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We propose a hierarchical Markov random field model for estimating both group and subject functional net-
works simultaneously. The model takes into account the within-subject spatial coherence as well as the
between-subject consistency of the network label maps. The statistical dependency between group and subject
networks acts as a regularization, which helps the network estimation on both layers. We use Gibbs sampling to
approximate the posterior density of the network labels and Monte Carlo expectation maximization to estimate
the model parameters. We compare ourmethod with two alternative segmentation methods based on K-Means
and normalized cuts, using synthetic and real fMRI data. The experimental results show that our proposedmodel
is able to identify both group and subject functional networks with higher accuracy on synthetic data, more
robustness, and inter-session consistency on the real data.

© 2014 Elsevier Inc. All rights reserved.
Introduction

To study the intrinsic activity of human brain with resting-state
functional MRI (rs-fMRI) data, one models either the data of a single
subject or a group of subjects. The fMRI image of a single subject is
often contaminated with the noise of various sources, and the results
from it are typically unreliable. On the other hand, combining data
frommultiple subjects and estimating the common functional networks
are more robust. Group analysis of rs-fMRI assumes that all subjects in
the group share certain amount of functional connectivity patterns,
and assumes that these group networks can be estimated more accu-
rately by aggregating the data from all subjects. In practice, it is a
major challenge to summarize the shared patterns across subjects, as
the network structure of each subject appears similar but has fair
amount of variations.

Recent years have seen substantial interest in estimating functional
networks of individual subjects with the networkmap of other subjects
as a constraint (Beckmann et al., 2009; Ng et al., 2012a,b; Varoquaux
et al., 2011). An accurate estimate of an individual's network is an im-
portant step toward the understanding of brain–behavior relationships
on a per-subject basis, the identification of the possible correlation
between the network patterns and clinical variables, and the subject-
specific treatment. The explicit modeling of intersubject variation is
a key step for a reliable estimate of single subject as well as the group
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networks. Current methods (Damoiseaux et al., 2006; Yeo et al., 2011)
either do not estimate individual functional network maps, or do
not have an explicit statistical model on the intersubject variations
(Calhoun et al., 2001a; Calhoun et al., 2001b). Among the methods
that do estimate subject functional networks, some have one or more
drawbacks.

First, some methods map a common group functional network by
concatenating the blood oxygen level dependent (BOLD) signal from
all subjects. Even if the anatomical structure is perfectly aligned in the
co-registration step, the functional correspondence between subjects
is not guaranteed due to the subject-specific functional localization. In
particular, some participants may experience spontaneous but active
cognition during the scan even in the resting-state. Existing works
have shown that subjects may have intrinsic cognition modulated by
the eye opened/closed condition (Van Dijk et al., 2010), by the instruc-
tions before the experiments (Benjamin et al., 2010), and by the previ-
ous cognitive task (Waites et al., 2005). These conditions modulate the
functional pattern of each subject in a different way and to a different
extent, and hence interfere in the estimation of the group's functional
network. Such subject-specific confounding factors are less likely to be
negligible by simple concatenation compared to other sources of noise
such as scanner noise, subject motion and co-registration.

Second, group analyses are often conducted in a one way procedure.
In some scenarios (Craddock et al., 2012; Greicius et al., 2004, 2007;
Mohammadi et al., 2009; Seeley et al., 2009; Van Den Heuvel et al.,
2008), each subject's functional network is estimated independently,
and a group map is simply summarized by averaging the subjects' con-
nectivity maps. The estimates of the subject's map by these procedures
do not use other subjects' information and may not be robust to noise.
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The group summary map extracted from these unreliable subject maps
might be unreliable. In other scenarios (Calhoun et al., 2001a), a group
map is estimated first from the concatenated data and then is back-
reconstructed to obtain the subject network maps. More recently, dual
regression method estimates subject-specific time courses using
group maps as regressors, and estimates subject spatial maps using
these time courses (Beckmann et al., 2009; Filippini et al., 2009). The
subject-specific spatial maps enable hypothesis testing to determine
the voxels that are statistically significant within each network. Both
classes of approaches do not refine the initial group or subject estimates,
and the estimation of one subject's connectivity does not benefit
from the information of other subjects. Fig. 1 gives an illustration of
the various methods and their order of estimation.

Last, spatial smoothing is often used duringpreprocessing in order to
address the issue of imperfect intersubject alignment. While spatially
blurring the time series raises the signal-to-noise (SNR) ratio, the choice
of the smoothing kernel size has a big impact on the estimated function-
al maps. Over-smoothing inevitably results in the loss of fine structures
of the functional maps. One need a model that combines the spatial de-
pendency prior and the original BOLD signals in a statistical framework,
instead of enforcing smoothness by altering the original signal and
risking of losing finer details of the functional patterns.

Proposed model

In this work we propose a Bayesian hierarchical model for estimat-
ing the functional networks by using the rs-fMRI data from a group of
subjects. The hierarchy comes from an additional group level defined
in addition to the conventional subject functional network maps. The
group effect, as a parameter, goes into the probabilistic distribution of
subject network label. Both group and subject networks are jointly esti-
mated. We give a natural interpretation of the regularization with a
Bayesian perspective. Once the group's network map is known, it can
help the individual subject's estimation as a prior probability. Because
the group map combines the information from all subject maps, this
prior distribution is equivalent to using other subjects' data for the cur-
rent subject's inference. Besides, a subject's network estimates also help
to refine the groupmap estimates.Wemodel the intersubject variability
by balancing between a common map for all subjects (no variability,
maximal shared information) and a separate map for each subject
(no shared information, maximal variability). The optimal balance in
the Bayesian sense is achieved by the parameters that link the voxels
in the group and subject network maps. The posterior density of the
network labels combines the prior information from the group map
and the data likelihood from the subject-specific BOLD signal. We fur-
ther model the within-subject spatial coherence by a Markov random
field (MRF). In the remaining part of the paper, we refer to our model
as a hierarchical Markov random field (HMRF).

A classical occurrence of hierarchical modeling in fMRI is the inclu-
sion of random effects in a general linear model (GLM) (Beckmann
et al., 2003), which is later extended to a full Bayesian framework
(Woolrich et al., 2004a). The multilevel model has richer structures
sub1 sub2 sub3

sub1 sub2 sub3

group

fMRI
time courses

functional
network map

sub1

sub1

[Bellec, 2010]
[Van Den Heuvel, 2008]
[Esposito, 2005]

[Cal
[Bec
[Filip

Fig. 1. Comparison of segmentation methods for group study of rs-fMRI. Most methods use a o
Our method (right) aims at a joint estimation of both levels of network maps, where group an
and can capture the structures in multiple-group, multiple-session
data, and distinguish between the influence of the fixed effect and
that of the random factors. In our model, the hierarchy is defined on a
latent variable mixture representation, and the multilevel framework
is similar to GLM in regression analysis, where subject variability is
modeled and used for the group analysis.

A Markov random field is a multivariate distribution defined on an
undirected graph to represent the soft constraints between the vari-
ables. In fMRI analysis, it is a principal regularization method of
obtaining a spatially coherent solution (Descombes et al., 1998; Ng
et al., 2012a; Ou et al., 2010). Depending on the context, previous
works have defined MRF on different variables. The MRF has been
used for the regularization priors on the coefficients of the GLM
(Penny et al., 2005), on the parameters of a spatio-temporal auto-
regressionmodel (Woolrich et al., 2004b), and on the hidden activation
variables in task-based experiments (Hartvig and Jensen, 2000). In this
article, we defineMRF on the latent network label variables of a hidden
Markov model (HMM), to represent our prior knowledge of the spatial
coherence of thenetwork patternswithin a subject. There is a key differ-
ence between ourmodel and conventional HMMs, though.We general-
ize the conventional concept of spatial regularization by defining a joint
graph that includes the network variables of both the group and subject
levels. In our model, the neighbors of each node on the graph include
the corresponding nodes at another level, as well as the spatially adja-
cent voxels in the same level. The new graph introduces our additional
assumption that one subject's functional networks should share similar
patterns with those of another subject, implicitly represented by the
group. With this definition, we map all the variables in a hierarchical
model on to a single graph, and formulate a problem conceptually ap-
pealing and feasible in practice.

