
Multi-Resolution Active Learning of Fourier Neural Operators

Shibo Li SHIBO@CS.UTAH.EDU
Kahlert School of Computing
University of Utah

Xin Yu XINY@CS.UTAH.EDU
Kahlert School of Computing
University of Utah

Wei Xing W.XING@SHEFFIELD.AC.UK
School of Mathematics and Statistics
University of Sheffield

Robert M. Kirby KIRBY@CS.UTAH.EDU
Kahlert School of Computing, Scientific Computing and Imaging Institute
University of Utah

Akil Narayan AKIL@SCI.UTAH.EDU
Department of Mathematics, Scientific Computing and Imaging Institute
University of Utah

Shandian Zhe ZHE@CS.UTAH.EDU

Kahlert School of Computing
University of Utah

Abstract
Fourier Neural Operator (FNO) is a popular operator learning framework. It not only achieves the
state-of-the-art performance in many tasks, but also is highly efficient in training and prediction.
However, collecting training data for the FNO can be a costly bottleneck in practice, because it
often demands expensive physical simulations. To overcome this problem, we propose Multi-
Resolution Active learning of FNO (MRA-FNO), which can dynamically select the input functions
and resolutions to lower the data cost as much as possible while optimizing the learning efficiency.
Specifically, we propose a probabilistic multi-resolution FNO and use ensemble Monte-Carlo to
develop an effective posterior inference algorithm. To conduct active learning, we maximize a
utility-cost ratio as the acquisition function to acquire new examples and resolutions at each step.
We use moment matching and the matrix determinant lemma to enable tractable, efficient utility
computation. Furthermore, we develop a cost annealing framework to avoid over-penalizing high-
resolution queries at the early stage. The over-penalization is severe when the cost difference is
significant between the resolutions, which renders active learning often stuck at low-resolution
queries and inferior performance. Our method overcomes this problem and applies to general
multi-fidelity active learning and optimization problems. We have shown the advantage of our
method in several benchmark operator learning tasks.

1. Introduction

Operator learning is emerging as an important topic in scientific machine learning. It intends to
estimate function-to-function mappings and can serve as a useful surrogate model for many physical

1

ar
X

iv
:2

30
9.

16
97

1v
3

 [
cs

.L
G

]
 8

 O
ct

 2
02

3

simulation related applications, such as weather forecast (Pathak et al., 2022), control (Bhan et al.,
2023), engineering design (Liu et al., 2023) and inverse problems (Kaltenbach et al., 2022). One
representative approach is the Fourier neural operator (FNO) (Li et al., 2020d), which uses fast
Fourier transform (FFT) and convolution theorem to fulfill global linear transforms in the functional
space. The FNO not only shows state-of-the-art performance in many tasks, but also is highly
efficient in training and prediction.

Despite the advantages, collecting training data for the FNO can be a severe bottleneck in practice
because it often requires many physical simulations (e.g., running numerical solvers), which is known
to be computationally expensive. To reduce the cost, one can consider multi-resolution data. The
low-resolution data is cheap to obtain (typically computed with rough meshes) but the provided
output function samples are quite inaccurate (large bias). On the contrary, high-resolution data offers
accurate output function samples, yet is much more costly to generate (from dense meshes). Although
with substantial difference in quality, the low and high resolution examples share the same underlying
physics and are strongly correlated. Hence, one can reasonably expect using multi-resolution data to
well train the FNO while reducing the data cost.

However, blindly collecting examples at different resolutions is hardly optimal in both cost
saving and learning efficiency. To reduce the data cost to the greatest extent while optimizing the
learning efficiency, we propose MRA-FNO, a novel multi-resolution active learning method, which
can dynamically select the best input function and resolution each step, at which to generate new
examples. The major contributions of our work are summarized as follows.

• Probabilistic Multi-Resolution FNO. We first extend the FNO to integrate multi-resolution
training data. To capture the influence of the resolution choice on the predictive distribution,
we append a resolution embedding to the samples of the input function. After the FNO layers,
we create two branches: one generates the prediction mean of the target function and the other
the variance. In this way, the prediction is up to not only the input function samples but also
the resolution choice. We then use Monte-Carlo ensemble learning (Lakshminarayanan et al.,
2017) to fulfill effective uncertainty quantification, which is critical for utility evaluation and
active learning.

• Active Learning. To optimize the learning efficiency while reducing the data cost as much
as possible, we maximize the utility-cost ratio to select the best training input and resolution
at each step, where the utility is measured by mutual information. The strategy is similar
to the state-of-the-art multi-fidelity active learning and Bayesian optimization methods (Li
et al., 2022b; Takeno et al., 2020; Li et al., 2020a), but there are two severe challenges. The
first challenge is that the computation of the utility function is analytically intractable and
costly. We use moment matching to approximate the posterior predictive distribution as a
multi-variate Gaussian. We then leverage the structure of the covariance matrix, and apply
the matrix determinant lemma to fulfill efficient, closed-form mutual information calculation.
The second challenge is that, directly maximizing the utility-cost ratio as in previous methods,
tends to trap the active learning at low-resolution queries and inferior performance. This is
due to that when the data is few (at the early stage), the mutual information measurement for
examples at different resolutions is close. High-resolution examples are thereby over-penalized
by the large cost. We propose a cost annealing framework, which initializes the same cost for
every resolution. The cost for each resolution is scheduled to gradually converge to the true
cost along with data accumulation. When the data is enough and mutual information can reflect
the true potential of each example, our active learning returns to maximizing the benefit-cost

2

ratio. In this way, our method can flexibly incorporate high-resolution examples at the early
stage to enable continuous improvement. Our framework applies to general multi-fidelity
learning and optimization problems.

