VisBricks: Multiform Visualization of Large, Inhomogeneous Data
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Fig. 1. VisBricks in action: Four different groups of dimensions with different numbers of clusters per group. The gray arch connects
the overviews of the groups. The arches show how the data is distributed over the clusters in that group, thus summarizing the
specifics of a dimension group. The clusters themselves are shown in stacked VisBricks above and below the arch depending on
whether their average data values are higher or lower than the overall average for the group. Colored ribbons indicate how data items
are distributed across clusters of multiple dimension groups.

Abstract—Large volumes of real-world data often exhibit inhomogeneities: vertically in the form of correlated or independent dimen-
sions and horizontally in the form of clustered or scattered data items. In essence, these inhomogeneities form the patterns in the data
that researchers are trying to find and understand. Sophisticated statistical methods are available to reveal these patterns, however,
the visualization of their outcomes is mostly still performed in a one-view-fits-all manner. In contrast, our novel visualization approach,
VisBricks, acknowledges the inhomogeneity of the data and the need for different visualizations that suit the individual characteristics
of the different data subsets. The overall visualization of the entire data set is patched together from smaller visualizations, there
is one VisBrick for each cluster in each group of interdependent dimensions. Whereas the total impression of all VisBricks together
gives a comprehensive high-level overview of the different groups of data, each VisBrick independently shows the details of the group
of data it represents. State-of-the-art brushing and visual linking between all VisBricks furthermore allows the comparison of the
groupings and the distribution of data items among them. In this paper, we introduce the VisBricks visualization concept, discuss its

design rationale and implementation, and demonstrate its usefulness by applying it to a use case from the field of biomedicine.

Index Terms—Inhomogeneous data, multiple coordinated views, multiform visualization.

1 INTRODUCTION

Data from real-world applications is often inhomogeneous, exhibiting
sparse and non-uniform distributions across a vast, multi-dimensional
data space. The main challenge posed by this situation is that different
subsets of an inhomogeneous data set need to be treated differently,
i.e., stored differently, queried differently and shown difterently. For
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instance, methods that work well in numerical regions of the inhomo-
geneous data space may not be suitable for areas containing categori-
cal data. Common analytical solutions, such as OLAP (online analyt-
ical processing) or hierarchical clustering, segment the data space ac-
cordingly to store and process the individual, more homogeneous parts
in a way that is better suited to their specifics. It only seems natural to
extend this idea of an independent and customized treatment of each
part of the inhomogeneous data from analytics to their graphical rep-
resentation. Although in some areas, such as graph visualization, this
idea is actively pursued, for tabular, multi-dimensional data, minimal
research has been published in this direction, which is surprising, as
Thomas’ & Cook’s Visual Analytics research agenda from 2005 states
that “new representations are needed to help analysts understand com-
plex heterogeneous information spaces” [30].

The VisBricks visualization approach presented in this paper aims
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Fig. 2. The initial data matrix may encompass several different data characteristics (color-coded) and value distributions within each dimension’s
(column’s) data range. Thus, the data matrix is first broken up into more homogeneous groups of dimensions. Depending on which homogeneity
criteria are used, this may still result in dimension groups with dimensions of different characteristics and even in dimensions being grouped into
multiple dimension groups. Then in the second step, these dimension groups are clustered to reveal inhomogeneities within the set of data records.
Depending on which cluster algorithm is used, records can be assigned to multiple clusters.

to provide such a new representation in the form of a highly config-
urable framework, that is able to incorporate any existing visualization
as a building block. This method carries forward the idea of breaking
up the inhomogeneous data into groups, i.e., vertically into correlated
dimensions and horizontally into clusters of records, to form more ho-
mogeneous subsets, which can be visualized independently and thus
differently. We call such an independent unit a VisBrick. Putting these
independent visualizations of data subsets back together creates a so-
called multiform visualization [25], which gives an overview of the
topology of the entire data set by showing groups of related dimen-
sions and clustered data items. The visualization technique embed-
ded in each VisBrick, as well as the overall arrangement of VisBricks,
can be tailored to different analysis tasks. Together with a rich set of
interactions and visual cues that help to merge, split, rearrange, and
reconfigure the VisBricks, this flexible new representation supports
many explorative and comparative tasks that otherwise would be dif-
ficult to accomplish. A visual impression of an implementation of the
VisBricks approach is given in Figure 1.