The exact inference of MRF is a combinatorial optimization of dis-
crete variables, hence it is computationally infeasible except in special
cases (Greig et al., 1989; Ng et al., 2012a). Various approximate infer-
ence methods exist under different assumptions (Boykov et al., 2001;
Jordan et al., 1998; Murphy et al., 1999). In this work we are interested
in the posterior variance of the network label variables as well as the
mode, and we use a Monte Carlo expectation maximization (MCEM)
sampling algorithm for the inference of both group and subject label
maps. MCEM is data-driven in that themodel parameters are estimated
from the observed data instead of being selected manually. The only
parameter that needs special treatment is the link strength between
the group and subjects. MCEM integrates the Markov chain Monte
Carlo sampling in the expectation–maximization loop. The price to
pay is longer computation time than other approximate inference
methods such as variational Bayes.

We show our HMRFmodel is able to recover both group and subject
functional networks in simulated group fMRI data.While HMRF's group
estimates are comparable ormore accurate than the other twomethods
in the image segmentation class, K-Means and normalized cuts. We are
especially interested in the higher accuracy of the individual subjects'
estimates. We further show the strength of the model by a real
multiple-session dataset, where we achieve significantly higher
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intersession consistency by using our joint-estimation model. The
method also proves to be more stable under the data perturbation in a
bootstrap experiment. This paper is based on our earlier work (Liu
et al., 2012), and we extend previous work to redefine the model in
an integrated graphical model context. The new simulated data experi-
ments explore the performance of the algorithm under various levels of
spatial smoothing. In the real data experiments, we added a new inter-
session consistency test and the algorithm stability test with
bootstrapping. We also improved the parameter estimation by using
the Bayesian posterior predictive distribution of the test subjects in a
cross-validation framework.

Related works

Independent component analysis (ICA), as a multivariate analysis
method, is used to recover the statistically independent functional
components without a priori knowledge of the regions of interest as
seed-based approach does (Hyvärinen and Oja, 2000). Group ICA is
used as an extension of single-subject ICA in order to seek a set of inde-
pendent components shared across all subjects (Beckmann et al., 2009;
Calhoun et al., 2001b). In a typical group ICA study, all subjects are
registered to a common atlas and assumed to share a common spatial
component map but have distinct time courses. The BOLD signals
from all subjects are concatenated temporally, followed by a single-
subject ICA analysis. The subject component maps are then obtained
by a back-reconstruction procedure. Alternatively, single-subject ICA is
applied on each subject first, and a self-organized clustering algorithm
applies to all subjects' components such that similar components are
assigned into one cluster. The group ICA components are represented
by the centers of the clusters (Esposito et al., 2005). Neither of the
above approaches refine group (or subject) maps once the subject (or
group) maps are estimated.

ICA as a signal decomposition method obtains overlapped spatial
components, and needs ad-hoc thresholding to get the binary compo-
nent map. Alternatively, the functional network estimation can also
be defined as an image segmentation problem if one aims to assign an
exclusive label to each voxel to represent its functional properties. The
region-of-interest (ROI), or the whole brain voxels can be partitioned
into disjoint spatial patches. Patches with same network labels, even
when spatially remote from each other, belong to the same functional
networks. The output of the algorithms is a discrete label map. To
extend the segmentation method to a group of subjects, segmentations
are performed first on individual subjects. The connectivity maps are
then averaged to obtain a group affinitymatrix. A second level segmen-
tation is performed on this affinity matrix (Bellec et al., 2010; Van Den
Heuvel et al., 2008). In this processing pipeline, the group estimates
are not used to guide the estimation of subjects.

It is worth noting the innovative work of Ng et al. (2012a), who also
useMRF for groupanalysis. In the groupMRFmodel ofNg et al., the spatial
neighborhood is extended to cross-subject voxels, thus mitigating the
need for one-to-one voxel correspondence between subjects. Our model
is different fromNg et al.'s groupMRFmodel in that 1) a group level is de-
fined in our model, whereas in Ng et al.'s work, a combined structure in-
cluding all subjects is definedwithout a group level. In such aflatmodel, a
voxel directly uses the information of the corresponding voxels of other
subjects. Instead, we add a second level that naturally decomposes the
fixed and random effects in the subject network map. 2) Ng et al. defines
the MRF prior on the GLM coefficients in task-based experiments, so the
posterior inference is a two-class problem (active versus inactive). An
exact solution can be obtained by a graph-cuts algorithm. Our model ap-
plies to the network labels in a rs-fMRI study. Such a multiclass segmen-
tation problem generally does not have exact solution, and we use
samplingmethod tofind the approximate solution. 3) Theunarypotential
function in Ng et al.'s model is defined via the posterior probability of the
label variable given theGLMcoefficients, in order to ensure that the unary
potential does not completely dominate the pairwise potentials. By
contrast, our model does not have a unitary potential, but the additional
group-subject links in the MRF prior to represent the statistical depen-
dency among subjects.

The hierarchical concept has been explored in the signal decomposi-
tion framework by Varoquaux et al. (2010, 2011). The authors of
both works introduce generative models that decompose the subject-
specific functional patterns into a shared group pattern and additional
subject-variability. Varoquaux et al. (2010) identify a subspace of repro-
ducible components across subjects using general canonical correlation
analysis similar to the GLM framework, except that subject-specific
activation effects are replaced by subject-specific spatial maps. In
Varoquaux et al. (2011), the mixing matrices of the group and subject
level are solved jointly as a convex optimization problem. With regard
to the hierarchical concept and the joint estimation of both levels of
the hierarchy, we see such methods as counterparts of our model in
the class of signal decomposition methods.

In the remainder of the paper, we define the graphical model in
the Hierarchical MRF for modeling group fMRI section, and give the
approximate inference procedure in the Bayesian inference section.
The comparisons of the accuracy and consistency of the proposedmeth-
od with other methods on synthetic and real data are given in the
Experiments in simulated data and the Real data experiments sections.
We discuss the algorithm performance, relation to other models, and
some caveats in the Discussion section.

Hierarchical MRF for modeling group fMRI

We begin by defining each subject's network label map as a Markov
random field (MRF) with the neighborhood structure given by a regular
lattice. The statistical dependency between adjacent voxels acts as a
prior model favoring spatial coherence of estimated functional regions.
To generalize theMRF to a hierarchical setting, an additional group label
map is defined in addition to all subject labelmaps. The group labelmap
has the same number of voxels and the same Markov structure as the
individuals' maps, again to encourage spatial coherence of the func-
tional regions in the group level. In addition, each voxel in the group
map is connected to the corresponding voxel in each subject map.
These connections model the relationships between the group and the
individuals. The subjects' functional network labels are regarded as gen-
erated from the group labels, and the rs-fMRI time courses are regarded
to be generated from amixture of high-dimensional distributions given
the subject network labels. All voxels of subjects and group label map
are jointly connected into a single MRF. The functional network estima-
tion is the inverse problem of the above data generation process, as the
labels are inferred from their posterior distribution given the data. See
Fig. 2 for an illustration.

