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Abstract

Idling vehicle detection (IVD) can be helpful in moni-
toring and reducing unnecessary idling and can be inte-
grated into real-time systems to address the resulting pol-
lution and harmful products. The previous approach [13],
a non-end-to-end model, requires extra user clicks to spec-
ify a part of the input, making system deployment more
error-prone or even not feasible. In contrast, we intro-
duce an end-to-end joint audio-visual IVD task designed to
detect vehicles visually under three states: moving, idling
and engine off. Unlike feature co-occurrence task such as
audio-visual vehicle tracking, our IVD task addresses com-
plementary features, where labels cannot be determined by
a single modality alone. To this end, we propose AVIVD-
Net, a novel network that integrates audio and visual fea-
tures through a bidirectional attention mechanism. AVIVD-
Net streamlines the input process by learning a joint fea-
ture space, reducing the deployment complexity of previ-
ous methods. Additionally, we introduce the AVIVD dataset,
which is seven times larger than previous datasets, offering
significantly more annotated samples to study the IVD prob-
lem. Our model achieves performance comparable to prior
approaches, making it suitable for automated deployment.
Furthermore, by evaluating AVIVDNet on the feature co-
occurrence public dataset MAVD [23], we demonstrate its
potential for extension to self-driving vehicle video-camera
setups.

1. Introduction
An idling vehicle is defined as one with its engine run-

ning while stationary, often occurring during parking or
waiting, such as in pick-up or drop-off scenarios. As part of
an Intelligent Transportation System (ITS), idling vehicle
detection (IVD) plays a key role in addressing anti-idling
events. An ITS that detects idling vehicles in areas like gas

Figure 1. Experimental Setup. We positioned 6 microphones
along the roadside and installed a webcam approximately 20 feet
above the ground (3 of them are not shown in the picture). An
ITS detecting idling vehicles displays a reminder message on the
screen.

station queues or hospital pick-up zones could help create
a dynamic feedback system to remind drivers to minimize
excessive idling, as shown in Fig. 1. Reducing unneces-
sary idling behavior offers several benefits: (1) mitigating
poor air quality that negatively impacts public health, (2)
reducing greenhouse gas emissions that contribute to global
warming, and (3) lowering fuel consumption and engine
wear. To develop a public ignition status monitoring sys-
tem, remote sensing technologies like infrared (IR) cameras
have been proposed for temporal object detection tasks [3].
However, IR cameras are expensive and difficult to integrate
with standard computing systems as it requires specialized
hardware, making the deployment of such ITS solutions less
economical and practical. As an alternative, using portable
microphones (audio) and a web camera [13] (video) pro-
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vides a more efficient and accessible solution for visual
IVD, effectively reframing it as an audio-visual detection
problem.

In current audio-visual learning tasks, audio and visual
features typically coexist in the same domain. Common
problems like active speaker detection (ASD) [21] using
single-channel movie audio, or outdoor vehicle tracking
[23] with a multichannel microphone array, have been ad-
dressed through fusion networks employing convolutional
neural networks, graph networks, or transformers. These
tasks assume that audio and visual features are either both
present or both absent in any given instance within the
dataset. In other words, there is a strong correlation be-
tween the presence of features across both modalities. For
example, an active speaker in a video will exhibit both lip
movement and voice, while a non-active speaker will have
neither. Similarly, vehicle tracking combines visual appear-
ance or motion with the sound of the engine. Another re-
search direction leverages this feature co-occurrence, where
a video-based teacher model is used to train an audio-only
vehicle detector for operation in low-light conditions. The
mainstream approach for solving multimodal problems in-
volves using encoders for both audio and video inputs, fol-
lowed by feature fusion. However, we observe that architec-
tures focusing on feature complementary problems have not
been thoroughly explored. In previously proposed IVD re-
search [13], idling or engine-off vehicles represent a feature
complementary challenge, where a single modality is insuf-
ficient to determine the vehicle’s status. Instead of using a
feature-combining network, their approach requires video,
audio, and user-provided visual coordinates of microphones
to predict bounding boxes and labels. The method first em-
ploys a 3D CNN to detect whether a vehicle is moving or
static. For static vehicles, it heuristically identifies the clos-
est microphone to each vehicle using bounding box coordi-
nates and pre-specified microphone pixel locations from the
user input. Then, each microphone channel is classified as
either having or not having engine sound, and the results are
fused to generate the final labels. This late fusion approach
introduces the need for additional user input to specify the
nearest microphone on the image, which can be error-prone
when deployed. This raises the research question: can we
develop an end-to-end model that integrates audio and video
features with streamlined user inputs? Such a model would
need to learn the correlations between modalities in feature
complementary scenarios.

