of them are appropriate. As a result, a model selection
strategy that can balance the number of subspaces and the number of
dimensions becomes crucial.

A wide variety of subspace clustering algorithms have been pro-
posed in the machine learning literature [29], and in particular meth-
ods based on spectral clustering have been very effective. Spectral

clustering belongs to the family of subspace clustering which aims at
finding a low-dimensional subspace for each group of points [22].
These methods rely on the assumption that the high-dimensional data
could be better grouped in a projected space. Thus, spectral clustering
mainly contains two tasks, projecting the dataset into an latent space
and calculating the cluster membership of the dataset in that space. It
works by constructing an affinity matrix A ∈ RT×T , where Ai j mea-
sures the similarity between samples i and j. Following this, the clus-
ter membership of the data points are estimated using the spectrum
of the affinity matrix. Given the affinity matrix, we apply K-means
clustering to the eigenvectors of the graph Laplacian L. The Lapla-
cian can be constructed as L = D−A, where D is a diagonal matrix
with each diagonal element is set to the sum of the corresponding row
(or column) of the symmetric matrix A. Alternatively, a normalized
Laplacian can be defined as L = D−1/2AD−1/2. Assuming that the
number of clusters K is known, we extract K smallest eigenvectors,
V ∈ RT×K , of L and apply K-means clustering to the rows of V.

The construction of the affinity matrix lies at the heart of the spec-
tral clustering algorithm and there are two general kinds of metrics to
build a similarity graph, i.e., pairwise distances and reconstruction co-
efficients. The first approach uses pairwise distances to determine the
neighborhood for each sample and appropriately computes similarities
for the edges in the graph. One popular similarity measure is based on
the heat kernel, Ai j = exp(−‖xi − x j‖2

2/σ). The primary challenge
in using distance-based affinities for subspace clustering is that two
samples that are close to each other, may actually lie on different sub-
spaces, e.g. near the intersection of two subspaces. On the contrary,
two samples that are far from each other may belong to the same sub-
space. Furthermore, pairwise distances are very sensitive to noise and
outliers. An alternative class of methods is based on the idea of rep-
resenting each sample as a linear combination of other data samples.
Since samples belonging to the same subspace share a common basis,
this linear combination can reveal the underlying subspace structure,
if one exists.

The general model considered for reconstructing each sample using
the other data samples can be written as

X≈ XW, s.t. Wii = 0(i = 1 · · ·T ), (3.1.2)

where the matrix W = [wi]
T
i=1 describes the relationships between the

different samples and the condition Wii = 0 ensures that a sample is
not used for its own reconstruction. In principle, this leads to a highly
ill-posed problem with several possible solutions. This calls for us-
ing appropriate regularization to this optimization problem. In this
paper, we consider three regularization penalties on W for the prob-
lem in (3.1.2) : (i) sparsity [10], (ii) low-rank [20], and (iii) L2 [23].
The details on these three approaches have been included in the sup-
plementary material. Given the coefficient matrix W, the adjacency
matrix for spectral clustering is computed as A = |W|+ |WT |. Given
the subspace segmentation, the next step is to fit a linear model for
each subspace. Though PCA can be directly used to infer the basis
and dimension for each subspace, we propose an alternative approach
for model estimation based on graph embedding. The proposed ap-
proach is more resilient to outliers, and can provide an improved data
fitting when data does not completely adhere to the subspace assump-
tion, which is often the case in practice.

3.2 Proposed Model Estimation
The primary advantages of the different affinity matrix construction
approaches described in the previous section is that the neighborhood
for each sample is chosen automatically and by design, they search for
low-dimensional subspaces to fit the data. In this paper, we propose
to use dynamic projections to analyze a subspace and its connection
to other subspaces. To achieve this, we need to reliably estimate the
dimension of each subspace and its corresponding basis. The problem
of understanding relations between subspaces can then be efficiently
solved using the models estimated for each subspace.

A natural way to estimate the dimension and basis of a linear sub-
space is to use PCA. However, using PCA for model estimation with
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Fig. 1: An overview of our work-flow. Firstly, subspace clustering is applied on the input dataset. Then a model estimation algorithm is applied try to identify each subspaces’ intrinsic
dimension and the corresponding basis, eventually all the preprocessed information is feed into the interactive exploration tool, where we can using animated projection transition
between subspace view to understanding the structure of the high-dimensional data.