More specifically, we define an undirected graph G = (V,E). The
set of vertices V = (VG, V1, ⋯, VJ) is the union of the gray matter voxels
Vj for all J subjects as well as those in the group volume VG. An edge
(s, t) ∈ E is defined in one of three types: (1) s ∈ VG, t ∈ Vj and s and
t have the same physical coordinates, (2) s, t∈VG, and s and t are spatial
neighbors, or (3) s, t∈ Vj, and s and t are spatial neighbors. In ourmodel
we use a 26-neighbor system in a 3D volume image (a voxel at the
boundary of the gray matter may have b26 neighbors). We will refer
to the first type of links as between-level links, and the second and
third types of links aswithin-subject links. On each node s∈ V, a discrete
random variable ys ∈ L= {1, ⋯, L} is defined to represent the functional
network label.We use−s for the set of nodes excluding node s, andN(s)
for the set of neighboring nodes of s. Last we define clique c as a com-
plete subgraph ofG, such that every pair of nodes in c has a link between
them, and define C the set of all cliques in G.

MRF prior

MRF is a principal regularization method for modeling spatial con-
text information. In a Bayesian setting, we use it as a prior distribution



Fig. 2. We define a MRF on a graph that includes the voxels of all subject maps as well
as the group map. The set of edges includes between-level links with weight α, and
within-subject links with weight β. The square box on the subject level and time courses
repeats J times the nodes in the square, representing all the subjects. Only the central
voxels connection is shown for the between-level links, whereas in practice the links
exist on all other voxels. The BOLD signal variables are shaded, meaning they are set to
the observed value.
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of the network label variables Y={ys∈ L|s∈ V}. Formally, with the def-
inition of the graphG and neighbor systemN(s), ∀ s∈ V above, Y is said
to be aMRF on G if P(ys|y−s) = P(ys|yN(s)), i.e. a variable is conditionally
independent of the variables on the remaining nodes of the graph given
its neighbors (Li, 1995). This local conditional independence property is
difficult to apply to the inference of the joint distribution. Thanks to
the equivalence of MRF and Gibbs fields (Besag, 1974), one can trans-
form the local property into a global property. A Gibbs random field or
Gibbs distribution takes the form of P(Y) = (1/Z)exp{−U(Y)}, where Z
is a normalization constant called partition function in order to guaran-
tee the function integrates to one, andU(Y)=∑ c ∈ C Vc(Y) is called the
energy function. Each clique potential function Vc only depends on the
variables in the corresponding clique c. The Hammersley–Clifford theo-
rem (Hammersley and Clifford, 1968) states that Y is aMRF if and only if
it obeys a Gibbs distribution. In this specific problem, the energy func-
tion takes the following form:

U Yð Þ ¼
X

s;r∈VG

βψ ys; yrð Þ þ
XJ

j¼1

X
s∈VG ;~s∈V j

αψ ys; y~sð Þ þ
X
s;r∈V j

βψ ys; yrð Þ
0
@

1
A:

ð1Þ

The binary function ψ takes zero if the two inputs are equal and takes
one otherwise. Parameters α and β determine the strength of the
links. The pair of voxels (s, r) is spatially adjacent within the subject vol-
ume or the group volume (the type 2 and type 3 links), and s;~sð Þ is a pair
of neighboring voxels at a different level in the hierarchy, but sharing
the same physical coordinates (type 1 link).

This regularization encodes two physiologically meaningful a priori
assumptions on the functional networks under investigation: (1) The
networks are spatially coherentwithin the single subjectmap andwith-
in the group map. This spatial coherency is modeled by the β potential
term. (2) The subject's intrinsic functional activity must share similar
patterns, regardless of the possible confounding of the noise and
subject-specific effect. This between-subject constraint is modeled by
the α potential term. The proposed energy function represents both
priors, mitigating the possible over-smoothing introduced by the
Gaussian spatial smoothing on the original BOLD signals. The choice of
the neighborhood size potentially has impact on the effect of the with-
in-subject regularization. Here, we fix the neighborhood size, and let the
within-subject link parameters β to control the regularization strength.
As for the inference, although appearing different in the image
domain, the three types of links are no different when looking from
the abstract graph layer, and can be treated equivalently in the inference
procedure. Our MRF prior is essentially a Potts model with different
weights defined on three types of edges (Potts, 1952). However, we
extend the Potts model such that the cliques in a graph include both
within-subject links and between-level links, so the model favors not
only spatial coherence but also the intersubject coherence.

Likelihood model

In the generative model, for any individual subject, the observed
time course at each voxel is assumed to be generated from a distribution
conditioned on the network label at that voxel. In fMRI analysis the
BOLD signal is typically normalized to be zero mean and unit norm, so
the analysis is invariant of shifting or scalings of the data (Golland
et al., 2008). The normalization results in the data being projected
onto a high-dimensional unit sphere, and the sample correlation be-
tween the two time series is equal to their inner product. The rs-fMRI
segmentation aims at a clustering such that within-cluster voxels have
a high correlation, and between-cluster voxels have a low correlation.
The equivalence of the correlation and inner product makes it possible
to reformulate the original problem into a new one. Now we can find
a clustering where voxels with a larger inner product are put into one
cluster. And the new problem can be modeled and solved using a mix-
ture of the von Mises–Fisher (vMF) distribution.

We use X = {(x1, …, xN)|xs ∈ Sp − 1} to denote the set of normalized
time series on the p-sphere, where p is the number of time points in the
original BOLD signal, and N is the total number of gray matter voxels of
all subjects. Given Y, the random vectors xs are conditionally indepen-
dent, hence logP XjYð Þ ¼ ∑ j∑s∈V j

logP xsjysð Þ. The likelihood function
P(xs|ys) is naturally modeled by a vMF distribution

f xsjys ¼ l; μ l; κ lð Þ ¼ Cp κ lð Þ exp κ lμ
⊤
l xs

� �
; xs∈Sp−1

; l∈L; ð2Þ

where for the network cluster label l, μl is the mean time course, κl ≥ 0
is the concentration parameter, and Cp is the normalization constant.
The larger the κl, the greater the density concentrated around the
mean. Since Eq. (2) depends on x only through μ⊤x, the vMF distribution
is unimodal and rotationally symmetric around μ.

Bayesian inference

The exact inference of P(Y|X) is computationally intractable due to
the pairwise interaction of MRF prior distribution. Various approximate
solutions exist for such types of undirected graphical model inference
problems, including Gibbs and Metropolis sampling, expectation-
propagation, and some variation inference methods such as mean
field approximation and message-passing methods. In this work, we
choose Gibbs sampling because of its simple formulation and straight-
forward implementation in a multi-processor system. In addition,
compared to a point estimate such as maximum a posteriori (MAP)
framework, the samples of the label map can be used to approximate
the full posterior density, and to help understand the confidence of
the point estimates such as posterior mean or modes.

