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Figure 1: An overview of the ensemble wildfire visualization interface. Our interface supports transfer-function-based color
and opacity mapping for visualizing scalar functions from wildfire simulations, glyph- and streamline-based wind visualization,
temporal events summary, contour band depths, spatial query for the fire arrival time (red sphere in the terrain shows the query

point).
ABSTRACT

Wildfires pose substantial risks to our health, environment, and
economy. Studying wildfires is challenging due to their complex
interaction with the atmosphere dynamics and the terrain. Re-
searchers have employed ensemble simulations to study the re-
lationship among variables and mitigate uncertainties in unpre-
dictable initial conditions. However, many wildfire researchers are
unaware of the advanced visualization available for conveying un-
certainty. We designed and implemented an interactive visualiza-
tion system for studying the uncertainties of fire spread patterns uti-
lizing band-depth-based order statistics and contour boxplots. We
also augment the visualization system with the summary of changes
in the burned area and fuel content to help scientists identify in-
teresting temporal events. In this paper, we demonstrate how our
system can support wildfire experts in studying fire spread patterns,
identifying outlier simulations, and navigating to interesting times
based on a summary of events.
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1 INTRODUCTION

Wildfires in the western United States cause significant damage to
ecosystems, properties, and quality of life, which has resulted in
substantial economic losses [8, 31, 15], and the frequency and the
area burned by these wildfires are predicted to increase. To effec-
tively manage resources and assess the risk of wildfires, domain sci-
entists have been using simulations to study wildfire behavior and
its socioeconomic impact [16, 10]. In the real world, unforeseeable
conditions, such as sudden shifts in wind patterns or changes in fuel
moisture content, may drastically impact how fire propagates. To
better understand and mitigate the risks from unknown conditions,
scientists study the spread pattern of fire from a collection of initial
conditions and different parameter values [1, 2, 4, 23].

‘We have collaborated with wildfire and simulation experts to un-
derstand their workflows and explore how visualization could help
them achieve their goals. In their workflows, they use simulation
tools such as WRF-SFIRE [19] or QES-FIRE [22] to simulate fire
progression over time. One of the most important outcomes of
their simulations is the location of the fire front. Fires have dif-
ferent spreading rates depending on the fuel, terrain, and wind at
the fire front. Thus, we observe different spread patterns depend-
ing on how the simulation is set up. The fire propagation pattern
is especially complex when the fire interacts with the atmosphere,
including wind and heat exchange [20].

Even though our collaborators utilize ensemble methods in their
analysis to mitigate the uncertainty observed in weather and fuel
content, they apply limited uncertainty visualization techniques.
We have noticed that they are not alone. Few uncertainty visual-
ization techniques have been applied in existing ensemble wildfire
simulation research. Hullman [11] has looked into the challenges of



including uncertainties in visualization. Despite the challenges, we
have seen some attempts to convey uncertainty in ensemble wildfire
visualizations. In some probabilistic fire models, researchers plot a
map indicating the probability of the spatial location being burned
[1,24, 6]. Those maps are provided alongside a deterministic model
or observed data to provide the context of the fire front. However,
the geometry of the fire front of the ensemble members is lost in the
probabilistic modeling. We also have observed significant usage of
small multiples and spaghetti plots for studying ensembles [29, 6].

Since uncertainty quantification and visualization has been iden-
tified as one of the top problems in scientific data visualization
[13, 14], many visualization techniques on uncertainty have been
explored and studied [3, 9, 25]. For ensemble data, researchers have
been exploring visualization techniques to efficiently analyze in-
formation buried within multiple instances of spatial-temporal and
often multivariate data [26, 5].

One particular line of research focuses on extracting meaningful
and robust statistics for complex data such as fire front contours.
Extending the definition of functional band depth [17] to geomet-
ric shapes such as contours, curves, and surfaces [28, 21, 7], re-
searchers have developed robust statistics for nonparametric distri-
butions that preserve the global structures of the geometries. The
visualizations of the statistics reduce the visual clutter when plot-
ting every instance of ensemble members while highlighting the
most representative trends and variations.