Fig. 2: Estimating the intrinsic dimension of linear subspaces - Median misfit for the
within-cluster (Ed

in) and out-of-cluster samples (Ed
out ) using the basis estimated for a cluster.

The dimension is set as the lowest value beyond which Ed
in < Ed

out , and Ed
in ≤ τED−1

in .

each subspace independently does not exploit the relationships be-
tween the different subspaces. As a result, the model estimates might
not be very useful when two subspaces intersect, for example. Further-
more, since PCA attempts to determine directions of maximal vari-
ance, outliers that might arise due to the subspace clustering process
can significantly affect both the dimension estimation and the basis
computation. Another inherent challenge in using subspace clustering
methods for exploratory data analysis is the need to validate the union
of subspaces assumption on the data as part of the analysis. When the
subspaces are not independent and disjoint, the affinity matrix is not
block-diagonal and hence accurately estimating the number of sub-
spaces is not possible. In practice, similar to other clustering methods,
it is assumed that the user can input the number of subspaces. When
the input number of subspaces is not accurate, the basis vectors pro-
vided by PCA might over-fit the data, and it might not be apparent
from our analysis that the model assumption needs to be re-evaluated.

To address these challenges, we propose to use ideas from graph
embedding to perform model estimation for each subspace. The
graphs constructed using all three methods can contain edges, with
non-zero weights, for a sample with other samples from both within
its subspace, and other subspaces. For example, samples near the in-
tersection of two subspaces might have contributions from samples in
both subspaces. In order to infer a subspace model, while taking into
account its relation to other subspaces, we extract a block-diagonal
matrix from the coefficient matrix W, corresponding to only the sam-
ples in that subspace to compute the basis vectors. For a subspace S j,
we denote the set of indices of samples belonging to that cluster by
Λ j. Since we are interested in computing a linear embedding, we pose
the following problem similar to the one in [17]:

U j = argmin
U

∑
i∈Λ j

∥∥∥∥∥UT xi− ∑
k 6=i,k∈Λ j

WikUT xk

∥∥∥∥∥
2

2

s.t. UT U = I. (3.2.1)

Here the matrix U ∈ RD×d j contains the set of basis functions, and d j

is the dimension of the subspace. We can rewrite this minimization
problem as

min
U

UT X j(I−W j)
T (I−W j)XT

j U s.t. UT U = I, (3.2.2)

where X j is the subset of samples belonging to cluster j, and W j ∈
RTj×Tj is the block-diagonal matrix with edge weights corresponding
to only samples in Λ j. The solution to this problem can be obtained
using the generalized eigenvalue decomposition of X j(I−W j)

T (I−
W j)XT

j and the basis U is fixed as the eigenvectors corresponding to
the d j smallest eigenvalues.

Using the proposed embedding strategy, we develop a new tech-
nique for reliably estimating the subspace dimension d j. Unless the
number of subspaces is highly overestimated, the basis set of a particu-
lar subspace will be a poor fit to the data from other classes. However,
subspace clustering algorithms might not provide a perfect subspace
segmentation, and as a result some samples can be wrongly clustered
into a subspace. PCA does not take this into account, and provides
a model that fits the outliers samples also, which is not desirable for
understanding relations between subspaces. In contrast, our embed-
ding in (3.2.2) penalizes samples that have non-zero coefficients with
samples from other subspaces and hence the resulting model is more
meaningful. For a subspace S j, we vary the number of dimensions d
between 2 and D−1, and for each case repeat the following steps:

• Compute the basis Ud
j for the samples X j using (3.2.2).

• In the low dimensional space, construct a L2 graph for samples in
the low dimensional space and measure the reconstruction error
for each sample.

• Compute Ed
in as the median reconstruction error for all within-

cluster samples.

• Project samples from other subspaces, {xi : i /∈ Λ j, i = 1 · · ·T},
onto the basis Ud

j .

• Construct L2 graph for the out-of-cluster samples and measure
the reconstruction error for each sample.

• Compute Ed
out as the median reconstruction error for all out-of-

cluster samples.

Here median error is more resilient to the outliers compared to the
mean error. We fix d j as the lowest dimension beyond which Ed

in <

Ed
out , and Ed

in ≤ τED−1
in . The parameter τ balances between the num-

ber of dimensions and the desired reconstruction error. Figure 2 plots
the errors Ein and Eout for varying values of the dimension d, for an
example case. For this case, the dimension is estimated to be 3.