We approach this problem in two steps. First, we intro-
duce the feature complementary task of IVD, which clas-
sifies each vehicle as moving, idling, or engine off, fol-
lowing the method in [13]. In this new detection problem,
each vehicle is not only detected but also categorized into
one of three distinct classes based on specific feature cor-
respondences: (1) moving: characterized by both motion

and sound, (2) idling: stationary with sound, and (3) engine
off: stationary without any car sound. The unique aspect
of this problem is that a static vehicle in the video may or
may not have corresponding features in the audio domain,
making it fundamentally different from traditional vehicle
tracking tasks. As a result, it cannot be effectively solved
using a single modality network. Second, to address this
challenge, our proposed method focuses on learning and
aligning features across modalities by constructing a joint
feature space. This is achieved through the use of recon-
struction and attention modules to capture correlations in
the spatial dimension.

In this paper, building on the setup introduced in [13],
we make three main contributions:

• We introduce a large-scale AVIVD dataset specifically
designed for IVD.

• We propose a novel joint audio-visual model, AVIVD-
Net, which streamlines input requirements for more ef-
ficient processing.

• Our proposed model demonstrates performance com-
parable to state-of-the-art methods on both the AVIVD
and MAVD datasets.

2. Related Work
Audio-visual learning is a rapidly growing area in com-

puter vision, focused on how the integration of audio and
visual information can enhance performance across various
tasks. By leveraging both modalities, models gain richer
contextual information. Common applications include seg-
mentation [18,27], localization [6], action recognition [12],
and representation learning [15]. A subset of audio-visual
learning focuses specifically on detection tasks. For ex-
ample, methods like [1, 22] target general object detec-
tion, while others, such as [2, 8, 14, 17, 26], address active
speaker detection (ASD) [21]. ASD models use sequences
of cropped faces from movie clips, along with synchronized
audio, to predict whether a person is speaking in each frame.
Another group of works focuses on vehicle detection, such
as [5,9,23,28,28]. These methods often rely on knowledge
distillation pipelines, where an audio-based student detec-
tor is trained using a visual-based teacher model. This ap-
proach allows audio detectors to learn from visual data, en-
abling them to function in low-light conditions where visual
detectors struggle, such as at night. These outdoor tasks
typically depend on phase differences from multichannel
microphones to help localize vehicles. Among these, [23]
introduced the MAVD dataset for knowledge-distillation re-
search. However, tasks like ASD and vehicle tracking are
highly dependent on the co-existence of features in both
modalities. The idling vehicle detection (IVD) problem



Figure 2. Algorithm workflow. Our algorithm consists of an encoding module, a bidirectional attention module, and a region proposal
network.

presents a different challenge, as an engine-off vehicle is
visually stationary but lacks any audio signature. A sin-
gle audio detector cannot accurately detect non-idling ve-
hicles. Therefore, IVD models must incorporate features
from both vehicle motion and the presence (or absence) of
engine sound. Consequently, our model does not rely on
knowledge distillation and instead focuses on jointly inte-
grating these complementary features for a more compre-
hensive detection approach.

2.1. Idilng Vehicle Detection

Visual idling vehicle detection (IVD) was recently intro-
duced by [3] and [13]. [3] proposes an infrared imaging-
based Faster R-CNN to detect the heat generated by the
engine block, relying on changes in the engine’s heat sig-
nature. Alternatively, [13] introduces a 3D-CNN for visual
motion detection and a 2D-CNN for classifying audio en-
gine sounds to detect idling vehicles. While the IR-imaging
approach is straightforward, it presents several significant
drawbacks: (1) High latency, as heat accumulation and dis-
sipation take time, and many infrared cameras operate at
low frame rates (e.g., capturing one image every five sec-
onds). (2) Initial experiments in [13] show that direct sun-
light or high ambient temperatures can interfere with the

model’s ability to detect a hot engine block. (3) As noted
by the authors [3], the engine block and exhaust pipe are
primary heat sources; however, false positives and nega-
tives occur when the engine block is not in the camera’s
field of view, leading to unreliable detection. Preliminary
results also suggest inconclusive outcomes when detecting
heat from vehicle exhaust (rear of the vehicle). (4) Infrared
cameras are generally expensive and challenging to deploy
in diverse environments. Moreover, the process of detect-
ing changes in heatmaps is slow and can be easily affected
by surrounding heat sources, making it unsuitable for timely
detection. Timeliness is a critical factor in idling vehicle de-
tection, so we build upon the camera and microphone setup
from [13], which avoids the complexities of IR-based detec-
tion. However, the approach in [13] requires manual user in-
put to specify microphone coordinates on the image, which
introduces the risk of errors and complicates deployment.
To address this, our method eliminates the need for user in-
teraction, creating a fully automated system that improves
the reliability and ease of deployment.