We evaluate our solution with a real world data set from the field
of biomedicine. The results are promising and also indicate directions
for future research and possible improvements.

2 PRELIMINARIES

Because inhomogeneity in data is multi-faceted, it is necessary to es-
tablish the terms and different notions of inhomogeneity.

Data used in analytical tools is most commonly rectangular in na-
ture, consisting of rows and columns [15]. Tables and matrices are
common instances of this type of data organization. In the following,
we refer to such a rectangular data set as a data matrix M with a set
of dimensions D as columns and a set of records R as rows. As illus-
trated in Figure 2, each cell (i, j) € M contains a value v;; belonging
to the i-th record r; and lying within the value range of the j-th dimen-
sion d;. In this paper, we only consider static data, so that the number
of records |R| and the number of dimensions |D| are known and not
subject to change over time.

Inhomogeneity/homogeneity is a fundamental property of such data
that can be observed vertically on the set of dimensions and horizon-
tally on the set of records. We distinguish inhomogeneity from the
slightly different notion of data diversity. The latter defines high di-
versity as corresponding to an even distribution of values [24], which
is a property of a rather homogeneous data set. Furthermore, we use
the term inhomogeneity instead of heterogeneity because, in most of
the literature, inhomogeneity is defined for a single data set, whereas
heterogeneity usually refers to multiple data sets. However, inhomo-
geneity in a single data set can, of course, be the result of a data fusion
of a number of heterogeneous data sets.

In principle, three different sources of inhomogeneity within a data
set can be discriminated:

e semantics — of different meanings: the more unrelated the data
is in terms of meaning, the more inhomogeneous it is

e characteristics — of different types: the more inconsistent the
data types and value ranges, the more inhomogeneous they are

o statistics — of different behaviors/distributions: the less the data
is distributed over a value range, the more inhomogeneous it is

The relevance of the three levels of inhomogeneity for dimensions and
records is explained in the following.

Inhomogeneous Dimensions: In terms of semantics, inhomo-
geneities can often be found between dimensions with no inherent con-
nection on the level of what they are meant to encode. For example,
the columns “first name” and “last name” would belong together be-
cause they compose the information “name” and the columns “street”,
“city”, and “zip code” form the information “address”. However, “first
name” and “zip code” are semantically unrelated. Such groupings are
not obvious from a data or meta-data level and have to be specified by
the user employing common knowledge.

The dimensions’ characteristics basically detail a dimension’s
type, of which we distinguish four: bounded numerical, unbounded
numerical, exclusive categorical, and inclusive categorical. An
example of inhomogeneity between different dimensions would be
two bounded numerical types with very different bounds given, e.g.,
[0...1] and [10°...107], which are very hard to analyze together, nu-
merically or visually. The same is the case for dimensions of exclu-
sive categorical data, such as gender, which is an either-or category,
and inclusive categorical data, such as professional memberships in,
for example IEEE, ACM or Eurographics. Such characteristics can
be interactively defined [23] or given in a standardized format such as
qnch'.

Statistics, in contrast, are derived directly from the data using meth-
ods such as correspondence analysis, which will determine dependent
dimensions that are likely to belong together because the values are
correlated.

Inhomogeneous Records: Similar to dimensions, records can
be affected by semantic inhomogeneity, which is given by external
knowledge. This occurs frequently for categorical values; e.g., the pro-
fessions “high school teacher” and “university professor” relate more
to one another than to “restaurant chef”, because they both belong to
the educational sector. Again, this knowledge is not present in the data
itself and has to be provided by the user or through an ontology.