3.3 Dynamic View Transition for Subspace Exploration
In this section, we will first describe the underlying principle for dy-
namic transition between a pair of projections. After that a dynamic
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view transition based subspace exploration scheme is proposed. The
method we adopt for transition between a pair of bases was originally
proposed by Buja [7] and implemented in their GGobi software. How-
ever, we use that general idea for the transition under a very different
context. GGobi defines a series of transition targets, by either ran-
domly generating the target (the grand tour scheme) or utilizing the
projection pursuit, and then cycling through them one by one. This
process is referred to as a “tour”. In contrast, the source and target
projections in our proposed setup are obtained from low-dimensional
subspaces describing the inherent structure of the data. And, we de-
velop a navigation infrastructure that allows for intuitive exploration
among the different views. In addition, the primary goal of our ani-
mation transition is to study the structure for each subspace and their
relationships to other subspaces.

3.3.1 Transition Between Projection Planes
In the proposed framework, a linear projection (a view) can be de-
fined using a projection matrix. Let D denote the original data dimen-
sion, and d denote the desired dimension for the projection. We define
the matrix F ∈ D× d to denote a projection, where each column of
the matrix is an orthonormal basis vector. Calculating the dynamic
transition between projections is equivalent to generating a set of pro-
jection matrices F, interpolating between Fa and Fz. Note that, for
any useful visual analysis, we need to fix d = 2, and this implies we
essentially attempt to smoothly interpolate between a pair of projec-
tion matrices defined using the basis vectors ( fa1, fa2) and ( fz1, fz2)
respectively. Transitioning between a set of bases comprises of two
components: in-plane rotation and rotation of the projection plane.
The within plane rotation will only alter the orientation of the pro-
jection but the plane rotation will change the projection’s shape and
visual pattern. From visualization standpoint the difference in the ori-
entation will not impact shape and pattern recognition. Therefore, we
could remove the in-plane rotation part in the transition calculation to
achieve a more direct transition animation. However, this means we
are no longer transitioning from Fa and Fz, instead, we rotate the plane
span( fa1, fa2) to the plane span( fz1, fz2) as illustrated by the red and
blue circles in Figure 3.

Fig. 3: Illustration of the relative positions of given basis ( fa1, fa2), ( fz1, fz2) and the pairs
of principal directions, (ga1,ga2), (gz1,gz2). The θa and θz are the in-plane rotation the Fa,
Fz require to match Ga, Gz.

As shown in Figure 3, performing an in-plane rotation of Fa by θa
results in the set Ga = (ga1,ga2). Similarly we can form Gz by rotating
Fz by θz. We know that for two planes of dimension d, orthonormal d
dimensional frames, Ga and Gz, that span the planes can exist, when
GT

a Gz is a diagonal matrix. Therefore the bases in Ga and Gz are
orthogonal to each other. The columns of the Ga and Gz are the “prin-
cipal directions” of the pair of planes, and the diagonal entry λ j of the
matrix GT

a Gz corresponds to the cosine of the principle angles. There-
fore, the geodesically shortest path between the planes can be obtained
by rotating the columns of Ga into the corresponding columns of Gz
based on the principal angle. In Figure 3, ga1 are orthogonal to gz1 and
ga2 are orthogonal to gz2, α1 and α2 are the principal angles between
these two planes.

The diagonal matrix can be easily computed using the singular
value decomposition (SVD) of FT

a Fz.

FT
a Fz = VaΛVT

z , Λ = diag(λ1 ≥ ...≥ λd), (3.3.1)

Va and Vz are the in-plane rotation matrices, we now have

Ga = FaVa and Gz = FzVz, where GT
a Gz = Λ (3.3.2)

Following this, we can construct the rotation matrix which moves
Ga towards Gz. As mentioned earlier, the rotation is not a direct map-
ping from Fa to Fz, instead we rotate Fa to another basis F′z that shares
the same span of Fz to achieve a less complicated animation. Such a
setup will cause the end rotation to have a different orientation com-
pared to the target. In order to resolve the discrepancy, we update the
target to F′z to achieve a smooth and continuous transition. Additional
details about the formulation of this transition can be found in [7].