• Experimental Results. We evaluated MRA-FNO with four benchmark operator learning
tasks, based on Burger’s, Darcy flow, nonlinear diffusion and Navier-Stoke equations. On
fixed training datasets, our multi-resolution FNO shows better or very close prediction error
as compared to the standard FNO. Both the prediction accuracy and test log likelihood are
much higher than applying other popular Bayesian inference methods, including Monte-Carlo
(MC) dropout, stochastic gradient Langevin dynamics and variational inference. It shows
our ensemble inference provides much better uncertainty quantification. During the course
of each active learning experiment, MRA-FNO consistently achieves much better prediction
accuracy with the same accumulated data cost, as compared with random queries, core-set
active learning, and our framework with dropout inference.

2. Background

Operator Learning. Suppose our goal is to learn a function-to-function mapping ψ : H → Y ,
where H and Y are two function spaces (e.g., Banach spaces). The training dataset comprises
pairs of discretized input and output functions, D = {(fn,yn)}Nn=1, where each fn are samples
of a function fn ∈ H, and yn are samples of ψ[fn] ∈ Y . All the input and output functions are
discretized (sampled) at a set of evenly-spaced locations, e.g., a 64 × 64 mesh in the 2D spatial
domain [0, 1]× [0, 1].

Fourier Neural Operators (FNO). Given a discretized input function f , the FNO first applies a
feed-forward network (FFN) over each element of f and the associated sampling location to lift the
input to a higher-dimensional channel space. Then a Fourier layer is used perform a linear transform
and nonlinear activation in the functional space,

v(x)← σ

(
Wv(x) +

∫
κ(x− x′)v(x′)dx′

)

where v(x) in the R.H.S is the input function to the Fourier layer and in the L.H.S the output
function, κ(·) is the integration kernel and σ(·) is the activation. Based on the convolution theorem∫
κ(x− x′)v(x′)dx′ = F−1 [F [κ] · F [v]] (x) where F and F−1 are the Fourier and inverse Fourier

transforms, respectively, the Fourier layer performs fast Fourier transform (FFT) over v, multiplies it
with the discretized kernel in the frequency domain, and then performs inverse FFT. The local linear
transform,Wv(x), is performed by standard convolution (as in convolution nets). Due to the usage
of FFT, the computation of the Fourier layer is highly efficient. After several Fourier layers, another
FFN is applied channel-wisely to project back and make the final prediction. The training is typically
done by minimizing an L2 loss, Θ∗ = argminΘ

1
N

∑N
n=1 ∥gn − ψFNO(fn; Θ)∥, where Θ are the

model parameters, including the discretized kernel in the frequency domain, standard convolution
parameters in each Fourier layer, and the parameters of the FNN’s for channel lifting and projection.

3. Probabilistic Multi-Resolution FNO

Despite the advantages of the FNO, the training data collection can be a severe bottleneck for
practical usage, because it typically requires many expensive physical simulations. To reduce the

3

cost, we consider using multi-resolution data, which combines accurate yet expensive high-resolution
examples with inaccurate (large bias) yet cheap-to-generate low-resolution examples. We then
propose an active learning approach to lower the data cost to the fullest extent while reaching a high
learning efficiency. To this end, we first propose a probabilistic FNO that can effectively integrate
multi-resolution training examples and perform posterior inference.

Specifically, suppose a multi-resolution dataset is given, D = {(fn,gn, rn)}Nn=1 where rn
denotes the resolution of the n-th example. We have R different resolutions in total (1 ≤ rn ≤ R).
For example, on a 2D spatial domain [0, 1] × [0, 1], we might have two resolutions, 16 × 16 and
128× 128. To explicitly model the influence of the resolution choice on the prediction, we introduce
an embedding er to represent each resolution r ∈ [1, R]. In our experiment, we set er to a one-hot
encoding. We have also tried other embeddings, such as positional encodings (Vaswani et al., 2017).
The performance is close. We apply an FFN to every element of fn, the corresponding sample
location xj , and the embedding ern to obtain a new representation f̂n, each

[̂fn]j = FNN([fn]j ,xj , ern). (1)

Next, we use standard Fourier layers to perform successive linear and nonlinear transforms in the
functional space. Denote by vn the output (discretized) function. We then create two branches. One
branch applies an FNN in each channel to project vn back to the target dimension and output the
prediction mean, µΘ(fn, en) where Θ denote the model parameters. The other branch performs a
standard convolution and then an FNN to output the prediction variance in the log domain, ηΘ(fn, en).
We then use a Gaussian likelihood to model the observed (discretized) output function,

p(gn|fn, rn) = N
(
gn|µΘ(fn, ern), e

ηΘ(fn,ern) · I
)
.

We can see, both the mean and variance are not only dependent on the input fn but also up to the
resolution choice rn. In this way, our model can capture the influence of the resolution choice on the
prediction distribution. Our model is illustrated in Appendix Fig. 5.

Next, we use Monte-Carlo ensemble learning (Lakshminarayanan et al., 2017)1 to fulfill effective
posterior inference. Specifically, we randomly initialize the model parameters Θ, and maximize the
log likelihood to obtain one point estimate via stochastic mini-batch optimization,

Θ∗ = argmax
Θ

N∑

n=1

log
[
N
(
gn|µΘ(fn, en), e

ηΘ(fn,en)I
)]
.

We independently repeat this procedure for M times, and obtain an ensemble of the point estimates
of the model parameters, {Θ∗

1, . . . ,Θ
∗
M}. We then construct a discrete posterior approximation of the

model parameters, p(Θ|D) ≈ 1
M

∑M
m=1 δ(Θ−Θ∗

m), where δ(·) is the Dirac delta measure. Given a
test input function f and the resolution embedding e, the predictive distribution of the output function
is therefore a Gaussian mixture,

p(y(f , e)|D)

=
1

M

M∑

m=1

N
(
y|µΘ∗

m
(f , e), σ2Θ∗

m
(f , e) · I

)
. (2)

where σ2Θ∗
m
(f , e) = eηΘ∗

m
(f ,e).

1. we do not introduce adversarial samples as in (Lakshminarayanan et al., 2017). We empirically found little help with
such samples.