Inhomogeneities stemming from a record’s characteristics, can
be, for example, missing or undefined values. Undefined values are
present, but outside of a dimension bound given by the meta-data. Ob-
servation of these inhomogeneities is important; these records need to
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be set aside because they cannot be analyzed together with the regular
records. However, their communication is nevertheless important for
the analysis [6].

Inhomogeneities uncovered via statistical methods such as cluster-
ing occur if the data records are distributed unevenly and thus form
clusters at certain points or intervals of the overall value range. Data
records that have been assigned to the same cluster are thus more
alike and form a more homogeneous group of data with respect to the
similarity measure used for clustering.

Generally, it is easier to deal with homogeneous data than with in-
homogeneous data in terms of computation and visualization: com-
putational and visual analysis do not have to fall back on the level
of the least common applicable method that is able to handle all the
different types of data on different value ranges and with different
underlying meanings. Instead, if the inhomogeneous data set is di-
vided into more homogeneous subsets, i.e., by grouping dimensions
and records, the data can be adequately analyzed using methods that
are specifically tailored to them. Additionally, vertical and horizontal
subdivision can be used together through a sequential subdivision in
two steps, as schematically shown in Figure 2. It should be noted that
neither of these subdivisions must generate disjointed groups. Instead,
it is often sensible to include the same dimension/record in multiple
groups, e.g., to achieve meaningful groupings for inclusive categorical
values, which allow a record to belong to multiple categories at once.

After the subdivision, each subset of data can be processed and dis-
played individually according to its properties. However, the individ-
ual visualizations are only of limited use if they are not displayed in
the context of the overall data set, and thus in the context of all other
individual visualizations. Only then do comparison tasks and the anal-
ysis of distributions become possible. Thus, the contextualization of
the subsets corresponds to the conquer step of a classical divide-and-
conquer approach. As the following section will show, many exist-
ing approaches for inhomogeneous data share the divide-and-conquer
methodology as a fundamental principle.

3 RELATED WORK

Inhomogeneity in data has been investigated most frequently for graph
data and its visualization, possibly because of the unfavorable run-
time complexities of analysis and layout algorithms for general graphs.
Graph layout algorithms benefit greatly from a subdivision of the data
into smaller subsets, which can be efficiently processed individually,
and then can be compiled for an overall result. In addition to the gain
in speed, this strategy can also generate more expressive representa-
tions because the sub-layouts can be optimized.

The following two sections give a short overview of the existing
approaches for the visualization of inhomogeneous graph and tabular
data by discussing different methods that are often used to perform the
divide and the conquer steps.

3.1 Dividing Inhomogeneous Data

For large graphs, the subdivision of inhomogeneous data is performed
purely in the data space, as it has to be performed before the mapping
(i.e., creating the layout), which may be time-consuming. Graph theo-
retical methods are used to determine more coherent subgraphs within
the inhomogeneous overall data set. These subdivision methods are,
in most cases, hierarchical clustering algorithms or traversal strategies
for identifying connected components; both are often used together.
A possible way to combine these methods is to first perform a quick
traversal to identify (bi-) connected components that are then further
clustered hierarchically in a second step [1].

For multivariate tabular data, statistical subdivision methods are
usually employed. In the case of horizontal subdivision, the subdi-
vision is based on the statistics via (hierarchical) clustering, or on the
semantics, as is often observed for OLAP-like partitioning of the data
space into different value ranges. The latter does not just perform
equidistant partitioning, e.g., a person’s age in sets of 10; instead, it
brings in common knowledge and makes more meaningful partitions,
such as being of legal age at 18 or retiring at 65. The same is true

for the vertical subdivision, which is based on statistics through the
aforementioned correspondence analysis or on grouping dimensions
according to their semantics; a user would likely place zip codes and
a person’s age in different dimension groups, even if for some reason
the statistics found a correlation between both.