3.3.2 Subspace Exploration Pipeline
The dynamic transition between projection planes is the essential
building block for our visualization system. When compared to ex-
isting works that utilize dynamic view transitions (grand tour, guided
tour), the novelty of our approach lies in using the animated transi-
tion to understand the (union of) subspaces and their complex inter-
relations. The pipeline of the proposed interactive exploration tool is
illustrated in Figure 1. The tool loads the original high-dimensional
data along with the clusters and their corresponding models (dimen-
sion, bases) estimated during the pre-processing step. The subspace
views, defined by a pair of bases vectors, are automatically generated
for each subspace. Therefore, without duplications, we will have one
view per 2D subspace, three views per 3D subspace and six views per
4D subspace, etc. Our subspace views are designed in a similar fashion
as a scatter plot matrix. However, using linear subspaces instead of all
possible axis-aligned subspaces, greatly simplifies the analysis. Since
the estimated subspaces are typically low dimensional, the number of
views is significantly lower than that of a scatter plot matrix. However,
it is still challenging to organize the reduced number of views in a log-
ical and meaningful way for effective navigation and visualization.

Once all the views are created, we construct a k-nearest neighbors
graph, where the distance between a pair of views is determined by
the maximum value of dot products among all pair of bases between
the two selected views. A force-based graph layout algorithm is then
applied to generate the spatialization of the view in the canvas. Our
proposed view distance measure not only captures the similarity be-
tween pairs of projections, but also allows the views belonging to one
subspace to be nicely clustered together (see the view navigation panel
in Figure 5) to facilitate easy subspace navigation.

With the view navigation panel, we could navigate among views in
the same subspace (intra-subspace transition), or between views be-
longing to different subspaces (inter-subspace transition). Due to the
fact that our subspace bases can be described as some linear combi-
nation of the original dimensions, the axes are difficult to interpret,
especially in a static plot. We propose to resolve this limitation by
connecting these scatter plots with animated transitions, which can
reveal important correspondence information between the views for
understanding their structures. From the computational perspective,
there is no difference between transitioning between subspace views,
and transitioning between any arbitrary pairs of views. During the dy-
namic projection, we project all points indiscriminately based on the
current interpolated bases, even though they belong to different sub-
spaces. To understand the importance of the dynamic transition be-
tween a pair of subspace views, we need to revisit the subspace finding
techniques. Though a high-dimensional dataset may contain highly
complex structure, the idea of subspace learning assumes that certain
parts of the complex structure can be well approximated by some low
dimensional linear space. Subspace clustering techniques try to par-
tition the data into clusters where within each cluster the points share
the same set of bases. From a visualization standpoint, such decompo-
sition can provide enough information for understanding the complex
high-dimensional space through a divide and conquer paradigm. Since
each subspace is much simpler than the overall data, we could first fo-
cus on each of the subspaces. Then based on the understanding of
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the individual subspaces, we could then explore the relationship be-
tween subspaces through inter-subspace transitions. During such tran-
sitions, we could infer the structural relationship between subspaces
through the motion pattern exhibited during the transition. In Sec-
tion 5 we demonstrate example cases where we are able to discover
patterns corresponding to distinct structure in the data that were not
apparent otherwise.

4 IMPLEMENTATION

This section will discuss our user interface and available interactions
as well as some implementation details and performance numbers.

4.1 User Interface & Interaction Design
Fig. 5 shows an overview of the system that the three main windows
marked as (A), (B), and (C) respectively. We consider (A) the main
canvas showing the dynamic projections as well as a number of in-
formative insets. (B) is the view navigation panel showing the view
transition graph from which the user drives the exploration. Finally,
(C) contains the file menu, lets the user select which dimension reduc-
tion technique to apply and provides a raw data display for detailed
queries.

Dynamic projection panel. This is the main canvas that displays
the current, dynamically changing projection (A-1). This panel also
include the controls for choosing colormaps, the type of transitions,
and allows the user to turn on/off different visual components in the
view. The points can be colored based on the subspace label, the orig-
inal dimensional value or the ground truth class label. To prevent the
view clutter when focusing on a subspace, we allow the user to fade
out the non-active subspace. During a transition, if the source and tar-
get projections are from different subspaces we will fade-in and out
the corresponding points in a continuous manner. In addition, we aug-
mented the projection with basis axis or the original dimension axis,
to provide a spatial reference during the transition. Alongside the pro-
jection view we display small insets (A-2) showing both the source
and the target projections. Note that the target projection may exhibit
some discrepancies from the final projection shown in the dynamic
view, due to differences of the in-plane rotations (see Section 3.3). Fi-
nally, we provide an additional inset (A-3) to display the data in its
natural domain, e.g., images as images, if applicable. Especially for
the face and digit dataset (see Section 5) the ability to refer back to the
original data has proven helpful.