3. Proposed Method
3.1. Problem Definition

Following [13], we define the idling vehicle detection
(IVD) problem as localizing and classifying the status of
each vehicle in the final frame of a video clip V . Classes
are Y ∈ Ymoving, Yidling, Yeoff , given 6-channel audio input
M and V . Here, Ymoving indicates the vehicle is in motion,
Yidling means the vehicle is stationary with the engine run-
ning, and Yeoff represents the vehicle is stationary with the
engine off.

When a vehicle is moving, it exhibits both motion and
sound. In the idling state, the vehicle has no motion but
produces sound. When the engine is off, the vehicle lacks
both motion and sound. In this problem, visual and audio
features are complementary, as a single modality alone is in-
sufficient for reliable detection. Audio alone, for instance,
cannot distinguish all vehicle states accurately. The previ-
ous approach used the video clip V , audio input M , and a
microphone visual dictionary L to estimate vehicle motion,
match the closest microphone channel, classify engine sta-
tus, and fuse the final predictions.

In contrast, we propose a novel and unified network,
AVIVDNet, which only requires V and M as inputs. This
end-to-end algorithm consists of three modules, as demon-
strated in Fig. 2.

3.2. Audio to Visual Mapping Network

In the feature encoding stage, the inputs V (video) and A
(audio) are processed by a 3D CNN and a 2D CNN, respec-
tively. The 3D CNN captures the motion status of each ve-
hicle in the final frame, producing a feature map Fv, where
each spatial element corresponds to a specific region of the
last image, encoding vehicle object features similar to the
approach used in [11]. We observed that using complex
encoders, such as ResNeXt-101, led to overfitting on our
dataset due to their high complexity. As a result, we opted
for the lightweight 3D MobileNet architecture [10] for mo-
tion encoding. For audio embedding, we employ the same
pretrained 2D MobileNet [7]. From the audio embedding,
we apply deconvolution layers to obtain the feature map Fa.
Previous work [13] highlighted the difficulty of encoding
vehicle engine sounds due to the wide variety of real-world
engine noises and the limited data available for training. To
address this, they employed a contrastive ResNet50 latent
space pretrained on a public audio dataset. In our experi-
ments, we explored a similar approach using ResNet50 for
audio feature extraction.

A straightforward approach to learning the relationship
between microphone channels and image spatial objects is
to leverage cross-attention. However, since attention mod-
ules typically require large amounts of data to train effec-
tively, we found that cross-attention performed poorly due

to the limited size of our dataset. Inspired by the audio de-
tection network in [9], we propose a network that maps au-
dio features directly to image features in the spatial domain.
In this pipeline, each sounding vehicle is mapped from the
mel-spectrogram’s power and semantic feature distribution
to a spatial audio feature map Fa, which shares the same
spatial dimensions as the visual feature map Fv. In this
spatial representation, vehicles with the engine off are char-
acterized by silence or environmental sound embeddings,
while idling vehicles exhibit engine sound features in the
audio spatial space.

3.3. Bidirectional Audio Visual Attention

One potential solution to replacing the heuristic search
in [13] is the use of transformer cross-attention or a full
transformer architecture. However, we found that training
with heavy multihead attention blocks led to encoder over-
fitting due to the limited size of our dataset. To address this,
we propose a bidirectional cross-modality attention mod-
ule, inspired by [4], to associate the visual feature map with
the audio spatial map. After the audio and visual features
are extracted by the encoders, as represented by Eq. (1),
the video feature Fv and the audio feature Fa are flattened
along their spatial dimensions for further processing.

Fv ∈ RH×W×D reshape−−−−−→ Fr
v ∈ RN×D

Fa ∈ RH×W×D reshape−−−−−→ Fr
a ∈ RN×D

(1)

Then we compute the gram matrix acros two modalities
Eq. (2), where dot products of each row are computed. In
this way correlations between two feature vectors can be
calculated.