To introduce uncertainty visualization techniques to wildfire sci-
entists, we have created an interactive visualization system that in-
corporates contour boxplot-based visualization. Our system sum-
marizes the trends and variations in the contours to help researchers
better understand fire propagation sensitivity in different experi-
mental parameters. Utilizing the contour band depths can also help
scientists identify anomalies and outliers in the simulations. To as-
sist the study of the time-varying data, we added change-over-time
curves to help users identify events and navigate between differ-
ent simulation instances. Our interface also allows users to specify
a spatial region and visualize the distribution of fire arrival time.
This feature is particularly useful when a wildfire researcher has a
region of interest, such as an observation tower, in the simulated
domain.

The contribution of this paper is a new visualization tool with
an interactive interface to study spread patterns from wildfire en-
semble simulations. We showcase how uncertainty visualization
techniques can help wildfire experts quickly identify patterns and
outliers in wildfire simulations.

2 ENSEMBLE WILDFIRE VISUALIZATION

We designed our interface around the wildfire forecast simulation
WRF-SFIRE [19]. Our data assumes that the ensemble members
have the same spatial description; that is, there is no uncertainty in
the topographic characteristics of the terrain. The sampling grid is
shared among all ensemble members. Other parameters, such as
fuel content, fire spread, or wind vectors, can vary among simula-
tions. To visualize an ensemble of time-varying fires, our interface
design is split into two major components: Visualization of a sin-
gle time and visualization of a temporal events summary to guide
users in selecting the time. For single-time visualization, we de-
veloped multiple ensemble visualization techniques to summarize
the differences between ensemble members. We provide a tempo-
ral overview and spatial query for the temporal events to help users
select the time they want to look at.

2.1

For ensemble wildfire simulations, one of the most important ques-
tions researchers ask is how the wildfire spreads differently in dif-
ferent simulation settings. For example, researchers can perturb the
initial wind velocity or fuel moisture to simulate uncertain weather
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Figure 2: Ensemble contour visualization. On the left, we plot ev-
ery instance of fire contours. On the right, we plot the contour
boxplot as the summary to reduce visual clutter.

conditions and see how the fire propagates under different initial
conditions.

We visualize the fire propagation by tracking the location of the
fire front contour. For level set methods-based simulation tools,
such as WRF-SFIRE, the fire front is the 0-level set of the level set
function [18]. We can extract the isocontour from each simulated
instance. To visualize the ensemble simulations, a simple and naive
approach is to plot all the contours together. Figure 2 shows an
example of this visualization on the left.

This type of visualization has some drawbacks. For example,
in the region where the separation between each simulation is low,
multiple contours are plotted at the same location. Therefore, the
simulations are not distinguishable. Similarly, this visualization
suffers from the same problem in regions with many crossings be-
tween contours. We utilize the contour boxplot [28] to build a vi-
sual summary of the spread of contours. As shown in the right
image of Figure 2, the orange contour is the median. The black and
darker gray regions contain the center-most 50% and 90% of the
contours from all simulations, respectively. Compared to the im-
age on the left, this visualization reduces visual clutter in the region
where contours cross each other and highlights the median contour.

The contour boxplot computations extend the definition of func-
tional band depths [27]. For a scalar field f : X — R, an isocontour
of value v is the level set Ly = {x|f(x) = v}. The area enclosed
by the isocontour is the sublevel set L, = {x|f(x) <v}. A band
formed by a set of contours is defined as the intersection of the sub-
level sets subtracted from the union of the sublevel sets. Assume a
set of scalar function S = {f1, f2," -+, fu}>

band(S) ={L; UL, U---UL, } —{L, NLy N---NLy} (1)

Then, the contour band depth of a contour Lf,. is the number of
bands this contour lives fully inside, considering the bands formed
by all subsets of the ensemble E

depth(i) =Y .7 (Lg,band(S))
SCE
where . is an indicator function that is 1 when Ly, is fully con-
tained in the band, O otherwise. Sometimes the band depth is nor-
malized to a probability by adding a scale term. In the computa-
tion, the loop over all subsets is O(2") for an n-member ensem-
ble, which creates a performance bottleneck. Ldépez-Pintado and
Romo [17] have established that using only 2-element subsets is
often sufficient to arrive at stable statistics. Therefore, we consider
only bands formed by two contours in the band depth computation,
which reduces the number of loops for each contour to O(n?). For
each contour, we can compute the band depth. Sorting all the con-
tours by their band depths gives us a center-outwards ordering of all
the contours. The contour with the most depth is then the median.
We can derive similar notions of quantiles for contours according
to this ordering.
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Figure 3: Demonstration of the contour boxplot on randomly gen-
erated terrain with varying northwest wind. The black contour is
the median contour. The red region encloses 50 percent contours
ordered by contour band depths. The gray region encloses 90 per-
cent of all contours, which we consider the nonoutliers.