Gibbs sampling

The Gibbs sampler, as a special case of the Metropolis–Hastings
sampler, solves a multivariate sampling problem using iterative univar-
iate sampling. When all the random variables but one are fixed, the
transition probabilities depend only on the local conditional distribu-
tions. The resulting Markov chain's equilibrium density is exactly the
target density P(Y|X). In general MCMC sampling, the variables are
visited either at random, or according to a predefined order. As a way



524 W. Liu et al. / NeuroImage 100 (2014) 520–534
of incorporating domain-specific information in the design of our Gibbs
sampler, we schedule the sampling order also in amultilevel fashion. At
the image level, we draw the mth sample of the group label map YG

m

given all the previous subject label maps {Yjm − 1, j = 1 … J}. Next, we
draw a sample of subject j's label map Yj

m given the current group
map sample YG

m. At the voxel level, we sample and update ys given the
rest of the nodes fixed.We call it a scanwhen each ys, ∀ s∈ V is updated
once. The conditional distribution used to generate samples at the group
and subject voxels can be derived from Eq. (1) and are given as

P ysjy−s;Xð Þ ¼ 1
Zs

exp −Up ysjyN sð Þ; xs
� �n o

; where;

∀s∈VG; Up ¼ α
XJ

j¼1

ψ ys; y
j
~s

� �
þ β

X
r∈N sð Þ

ψ ys; yrð Þ;
ð3Þ

∀s∈V j; Up ¼ αψ ys; y~sð Þ þ β
X

r∈N sð Þ
ψ ys; yrð Þ−κ lμ

⊤
l xs− logCp; ð4Þ

where−s is the set of all nodes excluding s, Zs is the partition function of
ys, Up is the posterior energy, and N(s) is the set of neighbors of s. The yj

~s
in Eq. (3) is the network label of subject j's voxel with the same physical
coordinates with s, and the yes in Eq. (4) is the label of the group map's
voxel with the same physical coordinates as s. Note that the evaluation
of Zs is easy since it is in a univariate distribution and is the sum of only L
terms. Because of the dependency on previous samples, the sequence of
label map samples {Ym, m = 1 …, M} is indeed a Markov chain; hence
our method falls into Markov chain Monte Carlo (MCMC) sampling.
After a sufficient burn-in period, a series of samples {Ym, m = 1, ⋯, M}
is saved. The samples have all the information of P(Y|X) and can be
used for approximating the expectation EP(Y|X)[log P(X, Y; θ)] as well as
estimating the posterior variance.

Parameter estimation

The parameters {β,κ,μ} in our model are data-dependent, and
manual assignment can easily result in over-fitting. For example,
β's optimal value depends on the number of neighbors of a voxel
and also on the number of subjects in the group. In this data-driven
model, we propose to estimate the parameters θ from the data using
an expectation maximization (EM) algorithm, with the network labels
Y as the hidden variable. However, the high-dimensionality and depen-
dency between spatially adjacent voxels in MRF make it infeasible to
obtain a closed form solution of the expectation of log P(X, Y; θ) with re-
spect to P(Y|X). Here we propose to approximate the expectation using
Monte Carlo EM (MCEM) algorithm. The set of samples, (Y1, ⋯, YM) gen-
erated from density P(Y|X) is used to approximate the expectation by
the empirical average (1/M) ∑ m = 1

M log P(X, Ym; θ). Furthermore, in
order to evaluate log P(X, Ym; θ) = log P(Ym; θ) + log P(X|Ym; θ) as a
function of θ, we face the difficulty of evaluating the partition function
Z in P(Ym). In practice the likelihood function P(Y; θ) is approximated
by pseudo-likelihood (Besag, 1974), which is defined as the product of
the conditional likelihoods P(ys|y−s; θ), ∀ s ∈ V. Therefore the label
map's log-likelihood can be written as

log P Y; θð Þ≈
X
s∈V

−U ysð jy−s; θÞ− log Zs;

∀s∈VG; U ysjy−sð Þ ¼ α
XJ

j¼1

ψ ys; y
j
~s

� �
þ β

X
r∈N sð Þ

ψ ys; yrð Þ;

∀s∈V j; U ysjy−sð Þ ¼ αψ ys; y~sð Þ þ β
X

r∈N sð Þ
ψ ys; yrð Þ;

ð5Þ

where yj
~s and y~s have the same definition as in Eqs. (3) and (4). With

the pseudo-likelihood approximation, there is no need to compute the
original Z. Instead we compute Zs for each voxel s, just like what we
do in the Gibbs sampling.
HMRF algorithm using MCEM

With all thepreparation above, parameter estimation can bedone by
maximizing (1/M)∑ m = 1

M log P(X, Ym). More specifically, β exists only
in the prior, and can be estimated bymaximizing 1

M∑
M
m¼1 logp Ym� �

with
the Newton–Raphson method. Since {μ, κ} exist only in the data likeli-
hood, the normalization constant Z in the prior is not a problem,
hence {μ, κ} are estimated by maximizing (1/M) ∑ m = 1

M log P(X|Ym).
The α parameter is treated differently and will be discussed in the
Estimating α parameter by cross-validation section. In order for
MCMC sampling to converge quickly to the posterior, we need a reason-
ably good initial network label map. Here the K-Means clustering on a
concatenated group dataset is used for the initial maps of both the
group and subjects. After the EM iteration converges, we save M
Monte Carlo samples as output. The Monte Carlo samples have all the
information of the posterior distribution of network labels, and will be
used in postprocessing for inference. Putting this all together, the
HMRF method to estimate the group and individual label maps is
given in Algorithm 1.

Algorithm 1. HMRF: Monte Carlo EM algorithm for network label
inference and parameter estimation
Estimating α parameter by cross-validation

The parameterα in ourmodel represents the strength of the links be-
tween the group and subject network label maps. The parameter implic-
itly represents the extent to which the functional patterns are shared
among the subjects. Unfortunately, this parameter cannot be estimated
in a MCEM framework by a Newton–Raphson method, as such a direct
optimization will result in a collapsed solution. A solution of α = 0
would minimize the energy associated with the between-level links,
and the group map VG would degenerate into a constant label map be-
cause such a map would minimize the energy associated with the links
within the group map. We instead use the posterior predictive distribu-
tion (Gelman et al., 2003) of a test subject's BOLD signal Xt, defined as

P Xt jX;α; θtð Þ ¼ ∫P Xt jYt ; θtð ÞP Yt jX;αð ÞdYt ; ð6Þ

where θt = {μt, κt, βt} is the parameter set of the test subject. With
a leave-one-out procedure the same as that in the standard cross-
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validation, we pick one subject as the test subject Xt, and the remaining
J − 1 subjects as the training data. We then compute the average
P(Xt|X; α, θt) across all test subjects given a list of prespecified
α values, and choose αwith the highest average predictive distribution.
The detailed procedure to compute Eq. (6) is given in Appendix A.
Experiments on simulated data

Given the lack of ground truth of the functional network of the
in vivo rs-fMRI data, we begin the experiments with a simulated
dataset.We focus primarily on the estimation accuracy on the simulated
dataset, and on the estimation consistency on the in vivo data.

We compare our method with two other clustering methods — K-
Means and normalized-cuts (N-Cuts) — as well as two degenerated
versions of the HMRF algorithm: HMRF-A and HMRF-B. The K-Means
algorithm, as a simple and fast clustering method, is applied to the par-
adigm fMRI study in Baumgartner et al. (1998), and is later used by
Bellec et al. (2010) for bootstrap analysis of the rs-fMRI group study.
In our experiment, the distance metric of K-Means is defined as 1 −
xs
⊤xr. To estimate an individual subject's network, we apply K-Means
on each subject's BOLD signal 20 times, and choose the segmentation
map with the minimal ratio of the sum of the intercluster distance and
the sum of the intracluster distance. For the group study, we construct
a group dataset by concatenating all subjects' time courses and run
K-Means 20 times also on this group's dataset to estimate a group net-
work label map. The initial cluster centers for both subject and group
clustering are chosen randomly while at the same time maximizing
the between-center distance (Arthur and Vassilvitskii, 2007).

N-Cuts formulates the fMRI image segmentation as a graph
partitioning problem. A global criterion is used to find a subset of
edges to remove from a full-connected graph, and the voxels are
partitioned into multiple disjoint sets (Shi and Malik, 2000). N-Cuts
is used by Van Den Heuvel et al. (2008) and Craddock et al. (2012) for
the group rs-fMRI study. Following Van Den Heuvel et al., we also
apply N-Cuts in two stages. First N-Cuts is run on each subject's affinity
matrix, as computed from the pairwise correlation between time
courses. A second N-Cuts is applied on a group affinity matrix, comput-
ed by summing all subjects' binarized affinity matrices derived from
their segmentation maps. We use the same toolbox Ncutclustering_9
(Shi and Malik, 2000) as in Van Den Heuvel et al., as well as the same
parameter setting.