The divide step is a crucial one, because it pre-determines many
of the features a user will later see in a visualization of its results.
A falsely parameterized statistical algorithm may result in an utterly
useless visualization that does a good job at communicating false re-
sults that are not actually representative of the data. Hence, different
tools and frameworks have been devised to support the user during the
divide step. For vertical subdivision, a hierarchical dimension man-
agement framework [33] can be used to construct subspaces, orders
and filter dimensions. For the horizontal subdivision of the data, there
is, for example, the Hierarchical OLAP visualization [21], which sup-
ports the horizontal subdivision of the data space via OLAP and allows
the user to interactively steer the subdivision process. Alternatively,
the Matchmaker technique [19] allows the user to compare different
statistical subdivisions and thus decide on the most plausible one.

It is important to note that the created subdivisions do not necessar-
ily need to be disjointed, even though often they are generated such
that they do not have overlaps, which makes the following conquer
step easier.

3.2 Conquering Inhomogeneous Data

After the inhomogeneous data has been subdivided into groups, the
groups are processed and visualized individually. Finally, the out-
comes for all the groups have to be fused together to form a visual-
ization for the whole data set again. The result of this can be a uni-
form visualization, in which all individual visualizations are of the
same kind, or a multiform visualization, in which entirely different
visualizations are merged together [25]. In the field of graph visual-
ization, an example of a uniform visualization is the TopoLayout [2],
which hierarchically combines different layouts of the subgraphs, but
all of the layouts are of the node-link type. For multiform visualiza-
tions, there are examples of pairwise combinations of all three major
graph representation types, i.e., matrix, node-link, and implicit lay-
out: NodeTrix [12] combines a matrix with a node-link layout; Elastic
Hierarchies [34] combine a node-link with an implicit layout; and Ru-
fiange et al. [26] combine a matrix with an implicit layout.

Conceptually, there are two ways of assembling an overview of a
subdivided tabular data set by patching together the individual visual-
izations of the subsets. The first possibility is a very rigid arrangement
of the visualizations in a certain style that reveals relationships merely
by thoughtful positioning of the individual views. Examples for this
approach, however, are scarce. Two notable techniques that apply this
approach are portals, as used in the DataSplash system [32], and Mul-
tiform Matrices [20]. Portals are locally embedded smaller visualiza-
tions in a larger base visualization. The relationship among different
portals is automatically communicated through their positions, as can
be seen in Data Splash, in which the individual visualizations are put in
the context of a map representation, and in Multiform Matrices, where
the visualizations are placed in a matrix arrangement, clearly convey-
ing which dimensions are shown in which visualization. In theory,
both of these existing techniques have the potential to employ multi-
form visualizations; however, the existing examples of embedded por-
tals always show the same visualization in all portals.

The second possibility is to allow a more flexible arrangement of
views and to use visual links to communicate their relationships. An
example for a visualization technique using this approach are Parallel
Sets [16], which are able to combine multiple bar charts for different
categories in a layout connecting the related bar charts via ribbons.
Again, although in theory it would be possible to use this technique
as a multiform visualization with different views being connected, in
practice it has so far only been used in a uniform manner with all
views utilizing the same kind of representation. The underlying idea
of maintaining the contextual relationship of subsets of data via vi-
sual links is an often-employed mechanism. The work by Seo and
Shneiderman [28] is an example, in which the associations between
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Fig. 3. Basic VisBricks concept. (a) The dimension arch containing the dimension groups with the focus region and the context regions in the legs.
Dimension groups can be homogeneous with respect to data characteristics (i.e., bounded numerical, unbounded numerical, exclusive categorical,
and inclusive categorical; shown in color) or inhomogeneous (shown in white). (b) Cluster Bricks were added above and below the arch for the

dimension groups.

two differently clustered heat maps are depicted by drawing straight
lines between identical data items. Other systems, in which the con-
nectedness of elements is employed as an additional aid, are Semantic
Substrates [29], VisLink [4], Caleydo’s Bucket [18], Circos [17], and
MizBee [22]. The excessive use of connection lines can introduce vi-
sual clutter. Bundling of the connections is one way to alleviate this
problem. For example, hierarchical edge bundling [13] accounts for
structural information about the data to merge the connections hierar-
chically.

