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Abstract
Aggressive technology scaling trends have worsened the
transient fault problem in high-performance computing (HPC)
systems. Some faults are benign, but others can lead to silent
data corruption (SDC), which represents a serious problem;
a fault introducing an error that is not readily detected nto
an HPC simulation . Due to the insidious nature of SDCs,
researchers have worked to understand their impact on ap-
plications. Previous studies have relied on expensive fault
injection campaigns with uniform sampling to provide over-
all SDC rates, but this solution does not provide any feedback
on the code regions without samples.
In this research, we develop a method to systematically

analyze all fault injection sites in an application with a low
number of fault injection experiments. We use fault propa-
gation data from a fault injection experiment to predict the
resiliency of other untested fault sites and obtain an approx-
imate fault tolerance threshold value for each site, which
represents the largest error that can be introduced at the site
without incurring incorrect simulation results. We define
the collection of threshold values over all fault sites in the
program as a fault tolerance boundary and propose a simple
but efficient method to approximate the boundary. In our
experiments, we show our method reduces the number of
fault injection samples required to understand a program’s
resiliency by several orders of magnitude when compared
with a traditional fault injection study.
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1 Introduction
Scaling trends in architecture design have led to smaller
hardware features and more dense hardware components,
exacerbating the transient fault problem in current high per-
formance computing (HPC) systems. Transient faults caused
by random events, such as device noise or cosmic radiation,
can lead to bit flip events during computation, which can
corrupt HPC simulation results. The problem is generally
recognized as silent data corruption (SDC), and it threat-
ens the reliability of scientific simulations since SDC can
introduce undetectable errors into the simulation output.

To improve an application’s resiliency and protect it from
SDC, techniques such as instruction duplication [24] and
triple modular redundancy [21] are often deployed. How-
ever, these techniques introduce significant computation
overhead and degrade the system throughput. Previous stud-
ies have found that a small fraction of static instructions
contribute to the majority of SDC events [10, 12]. There-
fore, understanding a program’s resiliency and finding the
vulnerable program instructions are critical for designing
an economic and efficient solution to SDC. The traditional
method for understanding a program’s resiliency is with a
fault injection campaign [13]. In a fault injection campaign,
a fault is injected during an application run and the result
is recorded. For most benchmarks, an exhaustive fault in-
jection campaign, which tests all possible instructions of
an application, will require billions or trillions of fault in-
jection runs [12, 14], which is clearly infeasible (e.g., a fast
Fourier transform algorithm with a 512x512 matrix needs
48 billion fault injection runs.). To address this problem, re-
searchers conduct a randomized fault injection campaign
with a smaller sample size to get the overall SDC rate of an
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application [18]; however, this statistical approach does not
guarantee full coverage and does not provide information
on code regions with no samples.
A previous study [20] modeled and visualized how an

error propagates through a program’s computation to in-
fer the program’s resiliency. This methodology requires a
lower number of fault injection experiments and is more
scalable compared with a fault injection campaign. However,
an error corrupting an instruction will propagate through
the program’s dependency graph, and extracting an accurate
program dependency graph is not trivial [19]. Thus, inter-
preting the behavior of error propagation in a program to
infer a program’s resiliency is still in the exploration stage.
In this paper, we present a method to understand a pro-

gram’s resiliency through error propagation without extract-
ing a program’s dependency graph. We define a fault toler-
ance threshold boundary, in which each dynamic instruction
has a maximum value Δ𝑒 such that with Δ𝑒 or less error in
that particular instruction, the program will still generate
an acceptable output. We show that such a boundary can be
constructed in practice and propose an economical method
that uses the propagated error to infer the Δ𝑒 of each dy-
namic instruction. The method is built on the intuition that
if an injected error is benign and the program produces an
acceptable outcome, this program is highly likely to tolerate
the propagation of the error to subsequent dynamic instruc-
tions individually. The collection of maximum tolerable error
over all dynamic instructions of a program represents its
threshold boundary. The construction of such a boundary
can help application programmers understand the resiliency
of their programs to SDC by predicting the vulnerability of
dynamic instructions to injected and propagated error. We
show that the uncertainty of the approximated boundary can
be verified easily and that our method significantly reduces
the number of samples needed to understand a program’s
resiliency. Our main contributions are:

• An inference method to interpret the error propaga-
tion in an application and determine the resiliency of
program with respect to fault injection (Section 3.3).
• A new concept of the fault tolerance boundary to help
diagnose a program’s resiliency and a verifiablemethod
to quantify the uncertainty of the approximated bound-
ary (Section 3.2, 3.6).
• An adaptive sampling method to efficiently approxi-
mate a program’s fault tolerance boundary (Section
3.4).
• An evaluation of our approach with common high
performance computation kernels. (Sections 4).

Overall, we find that our fault tolerance boundary method
has a prediction precision of over 98% and provides predic-
tions similar to those of an exhaustive fault injection cam-
paign. Additionally, our experiments show that our method

reduces the number of fault injection samples needed to un-
derstand a program’s full-resolution resiliency profile, by up
to four orders of magnitude compared with an exhaustive
fault injection campaign.

2 Background
In this section, we provide background information on fault
injection experiments, models of error propagation, and the
metrics used to understand and evaluate the impact of SDC.