Both HMRF-A and HMRF-B, as simplified versions of HMRF, serve to
check whether a reduced model would be able to achieve the same or
better performance compared to the proposed full model. Both models
are the same asHMRF exceptβ=0 for HMRF-A, andα=0 for HMRF-B.
The model HMRF-B indeed amounts to defining a MRF on each single
subject and estimating each subject's networks independent of other
subjects. Such a strategy is equivalent to the hidden Markov model we
proposed in Liu et al. (2011).

For HMRF, we skip the first 500 burn-in samples before saving 100
samples of the label map at each EM iteration. The convergence testing
of MCMC sampling, especially in high-dimensional space is an open
question and there is no widely accepted method to address this issue.
We empirically choose the number of burn-in and MC samples by
observing that the posterior probability estimated from samples
has no significant change. The β parameter is estimated by the M step,
as well as the μ and κ for each vMF component. As an optional
postprocessing step, the discrete label map is obtained by running an
iterated conditional mode (Besag, 1986) algorithm based on the last
MCMC sample map.

Before a discussion of synthetic data generation, we briefly discuss
how tomeasure the data quality of rs-fMRI. The separability of a dataset
for the purpose of clustering depends on both the within-cluster vari-
ance and between-cluster variance. In this specific rs-fMRI dataset, the
SNR is represented by the ratio of the average between-cluster distance
(defined as 1− μi⊤μj, where μi and μj are the cluster's mean time series),
and the average within-cluster variance (defined by 1/κ).

We generated synthetic rs-fMRI data in two steps. First, a group net-
work map with five network labels is generated by drawing samples
from a Potts model with β = 2.0 and 500 scans. Given the group
map, a subject map is generated according to Eq. (1) with α = 0.5 and
β = 2.0. The subject map generation procedure is repeated 25 times
to obtain a group of 25 subjects. To simulate the BOLD signal given
the network label map, we first generate mean time courses μl, l =
{1, …, 5} from a first-order auto-regressive process xt = φxt − 1 + ε,
with φ = 0.8 and ε = 0.1. The sample correlations between the mean
time series are in the range of (−0.15, 0.3). Then, we add independent
Gaussian white noise on each cluster's mean time course. The variance
of the white noise is chosen such that the simulated BOLD signals
have SNR = 24, which is close or slightly lower than that of the real
rs-fMRI data used in our experiments. Once the time series are generat-
ed, they are spatially smoothed with a Gaussian filter. Because the size
of the smoothing filter may have interactions with our HMRF model
and hence have an impact on the estimation accuracy, we spatially
smoothed the generated BOLD signals with three levels of scale:
FWHM = 0, FWHM = 1.88 mm, and FWHM = 4.7 mm. Furthermore,
the synthetic data are generated randomly, so the experimental results
from the data may also vary. To take account of the variability of the
results, we repeated the above data generation process 100 times. For
each generated dataset, we run the five methods on the BOLD signals
preprocessed by three levels of Gaussian filters respectively and com-
pare the Monte Carlo average of the estimated label maps with the
ground truth.

Synthetic data results

Among the 100Monte Carlo runs of the data generation and estima-
tion procedure, we choose one dataset smoothed at FWHM=1.88mm.
The corresponding estimates are shown in Fig. 3.We use the Rand index
(Rand, 1971) tomeasure the similarity between simulated ground truth
subject maps and the true group map. Rand index (RI) ranges in [0, 1],
and takes 1 if the twomaps under comparison are exactly same. Besides
RI, the clustering literature contains many other criteria for comparing
clustering, including the adjusted RI (Hubert and Arabie, 1985), Jaccard
index (Ben-Hur et al., 2001), and information theoretic basedmeasures
such as normalized mutual information (Vinh et al., 2009). We choose
the simple unadjusted RI, since the difference of among these criteria
is not a key factor as long as the same criteria is used for all segmenta-
tion methods under comparison.

The RI value for this particular simulated dataset is 0.88 (similar
values for other generated datasets), which we find is empirically
close to the real data. From the figure, all methods appear to estimate
the group map well (except HMRF-B, which does not allow a group
map estimate), but perform differently on the subjects. K-Means tries
to identify the finer details of the individual subject's spatial patterns
but fails due to the high noise level. N-Cuts and HMRF-A can detect
the large patterns but lose some detail; HMRF-B does estimate the
smooth subject map thanks to the within-subject smoothness links
but the maps do not match the ground truth well. Finally, the HMRF is
able to recover subjects' network maps with good matching to the
ground truth.

To quantitatively evaluate the accuracy of the segmentation map
from various methods, we calculate the RI values between the true
map and the estimated map. The boxplot in Fig. 4 shows the RI across
all Monte Carlo runs and subjects. In all three settings of smoothing ker-
nel size, HMRF achieves higher accuracies compared to other methods.
In addition, for individual subjects' estimation, ourmodel performs best
at a moderate smoothing size of FWHM = 1.88 mm, which is smaller
than the typical 5–8 mm smoothing size. This is because the HMRF
model benefits from the reduced noise variance resulting from the
moderate smoothing, but avoids losing finer details due to excessive



Fig. 3. The estimated group and subject functional network label maps from various methods, as well as the ground truth maps. Only two are shown among the 25 subjects.
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smoothing. In practice, this means when applying HMRF, the BOLD
signal should be smoothed by a small-kernel Gaussian filter, and we
choose FWHM = 1.5 mm in the following real data experiments. We
also note that the K-Means optimal smoothing kernel size is larger
than that of HMRF, because it lacks the spatial coherence regularization
and henceneedsmore smoothing in preprocessing stage. Last,we found
that the two reduced models HMRF-A and HMRF-B do not perform as
well as the full model, indicating that the hierarchy in the full model is
indeed necessary. For all possible smoothing sizes, HMRF's estimation
accuracy is comparable or moderately better than the other four
methods on the group label map, and significantly higher on subject
maps.

Real data experiments

In this workwe test ourmethods on the publicly available NYU test–
retest (TRT) dataset that has been used previously by Shehzad et al.
(2009) and Zuo et al. (2010). While the original goal of the above
works was to verify the voxel-wise intra- and intersession TRT reliabil-
ity, our goal is to verify whether the methods under consideration are
able to estimate consistent functional network maps across sessions,
given the fair amount of intersession consistency in the data set (Chen
et al., 2008; Damoiseaux et al., 2006; Franco et al., 2009; Meindl et al.,
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Fig. 4. Box-and-whisker plots of the estimation accuracies of all methods for three levels of
MC samples, and the bottom is group map accuracies across all MC samples. The upper and
box indicates the p-value of the standard two-tailed t test between HMRF and the correspon
p b 0.01; ***: significant at p b 0.001. The group map is not applicable to HMRF-B due to its lac
2010). We present two experiments with the NYU-TRT datasets. The
first experiment aims at demonstrating the intersession consistency
of the estimated subject network maps, and the second one
evaluates how the algorithms behave under the perturbation of the
data by using bootstrap sampling. We compare three methods, HMRF,
K-Means, and N-Cuts, in both experiments. The other two methods,
HMRF-A and HMRF-B, are not taken into account in this section since
they are a simplified version of HMRF and have been shown to be sub-
optimal compared to the full model.