Our own approach, which is detailed in the following section, in-
tegrates and advances these ideas into a flexible technique that com-
bines thoughtful arrangement and linking for multiform visualizations
of subsetted inhomogeneous data.

4 THE VISBRICKS APPROACH

For large data sets, it has proven efficient to follow Keim’s Visual An-
alytics mantra: “Analyse First, Show the Important, Zoom, Filter and
Analyse Further, Details on Demand” [14]. VisBricks embrace this
paradigm and strive to support it on all levels by providing meaningful
preprocessing and overviews to show the important features even for
inhomogeneous data; a rich set of interactions to enable zooming, fil-
tering and further analysis; and drill down methods to explore even
large data sets down to the details of the individual record. The core
paradigm of VisBricks is to divide-and-conquer: the data set is divided
into homogeneous subsets that can then be efficiently abstracted. Vis-
Bricks fully support the inhomogeneity of the data and the diversity
of tasks at each level of the mantra through their multiform approach,
which permits users to tailor the visual representation of each subset
of the data according to its characteristics, the task that is to be per-
formed, and the level of detail required.

In this section, we explain the conceptual foundations of the Vis-
Bricks technique, beginning with the overview, continuing with inter-
action aspects that enable zooming and filtering, and finally providing
details about how the data is presented on a fundamental level.

4.1 Preprocessing and Overview

Abstraction is a key technique that enables an overview with limited
visual or computational resources. There are several ways to achieve
abstraction. Oliveira and Levkowitz [9] list dimension reduction, sub-
setting (e.g., random sampling [5]), aggregation [8], and segmentation
(e.g., cluster analysis [7]).

An inherent property of homogeneous data is its suitability for ab-
straction. With homogeneous data, it is easy to choose a visual encod-
ing that represents the data well. Inhomogeneous data, however, does
not lend itself to reasonable abstractions. It is difficult or even impos-

sible to find representative encodings for a very inhomogeneous data
set.

This observation triggered the development of VisBricks. Because
VisBricks uphold the divide-and-conquer strategy, they represent sub-
sets of the data that have been generated by vertical and horizontal sub-
division that are then aligned vertically and horizontally in dedicated
drawing areas. We call the resulting homogeneous groups and their
representations bricks, as they are the building blocks of the whole vi-
sualization and represent their subset of data. These bricks are then
placed in the context of the whole data set again: relationships are
shown by position and by visual links. This process is achieved in the
following four steps:

1. Dividing an inhomogeneous data set into homogeneous groups
of dimensions.

2. Dividing the records in the homogeneous dimension groups into
homogeneous groups of records.

3. Placement of the groups of records back into context.

4. Placement of relationships between the dimension groups back
into context.

Following the two division steps, we distinguish between two types
of bricks: bricks abstracting a whole group of dimensions after the first
division, which we call Dimension Bricks (as they are representative
of the whole dimension group), and bricks reflecting the subdivision
of records within the dimension group, which are called Cluster Bricks
(as the subdivision is often achieved using automatic clustering algo-
rithms). The most important properties of a brick are that it can encode
its data in any number of ways and that it lets the user choose the tech-
nique to use while providing sensible defaults.

A more detailed look at the four individual steps generating the Vis-
Bricks overview layout is given in the following.