2.1 Fault Injection Model
The single bit flip event is the default assumption to study
a program’s resiliency [1, 4, 8, 13, 19, 30] and in the work
we deploy the single bit flip model to study the impact of
SDC in scientific applications. In this model, a transient fault
is simulated as a single bit flip in one of the data elements
of a dynamic instruction. The dynamic instruction here is a
single injection site where the result is corruptible. In reality,
transient faults can cause bit flips to occur in data in any ar-
chitectural component, including memory, cache, functional
units, and registers, and can impact instructions, control
flow variables, and pointer variables as well as data elements.
However, bit flips that corrupt instructions of control and
pointer variables are relatively easy to detect, because they
often cause program exceptions or result in other obvious
errors. In contrast, an error that corrupts a data element
is challenging to detect, because, in this case, the program
flow will most likely continue normally, but can produce an
incorrect final output, which may or may not be detectable
by the user. Because corruption in application data elements
represents the biggest challenge with respect to SDC, we
focus our efforts on studying the impact of bit flips on data
elements.
We classify the outcomes of an error-corrupted program

into three categories:

• Masked. In this case, a bit flip occurs but the error is
mitigated during the execution. At the end, the pro-
gram generates an acceptable program output. Here,
the acceptable outputmight not be bitwise reproducible
from the error-free run, in which not error occur dur-
ing the computation, and the program generates a
correct output, but it is within an acceptable tolerance
level defined by the domain user.
• Silent Data Corruption (SDC). For SDC, a bit flip
does not cause any obvious symptoms, e.g., abnormal
termination, yet the program produces an incorrect
final result.
• Crash. Here, a bit flip causes an abnormal termination
of the program. For example, a variable value could be
corrupted such that it causes a NaN exception.

In this work, we use these standard classifications to describe
application outcomes. Further, to quantify the error, we use
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the 𝐿∞ norm between outputs, although any other metric
could be used as well.

We measure the vulnerability of a program using a metric
called the SDC ratio, defined as the number of experiments
that result in an SDC outcome over the total number of fault
injection experiments:

𝑆𝐷𝐶𝑟𝑎𝑡𝑖𝑜 =
𝑛𝑠𝑑𝑐

𝑁
,

where 𝑛𝑠𝑑𝑐 is the number of SDC outcomes over the fault
injection experiments, and 𝑁 is the total number of experi-
ments. Previous researchers have often reported their analy-
sis results with a single SDC ratio that represents the entire
program execution. In this study, we predict the SDC ratio of
each individual instruction and compare the result with the
ground truth. We use this metric to measure the vulnerability
of each dynamic instruction over the entire program and to
evaluate the performance of our method.

2.2 Error Propagation Model
Fault tolerance researchers have developed an intuitivemethod
for understanding the effects of SDC on program output by
inspecting error propagation at the source code level, where
the result of the analysis can be interpreted directly by the
application programmer [20]. In this method, the propaga-
tion of an error introduced in a fault injection experiment
is monitored by tracking the data variables of a program
execution during load/store operations. The error at each dy-
namic instruction is computed by comparing the difference
between the experimental run and the golden run.The error
Δ𝑥𝑖 in the i-th dynamic instruction is defined as the absolute
output difference between the fault-injected run and error-
free run. Δ𝑥𝑖 = |𝑥𝑖−𝑥 ′𝑖 | and 𝑥𝑖 is the error-free run’s value, 𝑥 ′𝑖
is the fault-injected run’s value. As discussed earlier, a bit flip
may alter the flow of a program by corrupting a data variable.
In this case, the method tracks the error propagation over
dynamic instructions before the computation diverges, since
without the same computation sequence, defining an error
represents a fundamental challenge. We utilize this error
propagation in this work to develop an application’s fault
tolerance boundary.

3 Methodology
In this section, we introduce the concept of our fault toler-
ance boundary, describe our methodology for computing the
boundary efficiently, and discuss our approach for determin-
ing the accuracy of the boundary.

3.1 Comparison to Fault Injection Campaign
Before we delve into details, first we provide an intuition of
the benefits of our fault tolerance boundary method with
a comparison to a traditional fault injection campaign in
Figure 1. In the figure, each circle represents the outcome
of a bit flip of a fault injection experiment (the position of

Monte Carlo Method

Unknow SDC Masked

Fault Tolerance Boundary Method

Injected Error

Dynamic Instruction 

Boundary

Figure 1. A fault injection campaign (left) randomly sam-
ples dynamic instructions to approximate the SDC ratio of a
program, but the outcome of many instructions is unknown.
The fault tolerance boundary method (right) uses sampled
dynamic instructions and their propagation data to produce
a fault tolerance boundary that approximates a full picture
of the resilience of all dynamic instructions.

each circle is simplified into a regular grid for this example).
The x-axis represents the dynamic instruction index, and
the y-axis is the error injected at each sample. To study the
resiliency of the application, the traditional fault injection
method uses a Monte Carlo simulation, which uniformly
samples a subset of dynamic instructions and calculates the
SDC ratio to indicate the overall resiliency of a program. As
Figure 1 (left) shows, the Monte Carlo simulation gives an
overall approximation of the SDC ratio without inspecting
most of the dynamic instructions’ vulnerability information.
In contrast, our fault tolerance boundary method samples a
small number of dynamic instructions and collects the error
propagation information for each sample to approximate a
fault tolerance boundary of the program. Our method uses
the boundary to predict the impact of a bit flips and create a
full-resolution picture of the resiliency of these instructions.

3.2 Fault Tolerance Boundary
A program’s fault tolerance boundary is a collection of the
fault tolerance threshold values of each dynamic instruction.
The fault tolerance threshold value of a dynamic instruction
is the maximum error value that can be injected such that a
lesser or equal amount of error will result in an acceptable
program output. The smallest possible threshold value for
a dynamic instruction is zero, where the dynamic instruc-
tion is extremely sensitive to any level of perturbation, and
the largest threshold value is infinity, where the dynamic
instruction does not affect the final output calculation. We
can model the relationship between the injected error and a
program’s output error as a function. Assume 𝑇 is the maxi-
mum error a program can tolerate in its output, 𝜖 is the value
of the injected error, and 𝑓𝑖 (𝜖) is a function that describes
how much error will be introduced into the final output by
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injected error 𝜖 at fault injection site 𝑖 . We define the fault
tolerance threshold as follows:

Definition. The fault tolerance threshold at fault injection
site 𝑖 is the threshold value 𝜖𝑚𝑎𝑥 ∈ 𝑅+ such that 𝜖 ≤ 𝜖𝑚𝑎𝑥 and
𝑓𝑖 (±𝜖) ≤ 𝑇 , ∀𝜖 ∈ 𝑅+.