G ∈ RN×N = Fr
v · (Fr

a)
T (2)

Then, attention scores are computed along two directions,
namely two modalities:

Wav ∈ RN×N , where Wav =
exp(Gij)

ΣN
j exp(Gij)

Wva ∈ RN×N , where Wva =
exp(GT

ij)

ΣN
j exp(Gij)

(3)

In each weight matrix, it computes which spatial sound and
vehicle are associated with each other.

F
′

a = Wav · Fr
a

F
′

v = Wva · Fr
v

(4)

After both features are reweighted, they are reshaped
back to spatial dimension.

F
′

a
reshape−−−−−→ F

′′

a

F
′

v
reshape−−−−−→ F

′′

v

(5)



After reweighed features are reshaped, each output channel
Frw

∗ is multipled with a weight factor γ and element-wirse
summed with the original feature F∗.

Frw
a = γ · F

′′

a + Fa

Frw
v = γ · F

′′

v + Fv

(6)

Finally, reweighted features Frw
a and Frw

v are concate-
nated along feature dimension for detection.

3.4. Region Proposal Network (RPN)

The RPN predicts bounding boxes and labels for each
local area. After concatenating Frw

a and Frw
v , we apply a

single 1× 1 convolution layer to compute the RPN, follow-
ing the same approach as [11]. The concatenated features
are processed through this 1 × 1 convolution kernel, pro-
ducing the final RPN output. The resulting output has di-
mensions of num anchors×(4 (bbox parameters)+
1 (confidence)+num classes). We calculate five an-
chors across all training bounding boxes using KMeans, as
outlined in [11].

3.5. Loss Function

Following [11, 20], our loss function is composed of fo-
cal loss for classification, smooth L1 loss for bounding box
regression, and mean squared error (MSE) loss for confi-
dence regression.

ltotal = lFocal + lx + ly + lw + lh + lconf

4. Experiments
4.1. Datasets

Our experiments are conducted on both the AVIVD and
MAVD datasets [23]. Although both datasets are vehicle-
related, they represent two distinct setups: AVIVD is based
on a surveillance camera system (Fig. 1), while MAVD uses
an in-vehicle acoustic camera setup. Success across these
two datasets highlights the strong generalizability of our
model.

Audio-Visual IVD Dataset (AVIVD). To the best of our
knowledge, there is no publicly available dataset that fits
our specific setup, so we created the AVIVD dataset using
the method described in [13]. Unlike [23], our data col-
lection setup closely follows [13] and [5]. As shown in
Fig. 1, we mounted the webcam 20 feet above the ground
and deployed an array of evenly spaced wireless micro-
phones along the roadside. We collected recordings over
four days, with four hours of data recorded each day. Data
annotation for IVD is particularly challenging, as it requires
tracking the engine status and precise timestamps for each
vehicle. Despite having a note-taker during data collection,
we developed a custom tool to label engine status by lis-
tening to the closest audio channel and cross-referencing

Figure 3. Sample images from the AVIVD dataset, illustrating
vehicles of various shapes, models, colors, and sizes. The dataset
also features diverse lighting conditions.

it with the notes. To ensure that the training and valida-
tion sets contain different vehicles, we split the first 75%
of each day’s recording for training and used the remaining
25% for validation. We also resampled the data to mitigate
class imbalance. We also sample per 1 second from the raw
recording. The training set consists of 76,940 video clips
with synchronized audio, and the validation set contains
8,431 video clips with synchronized audio. This results
in 26,924 moving bounding boxes, 36,968 idling bounding
boxes, and 41,868 engine-off bounding boxes in the training
set, and 2,908 moving bounding boxes, 2,669 idling bound-
ing boxes, and 3,422 engine-off bounding boxes in the val-
idation set.

MAVD. MAVD [23] is an audio-visual vehicle track-
ing dataset consisting of 11k images and synchronized au-
dio samples collected using an in-vehicle mounted camera
and microphone array. The dataset is designed for study-
ing audio-visual knowledge distillation in vehicle detection
tasks. Unlike our setup, which uses a roadside camera and
microphone array, MAVD captures data from a car-mounted
perspective. The dataset covers various lighting conditions,
ranging from daytime to nighttime. Our downloaded ver-
sion contains 76,633 training samples and 18,873 valida-
tion samples. Since MAVD does not provide ground truth
bounding boxes, we used YOLOv7 to generate soft ground
truth labels for evaluation. Additionally, as our model fo-
cuses on complementary features, we excluded pure night-
time samples. After filtering, this resulted in 40,389 training
samples and 10,038 validation samples.