Division of Dimensions The actual division of dimensions can
be achieved in a number of ways. In many cases, the dimension groups
are created manually, because the homogeneity of the dimensions, es-
pecially on the semantic level, can often be judged best by users. Al-
ternatively, automatic approaches are possible in an analyse-first step
that first divides, for example, the dimensions on a data-type basis, fol-
lowed by a correspondence analysis to determine similar dimensions.
In the interactive case, Dimension Bricks are dynamically added to
the dimension arch in VisBricks. Figure 3(a) shows an illustration in
which several dimension groups were created and can now be found
in the arch. The arch has three regions: the center, where dimension
groups that are currently in the focus of the investigation, are placed,
and two legs, one on each side, where dimension groups are moved,
when they are not in focus. Notice that in the example in Figure 3(a),
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some dimension groups are homogeneous in terms of their dimension
characteristics, whereas others are not. They may, however, be homo-
geneous in terms of semantics.

Division of Records When the data set is divided into dimen-
sion groups, the user can choose to further divide the groups hori-
zontally using, for example, clustering algorithms (see Figure 3(b)).
Notice that this step is optional, as some dimension groups may not
require further subdivision or may not be suitable for it. For other di-
mension groups, however, only this additional division makes it pos-
sible to create meaningful abstractions for the major trends in the data
set. As can be seen in Figure 3(b), Cluster Bricks are shown above
or below their respective Dimension Bricks, but only for dimension
groups in the focus region.

Naturally, the achievable homogeneity of the Cluster Bricks de-
pends on many factors. First, a sensible trade-off has to be found be-
tween the number of clusters and their degree of homogeneity. While
our VisBricks implementation takes several measures to avoid clip-
ping data, the number of clusters and therefore the number of Cluster
Bricks has the greatest impact on the VisBricks’ scalability. Second,
the achievable degree of homogeneity for a given number of clusters
depends on many factors, such as the choice of clustering algorithm, its
parametrization, and the suitability of the data set. After this division
has been accomplished, we are able to choose suitable visualizations
for each brick to abstract the now homogeneous subset of data.

Encoding Relationships between Cluster Bricks When
exploring tabular data in a spreadsheet, sorting of the data is a common
strategy to find related records. Generally speaking, all visualization
techniques that use rows or columns to identify records can make use
of sorting. Techniques that encode relationships in a record differently,
e.g., parallel coordinates, cannot employ sorting for that purpose.

When sorting by a single row in tabular arrangements, the other
values in a record are re-positioned accordingly. Sorting of multiple
rows at the same time, however, breaks the ties between the values
in the records. Sorting by more than one dimension simultaneously
is equally desirable but much harder to achieve, as meaningful com-
parisons between tuples of values are more difficult to obtain. Conse-
quently, few techniques are able to achieve such sorting. One notable
exception is the table-based visualization for bipartite graphs [27], in
which the disjoint sets of the graph are visualized in tables and sorting
can be performed for each of the sets independently and also simul-
taneously. Because of the nature of the underlying data (a bipartite
graph), no special care has to be taken to keep the association between
the records intact.

The Matchmaker technique employs sorting based on averages of
clusters [19]. VisBricks adopts this general idea and enhance it by ad-
ditionally encoding the relationship of every brick to the average of the

whole dimension group. The vertical position of a Cluster Brick is de-
termined by two factors: the ranking according to the sorting strategy
used and the relative value compared with the average of the whole
dimension group. Because of the placement relative to the whole di-
mension group’s average, the Dimension Brick and the arch divide the
Bricks into those above the average and those below it. Thus, it is clear
how each Cluster Brick compares to the other Cluster Bricks within a
dimension group and to the overall average.

Sorting strategies for numerical data would, for example, place the
Cluster Brick with the highest average at the top and the brick with the
lowest average at the bottom, whereas categorical data could be sorted
by frequency. If no meaningful sorting strategy can be defined for a
certain type of data, the bricks could be sorted to minimize crossings.
For cases where no meaningful average (such as the mean or median)
can be defined, the bricks are distributed evenly above and below the
Dimension Brick.