Finding the 𝜖𝑚𝑎𝑥 value at every fault injection site of a
program is challenging. For a single fault injection site, the
search space of 𝜖 is in [0,∞). Attempting to find such a
value in a single location could require a prohibitive amount
of testing. However, in reality, the sample space is discrete
due to the nature of IEEE standard floating point represen-
tations [11], and the number of possible fault injection ex-
periments is limited (e.g., 32 or 64). Therefore, it is possible
to approximate the fault tolerance boundary with a large
number of fault injection experiments. If a fault injection site
is a 64-bit floating point data variable, then the total number
of possible experiments at that location is 64. To find the
fault injection boundary, one could devise an algorithm to
iterate through all 64 experiments to find the minimum bit
flip error 𝛼 that results in 𝑓 (𝛼) > 𝑇 , and then the threshold
value is the maximum value 𝜖 < 𝛼 such that 𝑓 (𝜖) ≤ 𝑇 .

3.3 Fault Tolerance Threshold Inference
Using an exhaustive fault injection campaign to approximate
the fault tolerance boundary as described in the previous
section would be computationally expensive. To make our
approach economical, we infer the threshold value at each
location using error-propagation information from a fault
injection experiment, in which the final output is masked.

We illustrate our approach in Figure 2. Here, in experiment
A, we inject an error into the dynamic instruction 𝑖 and
the error propagates to the rest of the program, but the
final output is acceptable. We compare the error-corrupted
run with the error-free run and calculate the perturbation
values at each subsequent dynamic instruction. The curve
in Figure 2 shows the error at each dynamic instruction of a
error-corrupted run. Once the error propagates to dynamic
instruction 𝑘 and causes Δ𝑒 perturbation from the ground
truth, we infer that dynamic instruction 𝑘 can tolerate less
than or equal to Δ𝑒 error with high probability. To explain
the inference, assume we conduct a new experiment B where
we inject error into dynamic instruction 𝑘 with error ≤ Δ𝑒 .
Comparing the two experiments, the error in experiment
A propagates to the subsequent dynamic instructions and
causes Δ𝑒 amount of perturbation in dynamic instruction
𝑘 . In experiment B, there is no error between instruction 𝑖

and 𝑘 , and the error in 𝑘 is less or equal to Δ𝑒 . The error
corruption condition in experiment A is the same or worse
than in experiment B. Because the error in experiment A is
masked during the computation, we infer that the error in
experiment B can also be masked with high probability.

i k

∇e

Inject a fault at dynamic instruction i

Error propagates over 
different dynamic instructions

Dynamic instruction k can tolerate less 
than or equal to ∇e amount of error.

Dynamic Instruction number

error

Figure 2. In an experiment, error is injected into dynamic
instruction 𝑖 , which results in a masked final outcome. The
error propagates to subsequent dynamic instructions and
causes perturbation. We infer that the perturbation values
represent the likely amount of error that each dynamic in-
struction can tolerate in an individual fault injection experi-
ment. In dynamic instruction 𝑘 , error propagation causes the
value to deviate Δ𝑒 from the ground truth; thus we infer that
the dynamic instruction 𝑘 can tolerate at least Δ𝑒 amount
of injected error and still result in an acceptable program
output.

Algorithm 1: Fault tolerance threshold approxima-
tion
Result: [Δ𝑒1, Δ𝑒2,..., Δ𝑒𝑛] is the fault tolerance

threshold value over different dynamic
instructions

S is the sample space and 𝑠 ⊂ 𝑆 ;
for each 𝑠𝑖 ∈ 𝑠 do

if 𝑠𝑖 is Masked then
for 𝑗 ← 0 to 𝑛 do

Δ𝑒 𝑗 =𝑚𝑎𝑥 (Δ𝑒 𝑗 , 𝑠𝑖 [ 𝑗]);
end

end
end

Assuming that each masked propagation experiment indi-
cates the minimum error the corrupted subsequent instruc-
tions can tolerate, the fault tolerance boundary can be ap-
proximated as the aggregation of multiple masked experi-
ments’ propagation errors over all the dynamic instructions.
Algorithm 1 provides a detailed description of the algorithm.
In the algorithm, 𝑆 represents the complete sample space,
and 𝑠 is the subset of samples chose from 𝑆 . For the selective
masked experiment propagation data, we take the maximum
value as the threshold value of a dynamic instruction.
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3.4 Adaptive Sampling Method
Our default methodology uses samples selected uniformly
at random; however, the experimental evaluation in Sec-
tion 4.2 shows that dynamic instructions that have more
fault injection and propagation information often have bet-
ter prediction results, and dynamic instructions that have
less information may overestimate the SDC ratio. In order
to address the shortage of propagation information and to
improve the prediction accuracy for instructions with fewer
samples, we will bias our sample selection to locations that
have less fault injection and propagation information.
We design a bias term that is used to shift the sample

density over the dynamic instructions of the program. 𝑝𝑖 =
1
𝑍
¤( 1
𝑆𝑖
), where 𝑝𝑖 is the probability for the instruction 𝐼 and

𝑆𝑖 is the amount of information used for approximating the
threshold value at instruction 𝑖 . 𝑍 is the normalization con-
stant equal to

∑( 1
𝑆𝑖
). Meanwhile, instead of randomly sam-

pling a certain amount of samples at once, the sampling pro-
cess can be constructed progressively. It can select a small
amount of samples (e.g., 0.1% or 1000 samples) to approxi-
mate a boundary and use the boundary to filter out many
masked samples and shrink the potential sample space. The
next round of samples will be drawn from the new sample
space. The sampling process continues progressively until
it does not find any new masked cases or only a small num-
ber of masked cases (e.g., 95%, 99% of the new samples are
SDC). In the following progressive sampling experiment, we
use 0.1% samples in each iteration and use 95% as the stop
criteria.