View navigation panel. This panel provides the navigation inter-
face for our dynamic view transitions. As illustrated in Figure 5(B),
each view is represented by a node, where: a square node represents a
scatterplot view using a subspaces basis; a circular node represents the
global PCA view; and a triangular node is an axis-aligned projection.
Node colors indicate the different clusters. Transitions are allowed
between any pair of nodes.

Data operation panel. The final panel contains various operations
such as loading data and manually applying projections. The panel
is part of an interlinked system, so changes made to the dataset are
instantly reflected through other views. The panel consists of three
sub-panels. The meta-information panel provides a direct table view
of the data, in terms of its dimensions and statistics. The dimensional-
ity reduction panel enables the user to choose different dimensionality
reduction techniques and specify their parameters. In our current ap-
plication, only the PCA and dimension aligned projection are allowed
(have meaningful linear basis). Once a projection is applied the corre-
sponding view node will appear in the view navigation panel.

4.2 Software Implementation
Our software is divided into two major parts. The pre-processing code
responsible for subspace clustering as well as dimension and basis es-
timation and the visualization tool provides an interactive exploration
of the different views. For the preprocessing we have implemented
three different subspace clustering techniques and the proposed ba-
sis estimation technique in MATLAB. The dynamic projection tool is
an integral part of our high-dimensional data exploration framework.
Our visualization system is implemented in C++, using Qt for the GUI

Fig. 5: The user interface of our interactive tool consists of three major parts: (A) the
dynamic projection panel; (B) the subspace navigation panel; and (C) the data operation
panel. In the dynamic projection panel, the dynamic projection, (A-1), augmented with an
axis plot to provide a reference to the basis coordinate. The top inset (A-2) displays the
source and target projection of the current transition. The bottom inset (A-3) provides a
display of the original data if applicable.

components and point graphics drawing. The framework is designed
to be easily extendable to include new visualization techniques, and
provide an environment to combine different tools to complement their
capabilities.

Here we gives a brief summary of our performance and timing in-
formation. For an interactive application smooth visual feedback and
a responsive interface is important for a user to fully utilize the sys-
tem. Our dynamic transition requires a linear projection re-calculation
of the whole dataset in every frame, therefore an efficient implementa-
tion is important. The projection code is implementation in C++, using
the Eigen linear algebra library [15] for faster matrix multiplication.
For all of the datasets we tested, we achieve between 10-35 frame per
second depending on the workload. For the the pre-processing step,
the full MNIST data took around 15 minutes; the Yale faces around 7
minutes; and the combustion data around 3 minutes.

5 RESULTS

In this section we demonstrate our system using a mix of well-known
reference datasets, some application specific data, and a synthetic
dataset for illustration.

5.1 Synthetic Dataset

To provide some intuition on how to interpret the animations between
different projections and to setup the examples in the remainder of the
section we use a simple synthetic dataset containing two intersecting
2D planes embedded in 3D. Figure 4 shows the transition left-to-right
from one subspace (colored purple) to the other (colored black). The
intersecting relationship becomes obvious in the transition, provid-
ing important insight not easily obtained from traditional axis-aligned
views. Furthermore, note how the black subspace is projected onto a
near perfect line in the purple view (left) yet the reverse is not true
for the purple subspace in the black view (right). This mismatch indi-
cates different spatial extents of both planes. In this case, both planes
cover the entire xy-plane of the unit box yet the purple one is tilted in
space and thus larger leading to the spread in the black view. Instead,
in a perfectly symmetrical setup the projections also would have been
symmetrical.

5.2 Combustion Simulation Dataset

The combustion simulation dataset contains a collection of 2.8K sam-
ples from a large scale turbulent simulation [16]. Each sample has the
concentration of ten chemical components, such as H2, O2, etc., as at-
tributes and scientists are interested in understanding the shape of the
underlying “chemical manifold” and especially how it might related to
phenomena such as extinction or re-ignition.
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Fig. 4: Two intersecting planes. Animated transitions between the purple and the black subspace.