By partitioning and sorting the data records separately in the differ-
ent dimension groups, the association between individual values of a
record across dimension groups is no longer obvious, as the strict hor-
izontal and vertical alignment of the data matrix has been broken up.
Hence, the following conquer steps reintroduces this essential infor-
mation in the overall layout of the bricks by encoding the relationships
through visual links.

Encoding Relationships between Dimension Groups Fi-
nally, to provide a meaningful overview, the relations between the di-
mension groups must be made explicit, thus realizing the conquer step.
‘We achieve this by using both traditional linking and brushing as well
as interactive visual links.

VisBricks employ ribbons for conveying which portion of the data
contained in each brick is shared among bricks in neighboring dimen-
sion groups. When the bricks are brushed, the ribbons are not only
shown for the relationships to the neighboring dimension groups but
also split into multiple threads connecting all related bricks in all di-
mension groups (see Figure 4(a)). The width of the ribbons encodes
the magnitude of the relation. The ribbons are sorted to minimize
crossings. This strategy is similar to the one used in Parallel Sets [16].

It is possible to brush only the ribbon connecting two bricks,
thereby focusing on the subset of data shared by those two bricks. The
brushing of bricks or ribbons can also be reflected in the views con-
tained in the bricks. VisBricks support multiple simultaneous brushes,
assigning a different color to each brush. In cases with many clusters,
it is sensible to show ribbons only for brushed bricks.

Whereas wide ribbons show major trends among the dimension
groups, thin ribbons indicate outliers. Initially, the showing of both
outliers and major trends is a good option to convey an overview.
However, in many tasks either only outliers or only major trends are
relevant. We therefore developed a technique that allows users to in-
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Fig. 5. Interaction patterns in VisBricks. (a) shows the original state, whereas (b)-(f) show the consequences of the five different interaction patterns.

teractively specify whether they are currently interested in the main
trends, outliers, or anything in between. Because “outlier” or “main
trend” are not absolute concepts, we chose to decrease the opacity for
bands further from the current focus. Figure 4(b) shows an example in
which the focus lies on outliers.

4.2 Zoom, Filter and Analyze Further

The provision of overviews is essential in making it possible to un-
derstand a data set. However, to extract knowledge, it is necessary
to drill down, either via interactive zooming and filtering or via a re-
parameterization of the analysis, e.g., by refining the clusters. While
the latter is not a matter of the visualization itself, the interactive zoom-
ing and filtering are performed directly on the visualization and should
thus be supported by it. VisBricks provide this support through five in-
teraction patterns for manipulating the bricks and their layout.

1. Changing the order of dimension groups
Dimension groups can be moved in and out of the focus region;
the latter provides more space for those in focus. Additionally,
the horizontal order can be rearranged, allowing a more detailed
side-by-side comparison of different dimension groups. When
dimension groups are brought into focus manually, others can
be forced out of focus and into the context region if more space
is required than available. Figure 5(b) illustrates an example in
which the order of dimension groups in the focus region was
changed and one dimension group was moved to the right leg.

2. Changing the distance between dimension groups
It can be desirable to change the spacing between dimension
groups. Increased space is useful if the relationships between
two neighboring dimension groups are under investigation. In
this case, the increased space reduces the clutter produced by the
ribbons. A reduction of space is typically achieved automatically
when the space is increased elsewhere. In Figure 5(c), the orange
dimension group was moved to the left, which pushed the green
dimension group out of focus into the leg.

3. Changing the vertical position of dimension groups
By changing the vertical position of the dimension groups, Clus-
ter Bricks, which are close to or even beyond the border of the
screen, can be moved into the center, and comparisons between
two bricks of neighboring dimension groups are facilitated. As

shown in Figure 5(d), the arch is bent, if necessary, to guarantee
that it always encloses the Dimension Brick.