3.5 Improvements to Inference Method
The non-monotonic behavior of the error corrupted program
may cause a few errors in the propagation data to degrade
the performance of the inference method to approximate
the fault tolerance boundary. To improve the fault tolerance
boundary approximation, the SDC cases can be used to fil-
ter the masked propagation data and build a more accurate
boundary. We introduce a filter operation based on the condi-
tion that if the masked propagation error is greater than the
injected error of any known SDC cases, the masked propaga-
tion data will not be used to approximate the fault tolerance
boundary.

3.6 Validation and Uncertainty
In the machine learning community,precision and recall are
used to evaluate the ability of machine learning models to
correctly classify data [9]. We evaluate our approximation of
the fault tolerance boundary using these metrics, where we
note that our approximation process is similar to training a
classifier model with the samples resulting in masked out-
comes as the training set, and the rest of the sample space

as the testing set. We apply these metrics to our fault toler-
ance boundary method to evaluate its ability to classify the
outcome of errors in dynamic instructions.

Precision is defined as the portion of relevant items with
respect to the total retrieved items, and recall is defined as
the ratio of relevant items to the total relevant items. To
utilize these metrics for our fault tolerance boundary, we
define the prediction precision and prediction recall based on
the number of samples under the fault tolerance boundary,
where the boundary predicts whether a case is masked.

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑀𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑀𝑝𝑟𝑒𝑑𝑖𝑐𝑡

, 𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑀𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑀𝑡𝑜𝑡𝑎𝑙

In the formula,𝑀𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 is the number of predicted positive
masked,𝑀𝑝𝑟𝑒𝑑𝑖𝑐𝑡 is the total number of predicted cases, and
𝑀𝑡𝑜𝑡𝑎𝑙 is the total number of masked cases.
The probabilistic nature of our inference method intro-

duces uncertainty to the boundary. Our method uses experi-
ments that result in masked outcomes to approximate the
fault tolerance boundary, but information about experiments
that result in SDC is not used. The model’s prediction over
the selected sample data set (both masked and SDC) can
indicate the prediction precision over the sample space and
reveal the global uncertainty of the boundary. With the un-
certainty metric, the application programmer does not need
an exhaustive fault injection campaign information to verify
the performance of the approximated boundary. We define
the uncertainty as:

𝑈𝑛𝑐𝑒𝑟𝑡𝑎𝑖𝑛𝑡𝑦 =
𝑀𝑠𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑀𝑠𝑝𝑟𝑒𝑑𝑖𝑐𝑡
,

where𝑀𝑠𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 is the number of predicted positive masked
in the selected samples, and𝑀𝑠𝑝𝑟𝑒𝑑𝑖𝑐𝑡 is the total number of
predicted cases in the selected samples.

4 Evaluation
Here, we evaluate the efficacy of our fault tolerance bound-
ary for understanding the vulnerability of programs to SDC.
First, we explore the ability of the boundary to predict overall
SDC using an exhaustive fault injection campaign. Next, we
evaluate our boundary inference method from Section 3.3 by
inspecting the predicted SDC ratio for every dynamic instruc-
tion. Finally, we quantify the uncertainty of our inference
method using techniques from machine learning.

We use three commonHPC kernels to evaluate ourmethod:
LU decomposition [31] is a factorization algorithm that fac-
tors a matrix into a low triangle matrix and an upper triangle
matrix; conjugate gradient (CG) is a common linear solver
for linear equations; and fast Fourier transform (FFT) [31] is
a six-step Fourier algorithm in a 1-D domain.

4.1 Exhaustive Campaign Approach
To show that a reasonable fault tolerance boundary exists
and is useful, we use an exhaustive fault injection campaign
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Name Benchmark 𝐺𝑜𝑙𝑑𝑒𝑛𝑆𝐷𝐶 𝐴𝑝𝑝𝑟𝑜𝑥𝑆𝐷𝐶 Size
CG MiniFE 8.2% 8.92% 47360
LU splash2 35.89% 36.06% 754176
FFT splash2 8.33% 8.33% 1064960

Table 1. Comparison of the known true SDC ratio with the
approximated SDC ratio from the fault tolerance boundary
constructed using an exhaustive fault injection campaign.
The approximated SDC from the fault tolerance boundary is
very close to the ground truth for all three benchmarks.

to search for the threshold value of each dynamic instruction
and build the boundary. The threshold value for a dynamic
instruction is chosen such that it is the maximum value that
results in a masked outcome, but is also less than the mini-
mum value that results in SDC. To evaluate the performance
of the brute-forcemethod, we use the boundary to predict the
SDC ratio and compare it with known true values from the ex-
haustive fault injection campaign where every bit is flipped.
The result is presented as a Δ𝑆𝐷𝐶 metric in each dynamic
instruction and summarized as a histogram over the bench-
marks. Δ𝑆𝐷𝐶 is equal to 𝐺𝑜𝑙𝑑𝑒𝑛𝑆𝐷𝐶 − 𝐴𝑝𝑝𝑟𝑜𝑥𝑆𝐷𝐶 , where
𝐺𝑜𝑙𝑑𝑒𝑛𝑆𝐷𝐶 is the known true SDC ratio, and 𝐴𝑝𝑝𝑟𝑜𝑥𝑆𝐷𝐶 is
the approximate SDC ratio derived from the boundary.
In Figure 3, we present the results for the three bench-