4

4. Multi-Resolution Active Learning

Now, we present our multi-resolution active learning algorithm. To optimize the learning efficiency
while lowering the data cost as much as possible, at each step, we maximize a utility-cost ratio (as
the acquisition function) to determine the most valuable input function and its resolution, at which
we query a new example. Specifically, we prepare a pool of candidate input functions P . Denote by
λr the cost of generating the output function at resolution r ∈ [1, R]. We have λ1 < . . . < λR. To
measure the value of an example with input function h ∈ P and resolution r, we consider two utility
functions. The first one follows (Li et al., 2022b) and quantifies the information the example can
bring to predict at the highest resolution R,

u(h, r) = I(y(hr, er),y(h
R, eR)|D) (3)

where D is the current training dataset, I(·, ·) is the mutual information, hr and hR are func-
tion h discretized at resolution r and R, respectively, and er and eR are the corresponding res-
olution embeddings. The utility function (3) only considers how the example can improve the
prediction for the same input function. To model its benefit in improving the prediction for
other input functions, we follow (Li et al., 2022a) to consider a second utility function u(h, r) =
Ep(h′)[I(y(hr, er),y(h

′R, eR)|D)], where h′ ∈ H and p(h′) is a distribution overH. The expecta-
tion usually does not have a closed-form, and we therefore draw A functions, h′1, . . . , h

′
A ∼ p(h′),

and adopt an Monte-Carlo approximation,

û(h, r) =
1

A

A∑

l=1

I(y(hr, er),y(h
′R
l , eR)|D). (4)

4.1 Efficient Utility Computation

The utility function in both (3) and (4) demands we compute the mutual information between a pair
of predictions from our model. The computation is challenging in that (1) those predictions are
typically high-dimensional (e.g., a 100× 100 resolution corresponds to 10K dimensional outputs),
and (2) the mutual information is analytically intractable due to the Gaussian mixture predictive
distribution in (2). To address this problem, we observe that for any two predictions y1 and y2, we
have

I(y1,y2|D)
= H(y1|D) +H(y2|D)−H(y1,y2|D). (5)

Denote by (f1, e1) the discretized input function and resolution embedding for y1 and by (f2, e2)
for y2. We first use moment matching to approximate the predictive distributions of y1, y2

and ŷ = [y1;y2] as multi-variate Gaussian distributions, and we can thereby compute each
entropy with a closed form. Specifically, let us first consider ŷ. According to (2), we can
derive that p(ŷ|D) = 1

M

∑M
m=1N (ŷ|ρm,Λm), where ρm = [µΘ∗

m
(f1, e1);µΘ∗

m
(f2, e2)] and

Λm = diag
(
σ2Θ∗

m
(f1, e1) · I, σ2Θ∗

m
(f2, e2) · I

)
. The mean and covariance (first and second mo-

5

ments) are

E(ŷ|D) = 1

M

M∑

m=1

ρm,

cov(ŷ|D) = 1

M

M∑

m=1

(
Λm + ρmρ⊤

m

)
− E(ŷ|D)E(ŷ|D)⊤.

Via moment matching, we construct a multi-variate Gaussian approximation, p(ŷ|D) ≈ N (ŷ|E(ŷ|D), cov(ŷ|D)),
which is the best approximation in the exponential family in the sense of Kullback Leibler diver-
gence (Bishop and Nasrabadi, 2006). Accordingly, the entropy can be computed with a closed-form,
H(ŷ) = 1

2 log det [cov(ŷ|D)] + const.
However, since ŷ is high-dimensional, computing the log determinant of its huge covariance

matrix is extremely expensive or even infeasible. To address this problem, we observe that

cov(ŷ|D) = Λ+
1

M

M∑

m=1

ρmρ⊤
m − E(ŷ|D)E(ŷ|D)⊤

= Λ+
1

M − 1

M∑

m=1

(ρm − E(ŷ|D)) (ρm − E(ŷ|D))⊤ (6)

where

Λ = diag

(
1

M

M∑

m=1

σ2Θ∗
j
(f1, e1) · I,

1

M

M∑

m=1

σ2Θ∗
j
(f2, e2) · I

)

is a diagonal matrix, and the second term in the R.H.S of (6) is actually the empirical covariance
matrix over {ρm}. We can further derive that cov(ŷ|D) = Λ + BB⊤, where B = 1√

M−1
[ρ1 −

E(ŷ|D), . . . ,ρM − E(ŷ|D)], which includes M columns. We then use the matrix determinant
lemma (Harville, 1997) to compute,

log det [cov(ŷ|D)] = log det
[
Λ+BB⊤

]

= log det[Λ] + log det[I+B⊤Λ−1B]. (7)

The first log determinant is over the diagonal matrix Λ, and the complexity is linear in the dimension
of ŷ. The second log determinant is computed over an M ×M matrix. Since M is the size of the
ensemble and is very small (we take M = 5 in our experiments), the computation is highly efficient.
It is straightforward to use a similar method to compute H(y1|D) and H(y2|D) in (5).

4.2 Cost Annealing

In practice, directly maximizing the utility-cost ratio u(h,r)
λr

or û(h,r)
λr

(see (3) and (4)) tends to make
the active learning stuck at low-resolution queries and inferior performance, especially when the cost
discrepancy is significant between the low and high resolutions. This is because at the early stage,
the training data is few, and the mutual information does not differ much for candidates at different
resolutions. In other words, the scales are close. Consequently, the high-resolution examples are
over-penalized by the large cost, and the active learning keeps selecting low-resolution examples,
which can severely hinder the model improvement.