Throughout our study, the domain resolution is between 2002
and 500%. The number of ensemble members is 31. Computing
the contour band depths for 31 instances of a 5122 grid takes 5.8
seconds on a single core of an AMD EPYC 7542 processor. With
CuPy' acceleration, the computation times are reduced to 0.7 sec-
onds on an NVIDIA A100 GPU. Our implementation can fit at
least 200 instances of a 5122 grid into the GPU memory. The time
it takes to compute 200 contours with a 5122 terrain is 1 minute
6 seconds on a GPU and 28 minutes on a sequential CPU. The
computation cost increases cubically with an increase in the num-
ber of ensembles and increases linearly with the resolution of the
sampling grid. Therefore, our implementation supports the inter-
active computation of contour band depth for our data resolution
(31 x 512 x 512 for each temporal slice) with some room to sup-
port larger scale or more ensemble members.

To demonstrate how contour boxplots can help wildfire re-
searchers analyze the data, we created a randomly generated do-
main with southeast winds at 31 initial velocities from 1 to 2 m/s.
The contour boxplot shows some interesting features in the Fig-
ure 3. First, the distribution of the contours is asymmetric. Con-
tours outside the median cover a much larger area than those inside,
especially in the initial wind direction. We then examined individ-
ual instances and found that the spread is much larger in simulations
with higher initial wind velocities, which suggests fire propagation
is more sensitive to higher wind velocity. Also, the plot has some
large gray regions. We noticed that those gray regions are normally
associated with a high-positive terrain slope. This finding confirms
our collaborators’ hypothesis that fire climbs faster than traveling
on plain ground.

Contour band depth can also help researchers detect outliers.
The definition of an outlier depends on the data and domain knowl-
edge. However, contour band depths can help us understand how
the contours overlap. A lower band depth means the contour is
more likely to differ from other ensemble members. We plot the
contour band depths value as a scatter plot. The x-axis is the exper-
iment ID, and the y-axis is the contour band depths. Figure 4 shows
a set of simulations where some experiments contain numerical in-
stability. The contour boxplot uses black and dark gray to indicate
center-most 50% and 90% contours, respectively. The orange con-
tour has a long tail in the north direction outside areas covered by
90% of contours. This means the fire front of the selected simu-

1https ://cupy.dev/
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Figure 4: An example of an outlier of the simulations. The orange
dot in the contour band depth plot is the currently selected mem-
ber shown in the terrain visualization. A lower contour band depth
value indicates a higher possibility of the ensemble member being
an outlier.

(a) Google map of the simulated area.

(b) Three types of fuel are placed over
the domain according to the elevation.
Figure 5: Our simulation domain. We simulated 31 instances of fire
in 8km x 6km area of Valles Caldera, New Mexico, USA

lation is stretched north in contrast to most simulations. The wind
glyph helps us identify a large band of high-magnitude south wind
in the center of the simulation domain caused by numeric issues.

In addition to the contour boxplot, we implemented standard
scalar and vector field visualization tools to visualize individual
simulations at a selected time point. We employed the opacity and
transfer functions mapping to map a user-chosen scalar field to vi-
sual encodings of the terrain. Our interface allows users to edit the
piecewise-linear opacity and color transfer functions to edit the vi-
sual encodings. We also provide glyph-based and streamline-based
surface wind visualization as demonstrated in Figure 1.

2.2 Visualizing Evolution of Wildfire

Wildfires are time-varying by nature. How different simulations
evolve differently is an important aspect of ensemble analysis. An
overview of fire propagation along the temporal axis helps re-
searchers identify significant events. This overview can guide re-
searchers to select interesting points in time and study fire propaga-
tion using previously mentioned tools.

Our temporal overview focuses on the magnitude of changes,
particularly how burned areas change. A significant change in the
burned area indicates a shift in the fire-spreading pattern, which
could result from a shift in wind pattern, terrain slope, or fuel con-
tent.