marks. The y-axis is the number of fault injection sites, and
the x-axis is the value of Δ𝑆𝐷𝐶 . We find that the boundary
correctly predicts the majority of the dynamic instructions’
SDC ratio. In LU and CG, 10.7% and 9.3% of dynamic in-
structions demonstrate non-monotonic behavior, where a
fault injection value 𝑒 causes SDC, but an error larger than 𝑒
causes a masked outcome. The SDC ratio of most of these
non-monotonic cases is overestimated by 1.5%, with a small
number having 3% to 11% overestimation. In Table 1, we
show that the aggregate SDC ratio approximated from the
fault tolerance boundary is very close to the ground truth
for all three benchmarks.

Overall, the fault tolerance threshold boundary constructed
from an exhaustive fault injection campaign can provide an
accurate vulnerability analysis of the dynamic instructions.
The fault injection results of the three benchmarks have a
similar pattern in that most dynamic instructions exhibit
monotonic behavior with respect to error, and errors larger
than an 𝑒 that causes SDC will almost always cause SDC.

4.2 Inference Approach
To avoid the expense of using an exhaustive fault injection
campaign to construct the fault tolerance boundary, we de-
veloped an inference approach in Section 3.3 that uses error
propagation data of masked experiments to approximate
the fault tolerance threshold value of subsequent dynamic
instructions. To evaluate the performance of the inference
approach, we use Monte Carlo sampling to randomly select
1% of dynamic instructions to approximate the boundary.

We use the boundary to predict the SDC ratio over subse-
quent dynamic instructions in the execution and compare
the predicted result with the known true values. Instead
of presenting the final result as an overall SDC ratio, we
compare the SDC ratio of each dynamic instruction over
the execution. To ease the visualization of millions of data
points in Figure 4, we group the data of multiple consecutive
dynamic instructions (8 dynamic instructions in CG, 147 in
LU, and 208 in FFT) and present the mean SDC ratio of each
group of instructions.
In the first row of Figure 4, we show a comparison of

the known true SDC ratio for dynamic instructions (blue)
against the SDC ratio predicted using our inference method
with only 1% of the dynamic instructions (orange). For CG,
the first 80 dynamic instructions initialize floating point vari-
ables to zero. Therefore, the impact of SDC is minor in those
instructions. In a 32-bit float-point variable with a value of
zero, a maximum perturbation of 2 occurs when there is
a flip in the highest exponent bit. Perturbation in the re-
maining 31 bits causes only small errors, with a maximum
value of 1.08 ∗ 10−19, and such small perturbations will often
be masked during floating point computations. In dynamic
instructions 80 to 200, the CG benchmark executes initial-
ization instructions. This section of code is executed only
once at the beginning of the program, so errors incurred
elsewhere in the execution do not propagate to these instruc-
tions. As a result, our predictions for instructions 80 to 200
are not very accurate compared to the known true values.

We observe similar results in the first row of Figure 4 for
LU and FFT. In LU, the algorithm uses a 16x16 block size and
factorizes a 32x32 matrix, so we see that our predicted SDC
ratio for dynamic instructions has four regions where our
prediction differs from the known true values. In each region,
a new loop is started to process a block of the matrix, and the
error from prior dynamic instructions is not propagated from
region to region. For FFT, the early dynamic instructions
transpose a 𝑛1 × 𝑛2 matrix into 𝑛2 × 𝑛1 and perform the
first 𝑛2 point 1D FFT on the resulting 𝑛2 × 𝑛1 matrix. Most
of the data elements in instructions 0 to 9000 are accessed
only a few times, so errors introduced in this region do
not propagate readily and our prediction for this region is
relatively inaccurate.

The second row in Figure 4 shows the potential impact cor-
ruption in dynamic instructions has on our predictions due
to their ability to propagate errors. The y-axis is a measure
of the potential impact — the sum of how often the group of
dynamic instructions represented by each dot was injected
with significant error (relative error greater than 10−8) and
how often corrupted data was propagated to those instruc-
tions. In CG, instructions 0 to 200 have much less potential
to influence our prediction than the subsequent instructions
since they are not very likely to have injected error with a
sampling rate of 1% and do not propagate errors injected
in other regions of the code. As the computation continues
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ΔSDC ΔSDC ΔSDC

Figure 3. The histograms summarize values of Δ𝑆𝐷𝐶 , which is the difference between the known true SDC ratio and the
predicted SDC ratio using the fault tolerance boundary constructed from an exhaustive fault injection campaign. Over all
dynamic instructions, the FFT benchmark has the same SDC ratio compared with the ground truth. 10.3% of the dynamic
instructions in the LU decomposition are overestimated the SDC ratio by 1.5%. 9.3% of the dynamic instructions in conjugate
gradient benchmark are overestimated the SDC ratio around 1.5% with a small portion are overestimated around 3% to 14%.

in CG, later instructions have more potential to propagate
error and influence our prediction. This observation explains
the prediction error pattern of the top row, where the re-
gions with more propagation information often have better
predictions, and the regions with less information may over-
estimate the SDC ratio. We observe similar results for LU
and FFT in the second row of Figure 4. In LU, for each of the
four regions corresponding to new loops processing blocks
of the matrix, the potential to propagate error drops at the
start of each region corresponding to an overestimation of
our predicted SDC in the top row. Similarly, for FFT, the first
9000 instructions have a very low potential impact on our
prediction due to the limited propagation of error from these
instructions.