Preprocessing

Twenty-six healthy control participants (11males, mean age 20.5±
4.8 years) were scanned three times. The participants had no history
of psychiatric or neurological illness. BOLD EPI images (TR = 2 s,
TE = 25 ms, flip angle = 90, 39 slices at 3 mm slice thickness,
64 × 64 matrix, field of view = 192 mm, 197 volumes) were acquired
on a Siemens Allegra 3.0 Tesla scanner. Scans 2 and 3 were conducted
in a single session, 45 min apart, and were 5–16 months after the first
scan. The subjects were asked to relax and remain still with their eyes
open during the scan. A high resolution T1-weighted image was also
obtained (MPRAGE with TR = 2.5 s, TE = 4.35 ms, TI = 900 ms, flip
angle = 8°, 176 slices, FOV = 256 mm).
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Fig. 5. Box-and-whisker plots of the RI value between each pair of sessions over the all subjects' label map. The bottom and top of the boxes are the 25th and 75th percentiles, and the
whiskers extend to the whole range of the data except the outliers.
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The fMRI data was preprocessed using the scripts of the 1000 func-
tional connectomes projects1 as well as FMRIB's FSL toolset and the
Medical College of Wisconsin's AFNI tool.2 The volumes are motion
corrected by aligning to the mean volume with a six-parameter rigid
body transformation. The BOLD signals were bandpass filtered to 0.01
to 0.1 Hz, and were regressed out nuisance variables including white
matter, CSF mean time courses and six motion parameters. The signal
is then filtered by a FWHM=1.5mmGaussian filter for spatial smooth-
ness. The small kernel size of spatial smoothing helps in increasing the
SNR without introducing blurring artifact on the functional network
patterns (see the simulated test and Fig. 4 for the rationale of choosing
small FWHM). The functional images are first registered to the corre-
sponding T1 images, and both functional and T1 images are registered
to MNI152 (Montreal Neurological Institute) space with a 12-
parameter affine transformation. Finally, after masking out white mat-
ter and CSF voxels, we have 39,080 gray matter voxels remained in
each subject. We construct a joint graph with over one million nodes
including all subjects and the group map.

Choosing parameters

In this work we do not address the problem of howmany functional
networks exist in thehumanbrain. Instead,we use existing reports (Yeo
et al., 2011) and choose seven functional networks for segmentation
throughout the real data experiments. With this setting, we expect to
identify the following typical functional networks: visual and primary
motor (Damoiseaux et al., 2006), attention (Fox et al., 2006), default
mode network (DMN) (Greicius et al., 2004), saliency, and executive
control system (Seeley et al., 2007), regardless of the segmentation
methods used. The K-Means is repeated 20 times with random initiali-
zation (Arthur andVassilvitskii, 2007) for segmentation of both the sub-
ject and groupmaps. For N-Cuts,we threshold each subject's correlation
matrix at 0.4 before applying N-Cuts on single subject. After the individ-
ual segmentation, we average all subjects' binary segmentation matri-
ces, and threshold the averaged matrix at 0.3. The result represents
the group correlation matrix. Both cut-off thresholds are suggested by
Van Den Heuvel et al. (2008). Our implementation is different with
those from Van Den Heuvel et al. only in that we partition the subject
map into seven clusters instead of 20. This is because we need to com-
pare the subject maps estimated by N-Cuts with those estimated
by the HMRF method at the same number of networks. We also run
N-Cuts with 20 clusters on subject maps to compare with our seven-
cluster configuration (results now shown), and find that the group
1 www.nitrc.org/plugins/mwiki/index.php/fcon.
2 http://afni.nimh.nih.gov.
level segmentation has not been impacted by our lack of over-
segmentation at the subject level. For HMRF, we initialize both the
group and subject label maps with the group label map estimated
from K-Means. The sampling routine (E-step of MCEM algorithm)
skips 500 burn-in samples before saving 100 MC samples. The parame-
ters {β, μ, κ} are estimated from the data. With α estimated from
the posterior predictive distribution (see the Estimating α parameter
by cross-validation section), we found that the similarity between esti-
mated group and subject maps measured is around 0.85 measured by
RI value.

Intersession consistency

Since the TRT dataset and the general rs-fMRI data have been shown
to share consistent functional networks across all sessions (Chen et al.,
2008; Damoiseaux et al., 2006; Franco et al., 2009; Meindl et al.,
2010), we verify the consistency of the HMRF algorithm by applying it
to each of the three sessions of data separately. A method is said to be
consistent if it is able to derive similar network estimates across
sessions. We compare three pairs of sessions' consistency: S1 vs S2, S1
vs S3 and S2 vs S3. For each subject in each pair of sessions, we compute
the consistency score between this subject's network map estimates in
two sessions. The similarity is again represented by the RI values. We
expect that the proposed HMRF algorithmhas higher average similarity
comparedwith othermethods. The consistency scores of all subjects are
summarized in a boxplot as in Fig. 5. For comparison, the same boxplots
are also drawn for group ICA, K-Means and N-Cuts. For ICA, we use
GIFT ICA toolbox,3 with number of component set to 7 and 25 respec-
tively, and convert the overlapped spatial maps to discrete labels by
selecting the component with the strongest signal at each voxel. The
discretization of ICA map may lose information compared to Zuo
et al.'s intra-class correlation metric (Zuo et al., 2010), but makes it
possible that all four methods are compared by the same RI metric.

From Fig. 5, the subject network label maps estimated from HMRF
have significantly higher intersession consistency scores compared
to the other three methods. This indicates that our algorithm is able to
capture the common functional patterns across sessions. In addition,
K-Means, ICA and HMRF have higher intersession consistency scores
between session two and session three, compared to the other two
intersession comparisons. This is consistent with the fact that sessions
two and three have a smaller interval (45 min apart), compared to
session one and two (5–16 months). K-Means has a slightly better
between-session consistency than N-Cuts, probably because we have
run K-Means multiple times and have chosen the best solutions. On
3 http://mialab.mrn.org/software/.

http://www.nitrc.org/plugins/mwiki/index.php/fcon
http://afni.nimh.nih.gov
http://mialab.mrn.org/software/


Fig. 6. The intersession variancemaps estimated by four methods. ICA-7 and ICA-25 denote ICA with 7 and 25 components, respectively. The variancemaps are obtained for each subject,
averaged across subjects, andfinally normalized to [0, 1]. A fewvoxelswith intensity above 0.8 are rendered the same as thosewith intensity 0.8. This singlemap covers all seven functional
networks, and we selectively show the slices corresponding to the three major networks. The images left are the subjects' left, and we use the same convention in the following figures.
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the group level, the HMRF label maps have intersession RI value of
0.917, 0.908 and 0.893 between each pair of sessions, comparable to
other methods.

The RI values in Fig. 5 only gives a single number of similarity be-
tween two network label maps, rather than a voxel-wise consistency
map. To visualize the consistency at the voxel level, we first match
session two and session three's segmentation maps to session one's by
permuting the cluster labels (this is not needed for the between-
session RI, which is invariant to label permutation). Then we define a
variance map as follows: the variance at certain voxels takes the value
0 if the estimates of all three sessions have the same labels. The variance
takes 1 if two of the three sessions have the same labels, and takes 2 if
none of the estimates are the same. We then average the variance
map across all subjects and obtain a mean variance map. This map
shows how the algorithm performs in terms of consistency at the
voxel level across all subjects. The results are shown in Fig. 6. Image
visualization is done by using nipy, a python package for neuroimaging
data.4 We note that although K-Means and N-Cuts have low variance
at the visual cortex, they have larger variance in most voxels of dorsal
attention and the DMN. These findings confirm the different levels
of consistency between the functional networks, as has been shown
in the original work of Zuo et al. (2010). Overall, the HMRF method's
estimates have the lowest level of variance and hence the highest
level of consistency.