Fig. 6: Combustion. From left to right, from top to bottom: transitions from the PCA View, to the brown, purple and black Subspace Views; Animated transitions from the (top row)
black subspace to the yellow subspace; and to the green subspace.

Fig. 7: Face. From left to right: transitions from the PCA View, to three of the yellow Subspace Views.

Subspace clustering results in five 2D subspaces. In Figure 6(top),
we start our exploration from the PCA View. We then dynamically
transition to the brown subspace View, then to the purple and even-
tually to the black subspace View. By rotating the bases associated
with each view, we observe a small amount of tilting during the transi-
tions. This observation helps us to develop an intuitive understanding
that these 2D subspaces are glued together with small rotational an-
gles and likely describe a gently curved, non-linear structure to some
extent also visible in the PCA View.

However, transitioning from the black subspace to the orange one,
causes a drastic expansion of the orange subspace and a compression
of the brown, purple and black subspaces (see Figure 6(bottom left)).
The animation indicates that the orientation of the orange subspace
is very different from the other three subspaces we have just visited.
Such an effect could also be observed in the axis plot, where the O2
and HO2 concentrations are the only dominating dimensions for the
orange subspace, where other subspaces span among more dimen-
sions. Finally, we transition from orange to the green subspace, where
the animation demonstrates their similarities in terms of the small ro-
tational angle (see Figure 6(bottom right)).

Overall, one can infer that the brown, purple, and black subspaces
share structural similarities; the green and orange spaces are closely
related; yet both sets of subspaces are structurally very different. In
addition, based on domain knowledge and previous studies we know
that in the PCA View, parts of the orange and green subspaces exhibit
large projection distortion compared to the rest of the points. Our
visualization partially validates the previous discoveries and provides
a likely explanation. PCA is known to maximize variance across all
dimensions, which is visible through the axis plot of the PCA View.
However for the green and orange subspaces, only two out of the ten

dimensions exhibit a large variance. As a result, the bases of the green
and orange subspaces do not align well with the globally computed
basis obtained from the PCA, resulting in large projection distortion.

5.3 Yale Face Dataset
The Yale Face dataset is a subsample from the original database [5].
It consists of 439 face images from seven people we roughly label
as (in no particular order): one Asian female, two Asian males, one
Caucasian male, one Indian male, one African female and one mid-
dle eastern male. The original images have a resolution of 32× 32.
For visualization purpose, we use random projection to reduce their
resolution to 10× 10, therefore the point cloud is embedded in 100D
space. Our subspace clustering returns six 3D subspaces and one 4D
subspace.

We start our exploration from the global PCA View where the yel-
low points appear to form a ring-like structure displayed in Figure 7.
To verify such a structure, we transition to a yellow Subspace View for
further intra-cluster investigation. By enabling subspace-based trans-
parency, we highlight the selected subspace (yellow) by making other
points more transparent. Via intra-cluster exploration with animated
transitions, we can clearly identify the ring-like structure for the yel-
low subspace, and infer its structural separation from the remaining
point cloud (see Figure 7). Referring back to the face images, for the
yellow subspace, we can verify that the mis-classified points (which
are highlighted by colors other than yellow in Figure 9a) exist in the in-
tersection between the yellow subspace and the rest of the point cloud.

Similar intra-cluster transitions could be apply for exploring other
subspace individually. The brown and dark green subspaces contain
structures that are visibly separated from the rest of the of the dataset
(see Figure 9b). Referring back to the face images, the brown and dark
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Fig. 8: Face. From left to right: animated transitions from dark green to purple Subspace View.

(a) (b) (c)
Fig. 9: (a) Face. Yellow subspace: mis-classification (circled by black dotted line) exists where the yellow subspace intersects with the rest of the point cloud. (b) Face. Dark green and
brown Subspace Views with good separation from the rest of the point cloud. (c) Yellow Subspace View contains three stratified sets. Which corresponding to two asian male and one
asian female.

green points correspond to images from an Indian male and an Asian
male respectively. Which indicate the possible distinct facial features
they possess.