4.3 Performance of Inference Approach
To verify the performance of our method, we quantify the
precision, recall, and uncertainty of the predictions (see Sec-
tion 3.6) of the inference method using 1% sampling of the
dynamic instructions in each benchmark.
In Table 2, we present the experiment’s prediction preci-

sion, recall, and uncertainty and their standard deviations
over 10 trails. The prediction precision values are 98.6%,
99.9%, and 100% for CG, LU, and FFT respectively. We also
find that the 1% sample approximation boundary gives re-
call values of 94.31% in CG, 84.58% in LU, and 77.7% in FFT.
These results reveal that our method can identify the major-
ity of masked cases without fault injection with an extremely
low sampling rate of 1%. Additionally, the standard devia-
tion in each metric over multiple experiment trials is small,
which indicates the prediction stability of our method. The
precision values are close to the uncertainty values, which
suggests that the precision in the training set is close to the
precision in the testing set, and that the uncertainty metric
can verify whether the approximated boundary will perform
well in the complete sample space without the exhaustive
fault injection campaign data.

Name Precision Recall Uncertainty
CG 98.64% ± 0.2% 94.31% ± 1.6% 98.4% ± 0.8%
LU 99.9% ± 0.01% 84.58% ± 0.9% 99.9 ± 0.05%
FFT 100% 77.2% ± 0.19% 100%

Table 2. We evaluate the performance of inference method
using a 1% sampling rate to approximate the fault tolerance
boundary. We see that the precision of our method is very
high for all three benchmarks. Additionally, the precision val-
ues are similar to the uncertainty values, which suggests that
our method can verify the uncertainty of the approximation
without the exhaust sampling.

4.4 Performance and Sample Size
The results in Section 4.2 and 4.3 show that the inferred
fault tolerance boundary can predict the LU, FFT, and CG
benchmark masked cases accurately, and we can quantify the
uncertainty of the boundary. However, because we assume
the outcome of unknown sample cases as SDC, the overall
SDC ratio is overestimated in the three benchmarks when
we use a low sampling rate, as shown in the top row of
Figure 4. To mitigate this problem, we need to increase the
number of samples or design a better way to select samples
to approximate the boundary.

One way to improve the performance of the approximated
fault tolerance boundary is to increase the number of samples.
To study the relationship between the number of samples and
the efficiency of the approximated boundary, we use uniform
random sampling to select 0.1%, 0.5%, 1%, 5%, 10%, and 50% of
the dynamic instructions in each benchmark to approximate
the boundary. During the prediction, if all possible error
conditions are injected into a dynamic instruction, we simply
use the correct boundary value for the instruction instead
of prediction. For each benchmark, we perform 10 trails for
each sample size and report mean values as the results.
The top row of the Figure 5 shows the precision and re-

call results for boundary prediction with increasing sample
size. In each graph, the x-axis is the percentage of selected
samples over the complete sample space. The blue line is the
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Figure 4. This figure shows the predictive capability of our fault tolerance boundary inference method. The first row shows
the predicted SDC ratio for dynamic instructions using a sampling rate of 1%. The second row shows the potential impact of
each dynamic instruction on our prediction using a 1% sampling rate. The third row shows our predictions using sampling
rates of 1.09% for CG, 4.7% for LU, and 11.2% for FFT. A comparison between the first and second rows shows the reason
for our method overestimated SDC ratio for several dynamic instruction regions, where some regions have less potential to
propagate error information. We implement a progressive sampling technique to select more samples from those regions with
less potential and create a new boundary (row three), which results in highly accurate predictions of SDC.

the prediction recall, and the orange line is the prediction
precision. The relationship between the number of selected
samples and the prediction recall has a similar pattern in the
three benchmarks. At smaller sample sizes, the prediction
recall increases exponentially with the number of selected
samples, but begins to level out at about 80% to 90%, after
which the recall converges slowly to 100% . One outcome
of increasing the number of samples is that a larger number
of masked samples may cause the prediction precision to
drop because of the non-monotonic behavior of the error
corrupted program. In the CG, the increasing number of
samples to approximate the boundary will cause the predic-
tion precision to drop at the beginning and go back to 100%
slowly. In the bottom row of the Figure 5, with the filter oper-
ation, which uses SDC cases to filter unqualified propagation
data, the prediction precision is always close to 100%, but
the prediction recall increases more slower compared with
the without filtering experiment in the CG benchmark.

4.5 Performance of Adaptive Sampling Method
In this section, we evaluate the performance of Adaptive
sampling method (see section 3.4) at mitigating the shortage

of information at certain dynamic instructions and improv-
ing their prediction accuracies. The following experiment
uses the method to approximate the boundary 10 times and
reports the mean value and standard deviation of each bench-
mark. Each experiment progressively selects a new sample to
improve the boundary. For each iteration, we sample 0.1% of
the samples. The final result is reported in Table 3. The pre-
dicted ratio is close to the golden SDC ratio. The number of
samples used in FFT is 10.2%± 0.04% and 4.82%± 0.4% in the
LU decomposition. The conjugate gradient uses 1.09%± 0.2%
samples. The SDC ratios over different dynamic instructions
are reported in the third row of Figure 4. The prediction over
the conjugate gradient has a close approximation compared
to the ground truth, and the approximation also reflects that
the early iteration of the program is more vulnerable to the
bit flip error compared to the later computation [20]. In the
LU decomposition and the FFT benchmark, the approximated
boundary predicts an almost identical SDC ratio compared
with the ground truth.
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Figure 5. The increasing number of samples also exponentially increases the prediction recall and slows down when the
recall reaches around 80% to 90%. Over the three benchmarks, a boundary constructed from a small number of samples can
predict the majority of the positive masked samples. Without the filtering operation (top), the prediction precision drops in the
conjugate gradient benchmark as the amount of propagation information used to construct the boundary increases. With the
filtering operation (bottom), the prediction precision in each benchmark is close to 100%.