Bootstrapping

In these experiments we aim to evaluate the performance of the
three algorithms with bootstrapping. In the bootstrapping method,
one covers the whole distribution of the estimator with the indepen-
dent samples drawn from the original dataset with replacements, and
estimates the stability of an algorithm (Efron and Tibshirani, 1993).
An approximate solution of an algorithm is stable if the solution is not
4 http://nipy.org/nipy/stable/index.html.
highly sensitive to the input data. It is unstable if a slight change in the
data can cause the predicted values to change significantly. In this ex-
periment, the bootstrapped samples can be seen as a small perturbation
of the input data and will be used to test the algorithm stability.

There are various approaches for resampling the available data. One
may resample the subjects from the original dataset (Damoiseaux et al.,
2006). Here for each voxel of each subject in session 1, we sample with
replacement from the 197 time points of preprocessed data, and obtain
a bootstrap sample volumewith the same BOLD signal length and num-
ber of subjects with the original dataset. The sampling is similar to the
circular block bootstrap in Bellec et al. (2010), except that we do not
model the temporal correlation between time points. Since all methods
under comparison here donotmodel temporal correlation, the shuffling
of the time points has no effect on the segmentation results. After
repeating the sampling 100 times, we obtain a set of 100 bootstrap
samples, each of which includes all subjects' time series data. Then, all
three segmentation methods are applied on each of the bootstrap
datasets. We estimate group and subject level maps from each boot-
strap dataset by using the three methods. All the estimated label maps
are postprocessed by a label permutation routine to guarantee that
the same networks have the same labels.

Fig. 7 shows seven average group-level functional network maps
across all bootstrap sampled data. For each network, we extract a binary
map with voxel intensity taking 1 in that network and 0 outside. This
binary map is then averaged over all bootstrap samples. We also show
the variance of this binary label map over all samples in Fig. 8. Small
variance indicates more stability under bootstrap sampling. All three
methods have moderate to high stability across bootstrap samples. For
visual,motor, andDMNnetworks, K-Means andN-Cuts have reasonably
high stability, although some voxels at the boundary of the network
regions are labeled differently across bootstrap samples. For the atten-
tion, salience and executive control networks estimated by K-Means
and N-Cuts, the ambiguity not only happens on the boundary of the
network regions, but also on some bigger regions inside the networks.
For example, in some bootstrap runs, K-Means incorrectly assigns the
posterior cingulate cortex (PCC) to the attentive network (see the red

http://nipy.org/nipy/stable/index.html


Fig. 7. The group level's mean functional networks estimated from all bootstrapped data by three segmentationmethods. The binarymaps of each network are averaged over all bootstrap
samples. The average intensity ranges from 0 to 1.
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regions in dorsal attentive in Fig. 7), whereas PCC has been shown to be
part of the DMN (Greicius et al., 2003). K-Means also miss part of the
primary motor network, and merges the voxels in limbic system into
the DMN in a few bootstrap runs. For N-Cuts, the dorsal attentive, sa-
lience, and executive control networks have larger variance under this
data perturbation. Compared to the other two methods, HMRF has sig-
nificantly smaller variance as indicated by a two-tailed t test with a sig-
nificance level of 0.01, and hence the highest stability in all seven
networks. A small number of voxels inmotor andDMN still showunsta-
ble assignments.

To demonstrate the stability of the estimates on each of the subject
functional networks, we first pick 3 subjects from the 25 subjects
in the dataset. For each subject, we show the average network
patterns over all bootstrap samples. See Fig. 9. We show only six
major functional networks, excluding the one corresponding to the
limbic system. For each network, one representative slice is shown.
From the figure, all three subjects' mean network maps have lower
stability compared to their corresponding group networks. Certain
subjects' networks are significantly less stable than other subjects,
due to the various degrees of perturbation by the random sampling
even using the same bootstrapping procedure. Among the six networks,
attentive networks exhibit the most dramatic change under bootstrap
sampling. Some voxels of salience and executive control networks
are absorbed into attentive networks. This mis-classification happens
most on subject 2, and also happens a moderate amount on
subjects 1 and 3. Compared to the other two methods, HMRF is able to
estimate reasonably stable functional networks even with data
resampling. Attentive networks and executive control networks tend
to change more than other networks, but still less than K-Means and
N-Cuts.
Another way to show the stability of the subject label maps is the
variance map. Since we are interested in comparing among three
methods the variance of the networks across all subjects, we show the
variance not for each single subject, but an average variance over all
subjects. See Fig. 10. Because of the averaging over all subjects, the var-
iance is more spread over the voxels. Again, HMRF shows significantly
smaller variance than the other two methods in a t test at a significance
level of 0.01, indicating that its subject map estimates are more stable
under bootstrap sampling.

Between-level link estimation

We also run the cross-validation and use the posterior predictive
distribution in Eq. (6) for estimating the optimal α parameter. Fig. 11
gives a plot of the average predictive density with alpha ranging in
[0.15, 0.5], with interval 0.05. We found that with too small α, the
model has low prediction values on the test data, and too large α values
improve the prediction but still not the optimal. The best α value is
around 0.3 to 0.35.

Discussion

We proposed a new hierarchical model for identifying functional
networks of the human brain from a group of rs-fMRI dataset. The
model assumes that a group functional network map is shared among
all subjects in the population, and individual subjects' functional pat-
terns are generated as variations from this group level network. If we
see the functional network pattern as a clustering of the fMRI data, we
actually assume that the subject maps are samples from an unknown
distribution of the clusterings, with its mean given by the group map.



Fig. 8. The group variancemap estimated from all bootstrap samples by the three segmentationmethods. The variance values range from 0.05 to 0.25, but only those voxels in [0.05, 0.15]
are shown for visualizing the difference of the methods under comparison.
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We reformulate the distribution of clusterings as a distribution of net-
work labels, where a subject's labels at each voxel are seen as generated
from the group's network labels. While the intersubject statistical
dependency is defined by the links between group and subject labels,
the spatial coherence of the functional networks is guaranteed by the
within-subject MRF. All the network label variables at both levels with
their links, along with the parameters are defined in an integrated
graph, and the general techniques of graphical models can be used
for (approximate) inference. This multilevel view is typically used in
general statistical analysis when the individuals are grouped into
units, and the variance of the variables is decomposed into the group-
specific and subject-specific terms. We borrow the multilevel view
and apply it to the clustering problem where the intensities of voxels
at each time point are grouped into units (subjects), and the vMF's κ
parameter represents the individual subject's variance. Theα parameter
is equivalent to the pooling factor in the standard hierarchical linear
model (Gelman and Pardoe, 2006), and controls the degree to which
the estimates of subject label maps are pooled together.

We use the MCMC sampling for the inference because of its good
approximation of the posterior density. An alternative class of methods
is variational inference, includingmean field approximation and expec-
tation propagation. Both variational methods and MCMC are the ap-
proximation of the true posterior distribution. Variational inference
approximates the target distribution by the product of factorized
distributions, while the sampling approximates the posterior distribu-
tion by Monte Carlo averaging. Both classes of methods depend on
initial conditions. The derivation of the conditional expectation used
for the update of variational methods would be cumbersome in our
multilevel model. On the other hand, the Gibbs sampling is straightfor-
ward as the conditional probability is easy to compute in our Bayesian
setting. Therefore, we choose Gibbs sampling due to its simplicity, as
well as the fact that the application does not require real time computa-
tion. An additional critical property of the MCMC sampling is that
its convergence does not depend on the dimension of the variables
(Robert and Casella, 2005); thus we can achieve reasonable
compute time even in this million-dimensional problem. The whole
Monte Carlo expectation maximization procedure uses 45–50 cores
on a multiprocessor machine, and takes about 2 h for a group of 25
subjects.