To study the relationships between multiple subspaces we apply a
number of inter-cluster transitions. As illustrated in Figure 9b, we start
the transitioning between a dark green subspace to a purple subspace.
The purple points rotate towards the dark green points and cross one
another, while remaining separated from the rest of the point cloud.
Visually, they appear to be partially overlapping (Figure 9b). Refer-
ring back to the face images, it turns out that these two subspaces
correspond to two Asian males. The similarities between their facial
features result in proximities between their corresponding subspaces,
indicated by small rotational angles during the transitions. In addition,
when we transition from the dark green subspace to the previously ex-
plored yellow subspace, we see that the dark green, purple, and yellow
points form three stratified sets in the visualization (Figure 9c). The
yellow subspace corresponds to the Asian female and the three strati-
fied sets to the other faces from people with Asian origin.

5.4 MNIST Dataset
The MNIST dataset is a sampled subset from the MNIST handwritten
digits database. The original images have a resolution of 28× 28. In
our example, we downsample the images into 12× 12 and use 500
samples for the visualization for better interactive performance (in
terms of generating smooth animations), which is essential for effec-
tive data exploration. We obtain three 3D subspaces and seven 2D
subspaces from the subspace clustering.

From the PCA View in Figure 10 (first view from left), we notice the
black points seem to reside in an area that is separable from the rest of
the points. To investigate its connections with the other subspaces, we
transition between the global PCA view to one of the black Subspace
Views (Figure 10). As we perform the basis rotation towards the black
subspace View, black points start to expand while other points begin
to compress. Such compression is especially visible for the dark green
and the purple points.

To understand the relationships among the black, the dark green,
and the purple subspaces better, we perform inter-cluster transitions
from the purple to the black subspace. As illustrated in Figure 11, the
black cluster expands while purple and dark green clusters compress
and become visibly overlapping. This indicates that the black points
and the purple/dark green points reside in subspaces that are struc-
turally distinct. Referring back to the original handwritten images, it

turns our that both the purple and the dark green subspace contain the
handwritten digit 1. The only difference is that digits that are part
of the purple subspace are slightly tilted, while the digits in the dark
green cluster are mostly written vertically. This difference implies that
the digit 1 images could not be well-approximated by a single 2D sub-
space due to these variations. Meanwhile, the black subspace contains
mostly the handwritten digit 0, which is probably the digit that is least
likely to be confused with digit 1. Therefore, there is no surprise the
subspaces lie on the opposite ends of the high-dimensional space.

Similarly, as illustrated in Figure 12, while transitioning between a
red Subspace View and a blue Subspace View, we observe the com-
pression of the red cluster and expansion of the blue cluster. This
implies that these two subspaces are also likely very different from
each other. Referring back to the original images, the red cluster cor-
responds to the digit 6 while the blue cluster corresponds to the digit 7.
The differences between their shapes likely contribute to the very dif-
ferent subspaces these two digits reside in. Since similar movements
have been observed for the combustion dataset, we suspect that this
type of compression/expansion patterns likely indicates big structural
differences between source and target subspaces.

We now focus on the cyan and blue subspaces. In the PCA View,
the cyan and blue cluster appear to partially overlap. To validate that
such an observation is not just a projection artifact, we perform inter-
cluster transitions between the cyan and the blue subspace, as well
as intra-cluster transitions among views of the blue subspace. Figure
13 demonstrates that blue and cyan clusters remain intermingled dur-
ing such transitions. Referring back to the original images, the cyan
cluster corresponds to digit 9 and the blue cluster corresponds to digit
7. Their similarities in handwritten digits contribute to the observed
difficulty in separating these two clusters.

6 DISCUSSION AND FUTURE WORKS

This paper presents an interactive framework for exploring linear low
dimensional subspaces in high-dimension data, through animation
transitions between pairs of subspace views. Through extensive case
study, we demonstrate the effectiveness of our approaches for find-
ing hidden and interesting low dimensional structure. Compared to
previous techniques that rely on subset of dimension or visual interac-
tion to identify the subspaces, the subspace clustering combined with
robust dimension and bases estimation we proposed, capture more ac-
curate and meaningful subspace structures. In additon, these subspace
structural information is exploited in our interactive tool to provide
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Fig. 10: MNIST. Animated transitions from PCA View to a black Subspace View.

Fig. 11: MNIST. Animated transitions from a purple to a black Subspace View where purple and dark green cluster appear to merge.

Fig. 12: MNIST. Animated transitions from a red to a blue Subspace View.