To summarize changes, we sum the amount of burned area over
the spatial domain for each time and report the difference between
the current timestamp and the previous timestamp. In addition to
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Figure 6: Demonstration of the temporal overview visualization. On the right, we summarize the magnitude of changes in the burned area and
different fuel types. Most of the simulations have increased the burning of fuel 10 after the 100th timestamp. We observed three instances
without significant changes in the amount of fuel_10 burned. On the left, we plot one of the instances in the context of the contour boxplot.
This particular instance does not reach the southeast portion of the domain where most other firefront contours reside at the 105th timestamp.
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Figure 7: This plot uses the viridis colormap to show the time when
the firefront arrives. Our interface also allows users to select a point
(red dot) in the domain and visualize the distribution of arrival time
for all ensemble members (bottom right).

the changes in the fire area, we also report changes in the fuel by
different fuel types. We plot individual change over time curves
and let users highlight each instance by hovering and clicking the
mouse. Therefore, we did not employ summary statistics for the
curves.

Figure 6 shows an example of identifying a specific temporal
pattern using our interface. The dataset is simulated over an 8km
x 6km area of Valles Caldera, New Mexico, USA, which is the
site of two recent fires: Las Conchas (2011) and Thompson Ridge
(2013). The simulation grid resolution is 345 x 265 with 120 steps
in time. The temporal step size is 300 seconds. The simulated wind
is linearly sampled with an initial magnitude from 4 to 7 m/s with 31
samples. The x and y components of the wind velocity are divided
in a 5:1 ratio toward the east-northeast direction. Three types of
fuel content are placed by the terrain’s altitude. fuel_1, fuel 2, and
fuel_10 are short grass, timber (grass and understory), and timber
(litter and understory), respectively. Figure 5 shows our simulated
domain.

The change over time curves in the Figure 6 shows most of the
simulations follow a pattern that fire gradually grows before the
90th timestamp. Around that time, most of the fire contours start
growing toward the large region of fuel_10 in the southeast moun-
tain. However, we observe three instances of simulations without
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significant changes in fuel_10. Selecting them from the time visu-
alization by clicking their curves, we notice that these instances are
the simulations with the three largest initial wind velocities. Be-
cause the wind velocity magnitude is so high, the wind dominates
how fire grows in those simulations. We can see a long and thin
burned area aligned with the initial wind direction for each instance
compared to the contour boxplot shown for other instances of the
simulations.

In addition to the temporal event, our collaborators requested vi-
sualization of the spatial event. Given a point in space, they want
to know when the fire arrives. We implemented two visualizations
for this task. For a single instance, we report the arrival time as
a scalar field so that users can choose color or opacity mapping.
Alternatively, users can select a point in the domain, and we use
a scatterplot to report the arrival time distribution of all ensemble
members for the selected point. Figure 7 shows an example of spa-
tial event visualization.

3 DISCUSSION

This work presented an interactive visualization system that pro-
vides wildfire experts with additional visualization techniques for
uncertainties in fire propagation. We showcased how the contour
band depths and boxplot can efficiently summarize a collection of
wildfire ensemble simulations. These techniques help depict the
sensitivity of fire propagation and identify anomalies in the simula-
tions. Temporal and spatial events help scientists answer questions
about when and where the events happen in the simulation.

Our wildfire simulation collaborators gave us positive feedback
on the visualization system, and the interactive interface inspired
them to ask questions about different types of uncertainty. For ex-
ample, one of the challenges of running a simulation is that it takes
a long time to run on a high-resolution grid. Therefore, how does
changing to a smaller simulation resolution affect uncertainty if the
simulation experts want to run simulations on different domain res-
olutions? Studying uncertainties from different sampling grids re-
quires spatial alignment, which may introduce more types of un-
certainty, such as interpolation errors. We aim to address different
types of uncertainty in the future.

Furthermore, visualization of summary statistics, such as box-
plots, is not the only way to visualize distributions. For example,
hypothetical outcome plots have been introduced as an effective
way of visualizing distributions [12, 30]. We want to examine how
well such methods work on geospatial data and establish a formal
way to evaluate wildfire uncertainty visualization methods.
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