6

Algorithm 1 MRA-FNO (M , P , T , {λr}Rr=1)
1: Learn the probabilistic multi-resolution FNO from an initial dataset D with the ensemble size M .
2: for t = 1 . . . T do
3: Based on the cost schedule (8), select the input function ht ∈ P and the resolution rt by

ht, rt = argmax
h∈P,1≤r≤R

β(h, r)

λ̂r(t)

where β(h, r) is the utility function that can take (3) or (4).
4: Query the output function at ht with resolution rt to obtain yt.
5: Remove ht from P .
6: D ← D ∪ {(ht,yt, rt)} where ht is the discretized ht at resolution rt.
7: Re-train the probabilistic multi-resolution FNO on D
8: end for

To overcome this problem, we propose a cost annealing method. We schedule a dynamic cost
assignment for each resolution. Denote by λ̂r(t) the cost schedule for resolution r at step t. For
convenience, we normalize the true cost into [0, 1], i.e., each λr ∈ [0, 1] and

∑R
r=1 λr = 1. We set

λ̂r(t) =
λr

1 + (Rλr − 1)c(t)
, (8)

where c(t) is a decaying function such that c(0) = 1 and c(∞) = 0. For example, we can use

c(t) = exp(−αt), or c(t) = 2(1− s(αt)), (9)

where s(·) is the sigmoid function and α controls the decay rate. We can see that all λ̂r(0) = 1
R and

lim
t→∞

λ̂r(t) = λr. At each step t, we select the input and resolution by maximizing the acquisition

function, u(h,r)

λ̂r(t)
or û(h,r)

λ̂r(t)
. In this way, at the early stage when the data is few and the mutual

information does not differ much, our method avoids over-penalizing high-resolution examples, and
promote their queries to ensure continuous model improvement. With the accumulation of data, the
mutual information is more and more capable of reflecting the true potential/value of new examples,
the active learning returns to maximizing the ideal utility-cost ratio to select the input functions and
resolutions. Our method is summarized in Algorithm 1.

Algorithm Complexity. The time complexity of each active learning step is O(|P|RM2d)
where |P| is the size of the candidate pool, and d is the output dimension at the highest resolution.
The space complexity is O(Md), which is to store the predictive distribution (for any input function)
and the parameter estimates in the ensemble.

5. Related Work

Operator learning is a fast-growing research area. A variety of operator learning methods have
been developed, most of which are based on neural networks and henceforth called neural operators.
For example, along with FNO, a simple low-rank neural operator (LNO) (Li et al., 2020d) was
proposed to employ a low-rank decomposition of the operator’s kernel. Li et al. (2020b) proposed

7

GNO that uses Nystrom approximation and graph neural networks to approximate the function
convolution. In (Li et al., 2020c), a multipole graph neural operator (MGNO) is developed, which
uses a multi-scale kernel decomposition to achieve linear complexity in computing the convolution.
Gupta et al. (2021) developed a multiwavelet-based operator learning model that represents the
operator’s kernel with fine-grained wavelets. Another popular approach is the Deep Operator Net
(DeepONet) (Lu et al., 2021), which combines a branch net over the input functions and a trunk net
over the sampling locations to predict the target function values. A more stable and efficient version,
POD-DeepONet was proposed in (Lu et al., 2022), which replaces the trunk net with the POD (or
PCA) bases computed from the training data. (Seidman et al., 2022) used a nonlinear combination
(e.g., a feed-forward network) of the branch net and trunk net outputs to approximate the target
function. A survey of neural operators is given in (Kovachki et al., 2023). The recent works have
also developed kernel operator learning approaches (Long et al., 2022; Batlle et al., 2023).

Active learning is a classical machine learning topic. The recent research focuses on the active
learning of deep neural networks. For example, in (Gal et al., 2017), Monte-Carlo (MC) Dropout (Gal
and Ghahramani, 2016) was used to generate the posterior samples and compute the acquisition
function. (Geifman and El-Yaniv, 2017; sen) used core-set search to query diverse and representative
examples, which are shown to be particularly effective for convolution neural nets. Other examples
include (Gissin and Shalev-Shwartz, 2019; Ducoffe and Precioso, 2018) for adversarial active
learning, (Ash et al., 2019) using the gradient magnitude to represent the uncertainty and to query
new examples, etc. Recently, (Li et al., 2022b) proposed the first multi-fidelity active learning
approach, which dynamically queries multi-fidelity simulation examples to train a surrogate model
that predicts PDE solutions from PDE parameters. (Li et al., 2022a) further developed a batch
multi-fidelity active learning algorithm with budget constraints. The key difference is that these
works aim to learn a mapping from the PDE parameters (low-dimensional input) to the solution
(high-dimensional output), and they employ an auto-regressive architecture to combine examples of
multiple fidelities. Their stochastic variational inference is inferior in posterior approximation and
uncertainty quantification for operator learning. We therefore develop another posterior inference
approach based on ensemble learning, which turn out to be much more effective. We accordingly
develop an efficient method for utility function computation. In addition, we discovered the over-
penalization problem during the active learning, which was never discovered in these previous works.
We proposed a novel and flexible cost annealing framework to overcome the problem. The most
recent work (Pickering et al., 2022) proposed an active learning approach for DeepONet. The goal
is to query examples that can facilitate the discovery and forecast of rare events. The work does
not consider multi-resolution examples and their varying costs. Hence, the goal, model estimation,
acquisition function design and computation are all very different from our work.

6. Experiment

6.1 Prediction Accuracy on Fixed Training Data

We first examined if our probabilistic multi-resolution FNO can achieve good prediction accuracy
and uncertainty calibration. To this end, we tested with two benchmark operator learning tasks, one
is based on a Burgers’ equation and the other a Darcy flow equation. For Burgers, we aim to learn a
mapping from the initial condition to the solution at time t = 1, while for Darcy, the goal is to learn
a mapping from the coefficient function to the solution. We considered two resolutions for each task.
The details are provided in Section A in Appendix.

8

Method Burgers Darcy
FNO 0.0575 ± 0.0031 0.0891 ± 0.0078

FNO-Dropout 0.0791 ± 0.0035 0.1038 ± 0.0056
FNO-SGLD 0.0804 ± 0.0049 0.0933 ± 0.0074

FNO-SVI 0.1182 ± 0.0056 0.0946 ± 0.0041
MRA-FNO 0.0586 ± 0.0042 0.0876 ± 0.0059

(a) Relative L2 error
Method Burgers Darcy

FNO NA NA
FNO-Dropout 176.84 ± 16.11 4447.92 ±63.08
FNO-SGLD 223.48 ± 15.74 3683.45 ± 83.49

FNO-SVI 391.61 ± 10.59 4027.71 ± 73.96
MRA-FNO 44.57 ± 3.62 1167.73 ± 29.13

(b) Negative Log-Likelihood (NLL)

Table 1: Prediction accuracy in non-active learning. The results were averaged from five runs.