Fig. 13: MNIST. Transitions from a PCA View, to cyan, then to three of the blue Subspace Views.
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new visual cues. One downside of the system is the heavy process-
ing loads especially for high dimensions that prompted us to down-
sample some data. One of the goals in future works will be to im-
prove this performance through parallel implementations or the use of
GPUs. In addition, we plan to further explore the various repeating
patterns found during the animated transition, such as the compres-
sion/expansion connection, to better understand their connection with
the underlying high-dimensional structure.
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simulation of ignition front propagation in a constant volume with tem-
perature inhomogeneities: II. Parametric study. Combustion and Flame,
145:145–159, 2006.

[17] X. He, D. Cai, S. Yan, and H.-J. Zhang. Neighborhood preserving embed-
ding. In Computer Vision, 2005. ICCV 2005. Tenth IEEE International
Conference on, volume 2, 2005.

[18] C. Hurley and R. Oldford. Graphs as navigational infrastructure for high
dimensional data spaces. Computational Statistics, 26(4):585–612, 2011.

[19] A. J. Izenman. Introduction to manifold learning. Wiley Interdisciplinary
Reviews: Computational Statistics, 4(5):439–446, 2012.

[20] G. Liu, Z. Lin, S. Yan, J. Sun, Y. Yu, and Y. Ma. Robust recovery of
subspace structures by low-rank representation. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 35(1), 2013.

[21] J. E. Nam and K. Mueller. Tripadvisor nd: A tourism-inspired high-
dimensional space exploration framework with overview and detail. IEEE
TVCG, 19(2):291–305, 2013.

[22] A. Y. Ng, M. I. Jordan, and Y. Weiss. On spectral clustering: Analysis
and an algorithm. In Advances in Neural Information Processing Systems,
2001.

[23] X. Peng, L. Zhang, and Y. Zhang. Constructing l2-graph for subspace
learning and segmentation. preprint arXiv:1209.0841v4, 2014.

[24] H. Sanftmann and D. Weiskopf. 3d scatterplot navigation. IEEE TVCG,
2012.

[25] D. F. Swayne, D. Temple Lang, A. Buja, and D. Cook. GGobi: evolving
from XGobi into an extensible framework for interactive data visualiza-
tion. Computational Statistics & Data Analysis, 43:423–444, 2003.

[26] A. Tatu, F. Maas, I. Farber, E. Bertini, T. Schreck, T. Seidl, and D. Keim.
Subspace search and visualization to make sense of alternative clusterings
in high-dimensional data. In VAST, pages 63–72. IEEE, 2012.

[27] J. B. Tenenbaum, V. De Silva, and J. C. Langford. A global ge-
ometric framework for nonlinear dimensionality reduction. Science,
290(5500):2319–2323, 2000.

[28] C. Turkay, A. Lundervold, A. J. Lundervold, and H. Hauser. Repre-
sentative factor generation for the interactive visual analysis of high-
dimensional data. IEEE TVCG, 18(12):2621–2630, 2012.

[29] R. Vidal. A tutorial on subspace clustering. IEEE Signal Processing
Magazine, 2011.

[30] R. Vidal, Y. Ma, and S. Sastry. Generalized principal component analysis
(gpca). CoRR, 2012.

[31] L. Wilkinson, A. Anand, and R. L. Grossman. Graph-theoretic scagnos-
tics. In INFOVIS, volume 5, page 21, 2005.

[32] J. Yan and M. Pollefeys. A general framework for motion segmentation:
Independent, articulated, rigid, non-rigid, degenerate and non-degenerate.
In Proceedings of ECCV, 2006.

[33] X. Yuan, D. Ren, Z. Wang, and C. Guo. Dimension projection ma-
trix/tree: Interactive subspace visual exploration and analysis of high di-
mensional data. IEEE TVCG, 19(12):2625–2633, 2013.

10


	subspace_dynamic_projection_shusenl.pdf
	Introduction
	Background
	Subspace Clustering
	Visual Exploration through Subset of Dimension
	Informative View vs. Interpretable Axis
	Animation Augmented Exploration

	Method
	Subspace Clustering
	Proposed Model Estimation
	Dynamic View Transition for Subspace Exploration
	Transition Between Projection Planes
	Subspace Exploration Pipeline


	Implementation
	User Interface & Interaction Design
	Software Implementation

	Results
	Synthetic Dataset
	Combustion Simulation Dataset
	Yale Face Dataset
	MNIST Dataset

	Discussion and Future Works