4.2. Implementation Details

Our experiments are conducted using PyTorch, the timm
library [25], and NVIDIA A6000 and Titan RTX GPUs.
We used a webcam and three sets of Rode Wireless GO



Method Input Modality Audio Backbone mAP@0.5 AP Moving@0.5 AP Idling@0.5 AP Engine Off@0.5
Real-Time IVD [13] V+M+L ResNet-50 (frozen) 80.97 92.45 68.93 81.55

Feature Concatenation V+M MobileNetV3 77.45 93.97 60.35 78.02
Feature Concatenation V+M ResNet-50 (frozen) 77.35 93.67 66.19 72.18

AVIVDNet V+M MobileNetV3 78.89 90.77 66.81 79.10
AVIVDNet V+M ResNet-50 (frozen) 79.21 93.43 66.74 77.47

Table 1. Comparison with our Real-Time IVD and feature concatenation method on AVIVD Dataset on mAP and APs at IoU 0.5. We fix
video backbone as MobileNetV2 width 1.0 pretrained on the Kinectic dataset for all experiments. In column Inputs, V , M , and L represent
video clip, audio channels, and microphone coordinates respectively.

II microphones to collect the data. The raw video has
a spatial size of 3 × 320 × 240, which is reshaped to
16 (L) × 224 (H) × 224 (W) before being fed into the net-
work. The synchronized 6-channel audio M consists of
a 5-second audio chunk centered around the last frame of
V , with a sample rate of 48,000 Hz. We apply a mel-
spectrogram transformation to each audio channel using a
window size of 1024, a hop length of 512, and 128 mel
bins, resulting in a mel-spectrogram with dimensions of
128 × 469. The batch size is set to 16, and the learning
rate is 0.0001. Training takes 100 epochs, lasting approx-
imately two days. For the MAVD dataset, we follow the
same procedure with one exception: we resize the 8-channel
spectrograms to 8× 768× 768, as described in [23].

We evaluate our model’s performance using mean aver-
age precision (mAP) and average precision (AP). AP mea-
sures the detection accuracy for a single class by calculating
the area under the precision-recall (PR) curve. True pos-
itives, false positives, and false negatives are determined
based on Intersection over Union (IoU) scores. To assess
overall model performance, mAP is computed as the mean
of the AP values across all classes.

4.3. Experiment Analysis: AVIVD

We compare AVIVDNet with Real-Time IVD [13] and
feature concatenation, as shown in Tab. 1. AVIVDNet
achieves performance comparable to Real-Time IVD while
eliminating the need for user input L. Following [13], we
train a ResNet-50 in a contrastive learning manner on the
ESC-50 dataset [19] as the audio encoder and freeze it
during AVIVDNet training. We can conclude four points
from the table: (1) AVIVDNet shows comparable perfor-
mance to Real-Time IVD [13] in terms of mAP. Especially
when using ResNet-50 as the audio backbone, AVIVDNet
achieves a mAP of 79.21%, which is close to Real-Time
IVD’s 80.97%. (2) AVIVDNet outperforms the baseline in
AP Moving, indicating excellent performance in detecting
moving vehicles, particularly with the ResNet-50 backbone.
This improvement is due to our joint latent space, which
provides richer information for tracking vehicles. The base-
line model relies solely on visual cues for motion detection.
While visual data alone can be sufficient, incorporating au-
dio information offers significant advantages. (3) AVIVD-

(a) Predicted Trajectory

(b) Ground Truth Trajectory

Figure 4. Dense Vehicle Trajectory Visualization. X and Y axes
are aligned with image space. The rest axis is the time. Each
3D point represents the center of predicted bounding box. The
color represents classes. Green is moving, red is idling, and blue
is engine-off.

Net shows slight improvement in detecting idling vehicles,
especially with MobileNetV3, achieving 66.81%, which is
higher than feature concatenation 60.35% and 66.19%. This



Figure 5. IVD Visual Performance. The left image of each row shows the detected results (left) and the ground truth annotations (right).
Green, red, and blue bounding boxes represent moving, idle, and non-idle vehicles respectively. The right image shows the corresponding
spectrograms.

demostrates the effectiveness of our bi-directional attention
module. Although it is slightly lower than Real-Time IVD
(68.93%), AVIVDNet still performs well. (4) AVIVDNet
performs similarly to Real-Time IVD in AP Engine off.
With MobileNetV3, it achieves 79.10%, while Real-Time
IVD reaches 81.55%, showing strong performance in de-
tecting vehicles with engines turned off.