We randomly generated 200 examples for each resolution to obtain a training set. We randomly
generated another 200 examples at the highest resolution as the test set. We compared with the
standard FNO (point estimation), FNO trained via MC Dropout (FNO-Dropout) (Gal and Ghahramani,
2016), stochastic gradient Langevin dynamics (FNO-SGLD) (Welling and Teh, 2011), and stochastic
variational inference (FNO-SVI) (Kingma and Welling, 2013). For all the methods, we set the
mini-batch size to 20, the learning rate to 10−3, and use ADAM optimization and Cosine Annealing
schedule. We used the FNO implementation from the original authors (https://github.com/
neuraloperator/neuraloperator). We tuned the dropout rate from {0.1, 0.2, 0.3, 0.4,
0.5}. For SGLD and SVI, we assigned a standard Gaussian prior over the model parameters. For
SVI, we employed a fully factorized Gaussian posterior approximation. We repeated the training and
test procedure for five times, and examined the average relative L2 error, the average negative log
likelihood (NLL), and their standard deviation on the test datasets. The results are reported in Table
1.

We can see that the our model (MRA-FNO) achieves the relative L2 error significantly smaller
than the competing methods in all the cases, except that in Burger’s equation, the L2 error of MRA-
FNO is slightly worse than the standard FNO. More important, MRA-FNO consistently outperforms
all the probabilistic versions of FNO by a large margin in test log likelihood. Hence, not only does
our model give superior prediction accuracy, our ensemble posterior inference also enables much
better uncertainty quantification.

6.2 Active Learning Performance

Next, we evaluated the active learning performance of MRA-FNO. In addition to the tasks in
Section 6.1, we considered two more PDEs, one is a nonlinear diffusion equation, and the other
is a 2D Navier-Stokes (NS) equation used in (Li et al., 2020d). For each task, we considered
two resolutions. We leave the details in Section 1 of Appendix. In addition, we tested active
learning on the same Darcy problem as in Section 6.1 with three resolutions. We summarize the
data acquiring cost at different resolutions in Table 2. As we can see, the cost discrepancy is large
among different resolutions. We compared with the following active learning methods for FNO. (1)

9

https://github.com/neuraloperator/neuraloperator
https://github.com/neuraloperator/neuraloperator

Task Resolution Cost Ratio
Burgers 33, 129 1 : 41.2
Darcy 32× 32, 128× 128 1 : 38.3
Darcy3 32× 32, 64× 64, 128× 128 1 : 21.3 : 38.3

Diffusion 32× 32, 64× 64, 128× 128 1 : 4.7 : 17.6
NS 16× 16, 64× 64 1 : 7

Table 2: Resolution and cost ratio for each active learning task. The cost is measured by the average running
time for solving the PDEs (100 runs) at the corresponding resolution.

0 20 40 60
Accumulated Data Cost

0.05
0.10

0.30

0.60

R
el

at
vi

e
L

2
E

rr
or

MRA-FNO(u)
MRA-FNO(û)
Coresets-High
Coresets-Low
Coresets-Mix

MR-Dropout(u)
MR-Dropout(û)
Random-Mix
Random-Low
Random-High

(a) Burgers

0 100 200 300 400
Accumulated Data Cost

0.08

0.12

0.25

0.35

R
el

at
vi

e
L

2
E

rr
or

(b) Darcy

0 100 200 300 400
Accumulated Data Cost

0.08

0.12

0.22

0.35

R
el

at
vi

e
L

2
E

rr
or

(c) Darcy3

Figure 1: Relative L2 error vs. accumulated data cost. Each method ran 500 active learning steps. Note that
different methods can end up with different total data cost (after running the same number of steps).

Random-Low/High, randomly selecting an input function from the candidate pool, and querying
the example at the lowest/highest resolution. (2) Random-Mix: randomly selecting both the input
and resolution. (3) Coreset-Low/High: we used the coreset active learning strategy (sen) to select
the input function that maximizes the minimum distance to the existed examples, according to the
output of the last Fourier layer as the representation. We fixed the resolution to be the lowest or
the highest one. (4) Coreset-Mix, the same coreset active learning strategy as in (3), except that we
allow querying at different resolutions. We interpolate the representation to the highest resolution
to compute the distance. (5) MR-Dropout: we used MC dropout to perform posterior inference for
FNO, and then used the same acquisition function(s), computation method, and annealing framework
as in our approach to identify the input function and resolution. (6) MR-PredVar: we averaged the
predictive variance of each output function values as the utility function, and the remaining is the
same as our approach. For every active learning experiment, we randomly generated 10 examples

0 50 100 150 200 250
Accumulated Data Cost

0.02

0.03

0.06

0.10

R
el

at
vi

e
L

2
E

rr
or

MRA-FNO(u)
MRA-FNO(û)
Coresets-High
Coresets-Low
Coresets-Mix

MR-Dropout(u)
MR-Dropout(û)
Random-Mix
Random-Low
Random-High

(a) Diffusion

0 500 1000 1500 2000
Accumulated Data Cost

0.05

0.10

0.18

0.30

R
el

at
vi

e
L

2
E

rr
or

(b) Navier Stoke (NS)

Figure 2: Relative L2 error vs. accumulated data cost.

10

for each resolution to obtain an initial dataset. We randomly generated 990 input functions at the
highest resolution, which we used as the candidate pool for active learning. If one example is queried
at a lower resolution, the input function is downsampled accordingly at which to run the simulation.
We randomly generated another 200 examples at the highest resolution for testing. We then ran active
learning with each method. For our method and MR-Dropout, we tested two annealing schedules,
one is based on the exponential decay and the other sigmoid decay; see (9) . We tuned the decaying
rate α from {0.002, 0.005, 0.01, 0.02, 0.5, 1.0}. We ran 500 active learning steps (queries) for all the
experiments except for the NS problem, we ran 300 steps. We examined the relative L2 error of each
method vs. the accumulated data cost. To avoid cluttered figures, we show the result of our method
with the exponential-decay-based schedule in Fig. 1 and 2, and the result of using the sigmoid decay
and MR-PredVar in Fig. 6 in Appendix.