Name SDC Ratio Sample Size Predict SDC Ratio
CG 8.2% 1.09% ± 0.2% 5.3% ± 0.7%
LU 35.89% 4.82% ± 0.4% 36.1% ± 0.1%
FFT 7.83% 10.2% ± 0.04% 9.2% ± 0.08%

Table 3. Using the adaptive sampling method to approxi-
mate the fault tolerance boundary will reduce the number
of samples used to understand a program’s resiliency. In LU
and FFT, the method ends up with 1 order of magnitude
fewer samples to understand a program’s resiliency. In the
conjugate gradient benchmark, the method ends up with an
average 1.09% of total samples, which is 2 orders of magni-
tude fewer samples to approximate the boundary.

4.6 Scalability in the Iterative Method
The increasing input size can also increase the portion of
execution dynamic instructions that are frequently propa-
gated by the error. As an example, a small matrix has the
initialization instructions account for 1

6 of the total samples,
but for a large matrix, the instructions accounts for 1

22 . The
boundary approximation method has better approximation
at the locations that are frequently propagated by the error
and the increasing number of execution instructions will
reduce the number to understand a program’s vulnerability.

To verify the hypothesis, we use the approximate bound-
ary to predict the resiliency of the conjugate gradient with
a 20x20 matrix and 100x100 matrix, and compare it with
the ground truth. For each input, we randomly select 1000
samples to approximate the boundary and predict the SDC
ratio over different dynamic instructions. The experiment
will perform 10 trails and the summary of the results are
presented in Table 4. The numbers of dynamic instructions

in each input are 254784 and 16789952. The predicted SDC
ratio is similar to the golden ground truth and the prediction
precision around 98.27% and 97.64% with 0.05% and 0.03%
standard deviation. The prediction recall is above 96%. Over-
all, the fault tolerance boundary, which is approximated by
1000 samples (0.4% and 0.006%), can be used to understand
the resiliency of a conjugate gradient iterative method with
large amount of dynamic instructions well.

5 Discussion and Future Work
The main benefit of our approach is that we can obtain
fine-grain resiliency information of an application without
needing to perform exhaustive fault injection campaigns.
Although our approach is shown to provide good prediction
for the applications evaluated, here we discuss the limita-
tions of our current approach and possible future directions
to pursue.
Assumption of monotonic nature of error: One poten-
tial problem with using the error propagation model to an-
alyze a program’s resiliency is that an error does not prop-
agate to certain locations. In the initialization stage of the
computation, the errors may not propagate to one another,
and the propagation information will not help to understand
the vulnerability property of the computation component.
A monotonic reaction of an application’s output error to
the injected fault can help explain the behavior described
in section 3.3 and also lead to easily interpretable behavior
of the error-corrupted application. The fault injection site
𝑖 is monotonic if 𝜖 <= 𝜖 ′ and 𝑓𝑖 (𝜖) <= 𝑓𝑖 (𝜖 ′) for 𝜖, 𝜖 ′ ∈ 𝑅+.
𝑓𝑖 (𝜖) is the function that describes how much an error in
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Input SDC ratio predict SDC ratio precision uncertainty recall num. of samples
20x20 4.5% 6.65% ± 0.9% 98.27% ± 0.05% 98.1% ± 0.5% 96.28% ± 0.01% 254784
100x100 5.0% 6.1% ± 1.2% 97.64% ± 0.03% 97.87% ± 0.5% 96.7% ± 1.2% 16789952

Table 4. To compute the fault tolerance boundary, we use 1000 samples from runs of CG with a 20 × 20 matrix and a 100 × 100
matrix, which represents sampling 0.4% and 0.006% of the total samples. The prediction recall is around 96% which indicates
that the fault tolerance boundary cover majority of the masked samples and the final precision is around 98%.

injection site 𝑖 will contribute to the final output. The exis-
tence of the fault tolerance boundary does not rely on the
monotonic assumption. However, a fault injection site that
has a monotonic reaction, guarantees that an application
will have an SDC or crash output if the injection error is
above the fault tolerance threshold value. Some basic HPC
computation kernels such as stencil computation and sparse
or dense matrix multiplication can be proven to have such a
property.
2D stencil computation computes the value of a center

grid by averaging its value and the value of the neighbor
grid cells, which can be described as 𝑠 (𝑥𝑖, 𝑗 ) = 0.2 × (𝑥𝑖, 𝑗 +
𝑥𝑖+1, 𝑗 +𝑥𝑖, 𝑗+1 +𝑥𝑖−1, 𝑗 +𝑥𝑖, 𝑗−1). If an error 𝜖 is injected into one
of the elements during the computation, the error term in
the initial corrupted location and the four nearby elements
is rephrased as Δ𝑠 (𝑥𝑖, 𝑗 ) = |0.2 × 𝜖 |. As the computation
continues, the error will propagate to the nearby elements.
If we use the 𝐿2 norm to measure the error by comparing
the ground truth matrix with the error output matrix, the
error function is 𝑓 (𝜖) =

√
5 × (0.2 × 𝜖)2 =

√
0.2𝜖 . If the com-

putation continues, the error function can be described as
𝑓 (𝜖) = 𝐶𝜖 , and 𝐶 is a positive constant that depends on the
number of computation iterations. The error function is a
monotonic function with respect to 𝜖 . Similarly, one element
in the output of a matrix vector multiplication is

∑𝑁
𝑖,𝑗=1 𝑥𝑖 𝑗𝑣 𝑗 .