We visualize our results in Fig. 5, which also includes
6-channel power spectrograms on the right to offer an ad-
ditional perspective on engine status. When a vehicle starts
its engine, the spectrogram becomes lighter, indicating in-
creased power compared to when the engine is off. In this
real-world dataset, various factors can easily cause models
to fail, but AVIVDNet demonstrates its robustness in multi-
vehicle scenarios. (1) Engine Switch: The first two rows
illustrate an engine switch scenario, where the gray SUV in
the bottom right turns off its engine. Our model accurately
captures this activity, even with another vehicle nearby. (2)

Side Moving Vehicle: In the third row, a gray sedan is idling
while a white SUV drives past. The network experiences
minor interference from the moving vehicle but still per-
forms well. (3) Two Idling Vehicles: The fourth row shows
two idling vehicles. Since our model was trained with a fo-
cus on vehicles within the driving lanes, it is not affected by
the black SUV in the top-right corner, which is outside the
area of interest.

4.3.1 Dense Trajectory Visualization

AVIVDNet also performs well in dense trajectory tracking.
AVIVD dataset is sparsely sampled to facilitate training,
since consecutive frames in the raw recordings do not differ
significantly. However, in a real-time deployment scenario,
the system would infer results on every single frame. To
evaluate AVIVDNet’s ability to reconstruct vehicle trajec-
tories, we visualized dense frames (25 FPS) in Fig. 4. This
scenario shows one vehicle entering the frame, idling, and



Figure 6. AVIVDNet qualitative results on MAVD validation dataset. The examples illustrate detections across various roadways, times of
day, traffic conditions, and vehicle types.

Method
Test

Modality mAP@0.5

StereoSoundNet [5] A 62.38
Pairwise loss [16] A 59.72

AFD loss [24] A 62.00
MM-DistillNet [23] A 62.66

AVIVDNet A+V 55.41

Table 2. Comparison of MAVD methods on mAP metric.

then exiting at the bottom, while another vehicle appears
near the end of the video and remains idling. By compar-
ing the shape and color of the trajectories, we can see that
AVIVDNet successfully reconstructs both vehicles’ trajec-
tories, as illustrated in Fig. 4 (a).

AVIVDNet is not without its limitations. As shown in
Tab. 1, the AP for the idling class is lower than the base-
line. We found that this shortfall primarily arises from a
specific mode of failure—incorrectly detecting idling vehi-
cle sounds. In some cases, the model misclassifies the entire
idling status of two vehicles as engine off. This highlights
two issues: (1) our audio encoder is still not robust enough
to accurately capture all vehicle sounds in real-world con-
ditions, and (2) using a shared feature space for both detec-
tion and classification complicates the task, leading to lower
classification accuracy. Future research could explore off-
the-shelf detectors for handling the detection component,
allowing for improved overall performance.

4.4. Experiment Analysis: MAVD

We also evaluated our model’s detection performance
on the public audio-visual vehicle tracking dataset MAVD,
which has a completely different setup from ours. Fig. 6
illustrates predicted bounding boxes across various vehi-
cle types, from small sedans to buses, and under diverse
lighting conditions, ranging from daytime to evening. As
shown in Tab. 2, the mAP of AVIVDNet is comparable to
other state-of-the-art (SOTA) models, demonstrating the ro-
bustness and effectiveness of our approach across two dis-
tinct tasks and environments. This confirms its potential for
audio-visual detection and highlights its promise for inte-
gration into multi-modal self-driving car systems.

5. Conclusion
In this paper, we address the audio-visual complemen-

tary problem in idling vehicle detection (IVD) by proposing
AVIVDNet, a novel network with a streamlined use case
for fully automatic deployment. Additionally, we introduce
the AVIVD dataset specifically designed for the IVD prob-
lem. AVIVDNet demonstrates comparable performance to
previous methods on both the AVIVD and MAVD datasets
and achieves similar results in feature co-occurrence vehicle
tracking. Moreover, our method proves effective not only
in surveillance camera setups but also in in-vehicle camera
environments. Through this study, we observe that predict-
ing idling and non-idling labels requires more specialized
features. In particular, using a shared latent space for both



bounding box and label prediction may not be necessary.
Decoupling bounding box prediction from label prediction
by leveraging off-the-shelf object detection models could
allow the network to focus solely on label classification,
presenting a promising direction for future research.
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