Prediction Accuracy. As we can see, at the beginning, the performance of each method
is identical or very close. As the active learning progresses, MRA-FNO improves rapidly and
constantly. It soon achieves a superior prediction accuracy to all the competing methods, and
consistently outperforms them during the remaining course of the active learning. Accordingly,
MRA-FNO can reach the smallest prediction error under the same data cost, or use the least data
cost to achieve the same performance. We empirically observed that using the utility function (3)
or (4), denoted by MRA-FNO (u) and MRA-FNO (û), respectively, result in close performance,
except that on the diffusion problem, MRA-FNO (u) appears to be better. This might be because the
Monte-Carlo approximation in (4) (we set A = 5) still has a significant gap from the true expectation.
It is worth noting that both Random-Low and Coreset-Low were quickly trapped at large prediction
errors. It therefore shows only using low-resolution examples, the predictive performance will
soon meet a bottleneck and can hardly improve, though the data cost grows very slowly. On the
other hand, Random-High and Coreset-High enables steady improvement because they only query
high-resolution examples at each step. However, the data cost accumulation is much greater, e.g.,
Fig. 1b and 1c. In addition, the performance of MR-Dropout tends to stuck at large prediction errors
early, especially in Burgers, Darcy and Darcy3. We observed that MR-Dropout mainly selected
low-resolution examples. This might be because the uncertainty quantification by dropout is not
reliable for FNO, and even using our annealing framework cannot correct its bias. From Fig. 6 of
Appendix, we can see that the performance of MRA-FNO with the sigmoid-based cost schedule is
close to that with exp-based schedule (see (9)), except in Darcy3, the exp-based schedule shows a
slight yet consistent advantage. Interestingly, MR-PredVar outperforms the other competing methods
in all the cases, confirming the importance of effective uncertainty quantification in utility evaluation
(it also uses our ensemble posterior inference). While MR-PredVar achives close performance to
our method in Burgers, in all the other cases, MR-PredVar is apparently worse. This might be
because MR-PredVar ignores the (strong) correlation between the output function values, and hence
the quality of utility evaluation is worse. All these results have demonstrated the advantage of our
multi-resolution active learning approach.

Influence of Cost Schedule. Next, we investigated how the cost annealing schedule influences
the active learning. To this end, we used the exponential decay function in our schedule, and varied
the decaying rate α ∈ {0.002, 0.005, 0.01, 0.02, 0.5, 1.0}. We show the cost schedule for different
choices of α in Fig. 3a. We then run MRA-FNO on Burgers with 500 steps. The L2 relative error vs.
the accumulated data cost is reported in Fig. 3b and 3c. We can see that when α is too small, e.g.,
α = 0.002, though the active learning ensures steady improvement of the prediction accuracy, the
data cost is suboptimal. To obtain the same performance, a too small α consumes a much bigger

11

0 100 200 300 400 500
Steps

0.0

0.5

1.0

α = 0.002

α = 0.005

α = 0.01

α = 0.02

α = 0.5

α = 1.0

(a) Cost schedule (Exp)

0 5 10 15 20
Accumulated Data Cost

0.05
0.10

0.30

0.60

R
el

at
vi

e
L

2
E

rr
or

α = 0.002

α = 0.005

α = 0.01

α = 0.02

α = 0.5

α = 1.0

(b) MRA-FNO (u)

0 5 10 15
Accumulated Data Cost

0.05

0.10

0.30

0.60

R
el

at
vi

e
L

2
E

rr
or

α = 0.002

α = 0.005

α = 0.01

α = 0.02

α = 0.5

α = 1.0

(c) MRA-FNO (û)

Figure 3: The influence of the cost schedule on active learning. We report the result with the exponential
decay; see (9). The larger α, the faster the schedule converges to the true cost.

Solution Random-
Low

Random-
Mix

Random-
High

Coresest-
Low

Coresets-
Mix

Coresets-
High

MR-
Dropout(u)

MR-
Dropout(û)

MRA-
FNO(u)

MRA-
FNO(û)

Figure 4: Point-wise error on NS.

data cost, or under the same cost, it gives worse performance. The reason is that the convergence
of the cost annealing is too slow; see Fig. 3a. Even when the mutual information has become
sufficiently discriminative, the cost assignments for different resolutions are still not far, which
actually over-penalize low-resolution examples and lead to a selection bias toward high-resolution
examples. Another extreme is to use a too big α, e.g., α = 0.5 and α = 1.0. In such case, the
schedule will converge to the true cost very fast, even at the early stage when data is few. Accordingly,
the high-resolution examples are soon over-penalized, making the learning stuck at low-resolution
queries. The prediction accuracy is fluctuating yet hard to increase substantially. On the contrary, an
appropriate decay rate in between, e.g., α = 0.01 and α = 0.02, can sidestep these problems, and
lead to superior performance in both cost saving and prediction accuracy.

Point-wise Error. Finally, we investigate the local errors of the prediction. We randomly selected
six test cases for NS and Diffusion. We examined the post-wise error of each method after active
learning. We show the results in Fig. 4 and Appendix Fig. 7. We can see that the point-wise error
of MRA-FNO is quite uniform across the domain and is close to zero (white). By contrast, the

12

other methods exhibit large errors in many local regions. Together these results have shown that
MRA-FNO not only gives a superior global accuracy, but locally better recovers individual output
function values.

7. Conclusion

We have presented MRA-FNO, a multi-resolution active learning method for Fourier neural operators.
On several benchmark operator learning tasks, MRA-FNO can save the data cost substantially while
achieving superior predictive performance. Currently, the selection of the decay rate in our cost
annealing framework is done by manual tuning/cross-validation. In the future, we plan to develop
novel methods, such as reinforcement learning, to automatically determine the best rate.