As a practical guide for applying HMRF, the introduction of within-
subjectMRF is notmeant to replace the spatial smoothing in the prepro-
cessing steps. This is one step further fromwhat we found in our previ-
ous work (Liu et al., 2012), where no spatial smoothing is conducted
when theHMRFmodel is used.We found amoderate spatial smoothing,
plus our HMRF model can achieve the best estimation accuracy
in the simulated experiments, and the best consistency in the real
data experiments. The good performance of the combined moderate
smoothing + HMRF model is because moderate smoothing increases
SNR without overly modifying the signal and risking losing patterns at
finer scales. The MRF regularization further favors spatial coherence
and intersubject coherence.

The HMRF model defines a mixture of vMF distribution on the ob-
served BOLD data, and is inherently an image segmentation method.
Therefore, the model inherits the limitations of the mixture model.
For example, the number of clusters is given a priori, as the widely-
accepted method of estimating this number is not available. For 7,
or even 17 functional networks suggested by Yeo et al. (2011), dif-
ferent networks may have been merged into a single cluster (see
Figure 1-4 in the supplementary material for the results of 17
networks). Another limitation is the assumption that all gray matter



Fig. 9. The three subjects' average network label maps estimated from all bootstrap samples. One representative slice is shown for each of the seven networks for each subject (row) and
each method (column), excluding brain stem component. The average values range from 0 to 1.
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voxels are part of certain networks, whichmay not reflect the true func-
tional organization. Some voxels may not participate in any spontane-
ous activity, hence residing outside of any functional network.
Additional modeling techniques are needed to identify those back-
ground voxels. Similar to ICA-based methods, each voxel is assumed to
belong to a single functional network.While a large number of brain re-
gions appear to have single functional pattern, studies show that some
regions, such as the precuneus, have awide spectrumof highly integrat-
ed networks, including visuo-spatial imagery, episodic memory and
self-processing operation (Cavanna and Trimble, 2006). These voxels
with overlapping functional patterns remain a challenge to
segmentation-basedmethods including HMRF, despite that the posteri-
or distribution helps the estimation to some extent. Last, our model
moderately accounts for intersubject variation. So, it may have difficulty
dealing with subjects whose functional network topology is fundamen-
tally different from the group average, for example, a subject who has
had neurosurgery.

On the experimental side, we showed the increased consistency
of the HMRF model in intersession and bootstrap tests, but note that
consistency is not the only metric of evaluating the models. By regular-
ization on the subject networks, we risk of losing variability on the
subject map, such that the subject maps estimated by HMRF may not
represent the true underlying functional patterns of each subject. The
estimation of the between-level link parameter α by Bayesian cross
validation is one attempt to mitigate the possible over-regularization
(see Figure 5 in supplementary material for a comparison with seed-
based correlation analysis).

One interesting question is that what impact does our HMRF model
has on thepossible correlation of the functional connectivity as a pheno-
type and other variables of interest. To test this hypothesis, we use both
age and sex as independent variables, and use them to predict the func-
tional network labels estimated by the non-hierarchical model (such as
K-Means) and HMRF respectively. As each voxel is tested for possible
correlation independent of other voxels, we count the number of voxels
significantly correlated with age or sex for network maps of both
K-Means and HMRF. The results in Table 1 and Table 2 of the supple-
mentary material show that the percentage change in number of voxels
range from −2.68% to 2.75% over all six functional networks and two
independent variables, and mostly are within ±1%. The decreased
number of significant voxels using HMRF is due to the subject network
maps that shift toward the population network map. The increased
number of voxels for certain networks is due to new correlations that
emerge after the HMRF model recovers more accurate network maps.
The small percentage of changed voxels indicates the limited impact
of HMRF on the possible phenotype correlation, though more sophisti-
cated approaches, such as Alexander-Bloch et al. (2012) and Reiss
et al. (2012), will be needed to elucidate whether HMRF model illumi-
nate or diminish the network–phenotype relations.

Overall, our model is an attempt to extract more reliable
functional network patterns from multi-subject datasets. The



Fig. 10. The variance of the functional network maps of all subjects. The maps are averaged across all subjects and bootstrap samples. The variance values range from 0 to 0.25, but only
those voxels in [0.05, 0.15] are colored to display the difference of the methods.
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hierarchical concept in our methodology makes sense on today's large
imaging repositories such as the human connectome project, the 1000
functional connectome project, and the Autism brain imaging data ex-
change project. Because of a wider range of subject groups with
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Fig. 11. Estimation of parameter α with the average predictive distributions using the
leave-one-out cross-validation. We use the data from only the first session of the NYU-
TRT dataset but find similar patterns in the other two sessions. α is sampled between
0.15 and 0.5, with an interval of 0.05.
different pathologies (Smith, 2012), the data in these projects has
even greater heterogeneity of scanning parameters than single-site
data, despite efforts toward strict quality control process (Marcus
et al., 2013). Our model fits the hierarchical site-subject nature of the
data acquisition process and is able to account for the heterogeneity in
the data. With more reliable estimation of the functional network pat-
terns as imaging phenotype, our model may also reveal more geno-
type–phenotype interaction at the subject level by using large, lower-
quality datasets. Equally encouraging is the application of our model to-
ward a more robust characterization of single subject results, a critical
step needed for clinical applicability of resting state functional connec-
tivity. With improved single subject functional network parcellations,
it may be possible to achieve diagnostic and prognostic classifications
that can inform clinical management in dozens of neurological, neuro-
psychiatric, and neurodevelopmental disorders to which fcMRI has
been applied, and further work could establish whether HMRF proc-
essed data may enhance biomarker specificity and sensitivity.
Conclusion

The main contribution of our work is a hierarchical model for esti-
mating population functional network maps as well as individual sub-
jects' maps from rs-fMRI data. The relationship of the network labels
in both group and subjects is represented probabilistically. We solve
the multivariate inference problem by MCEM sampling. The results for
a synthetic group of fMRI data show that our method achieves higher
accuracy on both group and subject network map estimation than
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the regular one-way approach, such as K-Means and normalized cuts.
The experiments on a multiple-session rs-fMRI dataset show that our
HMRF algorithm is able to estimate the network maps for each session
with higher between-session consistency. A further bootstrapping ex-
periment also proves that the proposed algorithm has robust solutions
under data perturbations.

Appendix A. Predictive distribution

The test subject's predictive distribution in Eq. (6) for a chosen α can
be evaluated through a Monte-Carlo approximation

P Yt jX;α; θtð Þ≈ 1
M

X
m

P Xt jYm
t ;α; θt

� �
; Ym

t � P Yt jX;αð Þ: ðA:1Þ

One economical way of generating sample {Ytm,m=1…,M} can be
donewithin theMCEM loopof Algorithm1. After the current groupmap
is generated in E step, one sample Ytm can be generated from P(Yt|X;α, θ).

The corresponding posterior energy function at voxel s isUp ysjyN sð Þ
� �

¼
αψ ys; y~sð Þ þ β∑r∈N sð Þψ ys; yrð Þ. This energy is similar to that in Eq. (4),
except that there is no time series data term κlμl⊤xs − log Cp since the
test subject data Xt are not given in this distribution. For one sample
map Yt

m, the test subject parameter set θt is obtained by optimizing
P(Xt|Ytm). As a simple reasoning of why we can use the Eq. (6) for esti-
mating α, when α is too small, most of the Yt

m will depend less on the
group map YG and tend to be random clusterings, which will have low
data likelihoods in Eq. (A.1). When α is too big, Ytm will be almost the
same as YG, again resulting in a suboptimal value for Eq. (A.1). Only
with an appropriate α, could Yt

m sufficiently explores the sampling
space including the regions where the predictive distribution is maxi-
mized. In practice, we evaluate Eq. (A.1) for a fixed set of α values,
and choose α with the largest predictive density value P(Yt|X; α).

Appendix B. Supplementary data

Supplementary data to this article can be found online at http://dx.
doi.org/10.1016/j.neuroimage.2014.06.001.
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