If an error corrupts a vector element 𝑣𝑘 , the output error
function is 𝑓 (𝜖) =

√∑
𝑖=0,𝑘 𝑥

2
𝑖𝑘
× 𝜖2 = 𝐶𝜖 , where C is a con-

stant, which is also the case if an error corrupts a matrix
element. For a benchmark without the monotonic reaction
to the injected error, our approximation approach provides
a trade-off between the number of fault injection experi-
ments and the analysis accuracy, which may sacrifice the
accuracy of the analysis but significantly reduce the time to
conduct fault injection experiments. Moreover, our approach
is self-verified, which tells users whether our approximation
result is reliable or needs more samples. In the future, we are
interested in formalizing and extending the above analysis
process to more complex HPC kernels. On the other hand,
we would also like to investigate whether an application that
satisfies the method proposed in section 3.3 can indicate that
the application output error is monotonic to the corruption
error.
Overhead: Our approach does not require exhaustive fault
injection runs, but we do need to store the dynamic state of
the golden run (run without any faults injected). Therefore,
the scalability of our approach is dependent on the size of

the golden run against which we compare. Currently, we
load the entire state into the memory for calculating the
fault tolerance boundary, but that can result in substantial
memory overhead for a large-scale application. In future
work, we plan to address scalability and memory consump-
tion concerns. One potential solution would be to use the
computation duplication to track the error propagation.

6 Related Work
A rich history of research has been dedicated to under-
standing a program’s robustness. The static analysis ap-
proach [2, 23, 27] is a low-overhead approach to study a
program’s robustness. Li et al. designed Trident[19], a three-
level model to predict the SDC probability over a program
without running any fault injection campaign. Feng et al. [10]
proposed a shoestring framework, which leverage the over-
head and protection during the compiler time to improve
program’s resiliency. Static analysis can approximate the
overall SDC rate of the application but verifying how accu-
rately it detects fault injection sites is difficult. In comparing
with the static method, our approach is self-verifying, which
gives users the prediction accuracy of our approximation.
Some works are dedicated to online detection of silent

error corruption during program execution. Di et al.[7, 28]
assume that adjunct time steps of scientific simulations have
auto-correlation and design a time series linear model to
predict the values in the current time step based on the value
of the previous 𝑘 time steps’ value. They use the predicted
value to detect potential corruption with a tolerance value
range. Chen [6] designed an approach to detect the occur-
rence of silent error corruption of the iterative method using
the relationship between each iteration step (e.g.conjugate
gradient’s walk steps are orthonormal to each other). Huang
and Jacob [15] designed an online detection matrix multipli-
cation algorithm to detect the silent error corruption during
the matrix multiplication. However, these approaches works
only for algorithms with certain features. Laguna et al. [17]
applied machine learning techniques to a set of selected
features and used the trained model to decide whether a
program should protect a specific instruction, but the feature
selection process is a not trivial.

Replication technique and triple redundancy methods are
often deployed in mission-critical applications to prevent
SDC. However, the overhead of these approaches is too ex-
pensive for most HPC systems. The alternative approach is
using partial replication, which selects only the vulnerable
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components and protects them. To determine which compo-
nents are vulnerable, an expensive exhaustive fault injection
campaigns are often deployed to study a program’s resiliency.
Many studies have been done to reduce the computation
resource for conducting an exhaustive campaign. Hari et
al. [13, 25] proposed Relyzer, an analysis tool that contains a
set of fault pruning heuristics to reduce the number of poten-
tial fault injection sites. They used a set of carefully selected
pilot instructions as representatives of a group of dynamic
instructions to reduce the number of tests, based on the
assumption that instructions that have similar propagation
paths with limited depth share the same vulnerability. A fault
injection experiment can be terminated early if a fault injec-
tion experiment has similar intermediate states compared
with the previous fault injection experiments, and the exper-
iment will be predicted to have a similar computation output
as the previous fault injection experiment. Venkatagiri et
al. [29, 30] proposed an analysis tool balance the trade-off
between the output qualify and computation performance.
Kaliorakis et al. [16] designed a method to group different
execution intervals based on the program’s static feature
and found that the execution intervals belonging to a similar
group have the same impact on the program’s execution.
Instead of grouping multiple instructions and picking one
dynamic instruction’s resiliency to represent all the instruc-
tions’ resiliency, our approach uses the propagation data to
predict the resiliency of all fault injection sites of a program.
Each sample is able to cover many more fault injection sites
than previous approach. Furthermore, Our analysis approach
does not conflict with the previous heuristic approach, and
the two approaches can be combined to further reduce the
number of samples.

Other researchers also devoted time to designing theory to
better model the fault tolerance analysis process. Chaudhuri
et al. [5] proposed an auto-verification framework to show
an application is robust if it satisfies the Lipschitz continuous
property, which bounds the impact of a small perturbation
in the program. Menon [22] designed an automatic differ-
entiation method to analyze a program’s sensitivity to SDC
and to identify variables vulnerable to SDC. Even though
iterative linear solvers have a natural resiliency to errors
that corrupt computation, Bronevetsky [3] has shown that
these solvers are still vulnerable to soft errors. Shantharam
et al. [26] found that soft errors may significantly degrade a
linear solver’s performance and showed that the error in a
series of sparse matrix vector multiplication computations
grows nonlinear.

7 Conclusion
In this research, we design a method that uses a fault in-
jection experiment’s error propagation data to infer the re-
siliency of a program’s instructions without fault injection
testing. We propose the fault tolerance threshold boundary,

a novel concept, which gives the maximum tolerated error
of a program’s each dynamic instruction and uses the pro-
posed inference method to approximate the boundary. We
test our methodology in common HPC computation ker-
nels and demonstrate that our method accurately predicts
a program’s resiliency with the prediction precision above
98%. Compared with the exhaust fault injection campaign,
our method can reduce the number of samples up to several
orders of magnitude.
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