8. Acknowledge

We thank Andrew Stuart for valuable discussion and suggestions.

References

Jordan T Ash, Chicheng Zhang, Akshay Krishnamurthy, John Langford, and Alekh Agarwal. Deep
batch active learning by diverse, uncertain gradient lower bounds. In International Conference on
Learning Representations, 2019.

Pau Batlle, Matthieu Darcy, Bamdad Hosseini, and Houman Owhadi. Kernel methods are competitive
for operator learning. arXiv preprint arXiv:2304.13202, 2023.

Luke Bhan, Yuanyuan Shi, and Miroslav Krstic. Operator learning for nonlinear adaptive control. In
Learning for Dynamics and Control Conference, pages 346–357. PMLR, 2023.

Christopher M Bishop and Nasser M Nasrabadi. Pattern recognition and machine learning, volume 4.
Springer, 2006.

Melanie Ducoffe and Frederic Precioso. Adversarial active learning for deep networks: a margin
based approach. arXiv preprint arXiv:1802.09841, 2018.

Yarin Gal and Zoubin Ghahramani. Dropout as a Bayesian approximation: Representing model
uncertainty in deep learning. In international conference on machine learning, pages 1050–1059,
2016.

Yarin Gal, Riashat Islam, and Zoubin Ghahramani. Deep bayesian active learning with image data.
In International Conference on Machine Learning, pages 1183–1192, 2017.

Yonatan Geifman and Ran El-Yaniv. Deep active learning over the long tail. arXiv preprint
arXiv:1711.00941, 2017.

Daniel Gissin and Shai Shalev-Shwartz. Discriminative active learning. arXiv preprint
arXiv:1907.06347, 2019.

13

Gaurav Gupta, Xiongye Xiao, and Paul Bogdan. Multiwavelet-based operator learning for differential
equations. Advances in neural information processing systems, 34:24048–24062, 2021.

David A Harville. Matrix algebra from a statistician’s perspective. Springer Book
Archive-Mathematics, 1997.

Sebastian Kaltenbach, Paris Perdikaris, and Phaedon-Stelios Koutsourelakis. Semi-supervised
invertible deeponets for bayesian inverse problems. arXiv preprint arXiv:2209.02772, 2022.

Diederik P Kingma and Max Welling. Auto-encoding variational bayes. arXiv preprint
arXiv:1312.6114, 2013.

Nikola B Kovachki, Zongyi Li, Burigede Liu, Kamyar Azizzadenesheli, Kaushik Bhattacharya,
Andrew M Stuart, and Anima Anandkumar. Neural operator: Learning maps between function
spaces with applications to pdes. J. Mach. Learn. Res., 24(89):1–97, 2023.

Balaji Lakshminarayanan, Alexander Pritzel, and Charles Blundell. Simple and scalable predictive
uncertainty estimation using deep ensembles. Advances in neural information processing systems,
30, 2017.

Shibo Li, Wei Xing, Robert Kirby, and Shandian Zhe. Multi-fidelity bayesian optimization via deep
neural networks. Advances in Neural Information Processing Systems, 33:8521–8531, 2020a.

Shibo Li, Jeff M Phillips, Xin Yu, Robert Kirby, and Shandian Zhe. Batch multi-fidelity active
learning with budget constraints. Advances in Neural Information Processing Systems, 35:995–
1007, 2022a.

Shibo Li, Zheng Wang, Robert Kirby, and Shandian Zhe. Deep multi-fidelity active learning of
high-dimensional outputs. In International Conference on Artificial Intelligence and Statistics,
pages 1694–1711. PMLR, 2022b.

Zongyi Li, Nikola Kovachki, Kamyar Azizzadenesheli, Burigede Liu, Kaushik Bhattacharya, Andrew
Stuart, and Anima Anandkumar. Neural operator: Graph kernel network for partial differential
equations. arXiv preprint arXiv:2003.03485, 2020b.

Zongyi Li, Nikola Kovachki, Kamyar Azizzadenesheli, Burigede Liu, Andrew Stuart, Kaushik
Bhattacharya, and Anima Anandkumar. Multipole graph neural operator for parametric par-
tial differential equations. Advances in Neural Information Processing Systems, 33:6755–6766,
2020c.

Zongyi Li, Nikola Borislavov Kovachki, Kamyar Azizzadenesheli, Kaushik Bhattacharya, Andrew
Stuart, Anima Anandkumar, et al. Fourier neural operator for parametric partial differential
equations. In International Conference on Learning Representations, 2020d.

Ziyue Liu, Yixing Li, Jing Hu, Xinling Yu, Shinyu Shiau, Xin Ai, Zhiyu Zeng, and Zheng Zhang.
Deepoheat: Operator learning-based ultra-fast thermal simulation in 3d-ic design. arXiv preprint
arXiv:2302.12949, 2023.

Da Long, Nicole Mrvaljevic, Shandian Zhe, and Bamdad Hosseini. A kernel approach for pde
discovery and operator learning. arXiv preprint arXiv:2210.08140, 2022.

14

Lu Lu, Pengzhan Jin, Guofei Pang, Zhongqiang Zhang, and George Em Karniadakis. Learning
nonlinear operators via deeponet based on the universal approximation theorem of operators.
Nature machine intelligence, 3(3):218–229, 2021.

Lu Lu, Xuhui Meng, Shengze Cai, Zhiping Mao, Somdatta Goswami, Zhongqiang Zhang, and
George Em Karniadakis. A comprehensive and fair comparison of two neural operators (with prac-
tical extensions) based on fair data. Computer Methods in Applied Mechanics and Engineering,
393:114778, 2022.

Jaideep Pathak, Shashank Subramanian, Peter Harrington, Sanjeev Raja, Ashesh Chattopadhyay,
Morteza Mardani, Thorsten Kurth, David Hall, Zongyi Li, Kamyar Azizzadenesheli, et al. Fourcast-
net: A global data-driven high-resolution weather model using adaptive fourier neural operators.
arXiv preprint arXiv:2202.11214, 2022.

Ethan Pickering, Stephen Guth, George Em Karniadakis, and Themistoklis P Sapsis. Discovering
and forecasting extreme events via active learning in neural operators. Nature Computational
Science, 2(12):823–833, 2022.

Jacob Seidman, Georgios Kissas, Paris Perdikaris, and George J Pappas. Nomad: Nonlinear manifold
decoders for operator learning. Advances in Neural Information Processing Systems, 35:5601–
5613, 2022.

Shion Takeno, Hitoshi Fukuoka, Yuhki Tsukada, Toshiyuki Koyama, Motoki Shiga, Ichiro Takeuchi,
and Masayuki Karasuyama. Multi-fidelity Bayesian optimization with max-value entropy search
and its parallelization. In International Conference on Machine Learning, pages 9334–9345.
PMLR, 2020.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Lukasz
Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information processing
systems, 30, 2017.

Max Welling and Yee W Teh. Bayesian learning via stochastic gradient langevin dynamics. In
Proceedings of the 28th international conference on machine learning (ICML-11), pages 681–688,
2011.

15

Appendix

Appendix A. Operator Learning Task Details

We tested our method with the following operator learning tasks.

• Burgers. The first one is based on the Burger’s equation,

ut + uxx = νuxx, u(x, 0) = u0(x), (10)

where (x, t) ∈ [0, 1]2, and u0(x) is the initial condition, and ν = 0.002 is the viscosity. We
aim to learn a mapping from the initial condition to the solution at t = 1, namely, u0 → u(x, 1).
We considered two resolutions, which use 33 and 129 samples for discretization, respectively.
We used a parametric form of the input function, u0(x) = a exp(−ax) sin(2πx) cos(bπx),
and we then randomly sampled a, b ∈ [1, 6] to obtain the instances.

• Darcy. The second task is based on a 2D Darcy flow equation,

−∇(c(x)∇u(x)) = f(x), (11)

where x ∈ [0, 1]2, f(x) = 1 is a constant forcing function, c(x) > 0 is the diffusion coefficient
function, and on the boundary, u(x) = 0. We aim to learn the mapping from the coefficient
function to the solution, c→ u. We employed two sampling resolutions, 32×32 and 128×128.
We followed (Li et al., 2020d) to first sample a discretized function from a Gauss random field,
and then thresholding the values to be 4 or 12 to obtain the input function.

• Diffusion. The third one is based on a nonlinear diffusion PDE,

ut = 0.01uxx + 0.01u2 + f(x) (12)

where (x, t) ∈ (0, 1) × (0, 1], u(0, t) = u(1, t) = 0, u(x, 0) = 0 and f(x) is the forcing
function. The goal is to learn the mapping from the forcing function to the solution, f → u.
We employed three resolutions for data acquiring, 32 × 32, 64 × 64 and 128 × 128. We
draw samples of f from a Gaussian process with an RBF kernel. Note that to use FNO and
MRA-FNO, we replicate the spatial discretization of f along the time dimension (steps).

• Navier Stoke (NS). The last task is based the a 2D Navier-Stokes (NS) equation used in (Li
et al., 2020d). The solution u(x, t) is the vorticity of a viscous, incompressible fluid, where
x ∈ [0, 1]2 and t ∈ [0, 50]. We set the viscosity to 10−3. Following (Li et al., 2020d), we
considered 40 steps in the time domain. We used the the solution at the first 20 time steps to
predict the solution at the next 20 steps. For data collection, we used two resolutions 16× 16
and 64× 64 in the spatial domain. We sampled the input functions from a Gaussian random
field.

16

Figure 5: Graphical representation of our probabilistic multi-resolution FNO. Here P is the FFN that lifts the
input function to higher-dimensional channel space, Q1 is the FFN for channel-wise projection and producing
the predictive mean, and Q2 is a convolution net plus another FFN to produce the predictive variance in the
log space.

0 5 10 15 20
Accumulated Data Cost

0.05
0.10

0.30

0.60

R
el

at
vi

e
L

2
E

rr
or

MRA-FNO(u) Exp
MRA-FNO(u) Sigmoid
MRA-FNO(û) Exp
MRA-FNO(û) Sigmoid
MR-PredVar Exp
MR-PredVar Sigmoid
Frontier of Other baselines

(a) Burgers

0 100 200 300 400
Accumulated Data Cost

0.08

0.12

0.25

0.35

R
el

at
vi

e
L

2
E

rr
or

(b) Darcy

0 100 200 300 400
Accumulated Data Cost

0.08

0.12

0.22

0.35

R
el

at
vi

e
L

2
E

rr
or

(c) Darcy3

0 20 40 60 80 100
Accumulated Data Cost

0.02
0.03

0.06

0.10

R
el

at
vi

e
L

2
E

rr
or

(d) Diffusion

0 200 400 600 800 1000
Accumulated Data Cost

0.05

0.10

0.18

0.30

R
el

at
vi

e
L

2
E

rr
or

(e) NS

0 100 200 300 400 500
Steps

0.0

0.5

1.0

α = 0.002

α = 0.005

α = 0.01

α = 0.02

α = 0.5

α = 1.0

(f) Cost Scheduler (Sigmoid)

Figure 6: Relative L2 error vs. accumulated data cost (a-e) and the cost schedule with a sigmoid-based decay.
Each method ran 300 active learning steps for NS, and 500 steps for all the other tasks. Note that different
methods can end up with different total data cost (after running the same number of steps).

17

Solution Random-
Low

Random-
Mix

Random-
High

Coresest-
Low

Coresets-
Mix

Coresets-
High

MR-
Dropout(u)

MR-
Dropout(û)

MRA-
FNO(u)

MRA-
FNO(û)

Figure 7: Point-wise error on Diffusion.

18

	Introduction
	Background
	Probabilistic Multi-Resolution FNO
	Multi-Resolution Active Learning
	Efficient Utility Computation
	Cost Annealing

	Related Work
	Experiment
	Prediction Accuracy on Fixed Training Data
	Active Learning Performance

	Conclusion
	Acknowledge
	Operator Learning Task Details