4. Changing the size of a brick
Each brick can be resized so that the containing visualization re-
ceives more space, as shown in Figure 5(e). When the space for
a brick is increased, other bricks are moved upwards or down-
wards, and other dimension groups are moved to the side. Again,
dimension groups are moved to the legs if necessary.

5. Creating a focus duplicate of a brick
When a full-sized visualization is more suitable for a given task,
VisBricks provide the means to allow a brick to temporarily
claim additional space for an enlarged focus mode. However, this
focus mode is not simply an enlarged version of a brick, which
would be achievable using only the resize functionality. Instead,
the focus mode provides means (a) to compare single bricks in
detail to another dimension group, (b) to compare this brick in
detail to a second brick of another dimension group, and (c) to
prevent the other bricks of the same dimension group from being
clipped. The focus mode is chosen for a single brick of interest,
which is then duplicated and placed next to its dimension group.
By choosing the side of the dimension group on which the brick
is to appear, the target of the comparison is implied. When the
detail brick is visible, its connections to the neighboring dimen-
sion group appear. A user can now analyze the relationships and
choose a brick from the compared dimensions for detailed anal-
ysis. Figure 5(f) illustrates the state in which a second brick is
enlarged. For some visualization techniques, the available hor-
izontal space may not be sufficient. In such cases, the legs of
the brick are moved out of the view, to increase the space for the
focus bricks.

Especially with this last interaction technique, it becomes apparent
that a drill-down from the overview, which only shows the important
data in abstracted views, to detailed views of individual homogeneous
subsets is fully supported by VisBricks. Additional consideration re-
garding the detailed visual analysis of individual data properties is dis-
cussed in the following section.

4.3 Exploring Details

The detailed analysis in VisBricks is based on the multiform property
of the bricks. Although we previously mentioned that multiple visual-



ization techniques can be used within a brick, we have up to this point
mainly treated bricks as a medium to present abstractions. However,
the bricks are more powerful.

The defining property of the bricks is their ability to display the in-
formation grouped within them using diverse visualization techniques.
We have distinguished between Dimension Bricks, which summarize
the entire data in a dimension group, and Cluster Bricks, which show
data that is homogeneous in terms of statistics. Both require very dif-
ferent visualizations, as the Dimension Bricks give an overview of
the grouped dimensions, whereas the Cluster Bricks show the records
grouped inside them. In general, it is not immediately obvious which
visualization is sensible for which brick. The suitability of a technique
depends on two criteria:

1. Data characteristics criterion: Is it suitable to visualize the
data for the given data characteristics?

2. Scalability criterion: Is it suitable to visualize the given amount
of data in the allocated space?

Data Characteristics Criterion For bricks that are homoge-
neous with respect to their data characteristics, it is easy to assign
suitable visualizations. The availability of a concrete visualization
technique as a representation choice for such a brick requires only
the identification of the data characteristics for which it is suitable. An
example would be a parallel coordinates view, which is suitable for
bounded numerical, unbounded numerical, and, to some extent, exclu-
sive categorical but not for inclusive categorical.

However, when dimension groups are not homogeneous with re-
spect to their characteristics but only with respect to their semantics, it
is not as simple to assign suitable visualizations. In this case, we seek
out the “least common representation” that is sufficiently generic to be
able to show all of the data types within such a mixed dimension group.
To achieve this, we order the data types according to their strictness
for the data characteristics. For the four data types, we consider bound
numerical to be the strictest characteristic, followed by unbound nu-
merical, exclusive categorical, and, finally, inclusive categorical as the
most relaxed type. This ordering is based on the observation that data
belonging to a stricter class can often also be visualized with a tech-
nique suitable for a more relaxed data type. What distinguishes vi-
sualization techniques for stricter classes from those for more relaxed
classes are the assumptions about certain properties of the data that do
not hold for more relaxed types. An example would be a technique for
bounded numerical values that assigns each record a hue of 1 for the
upper bound and 0 for the lower bound. If this technique is used with
a hybrid dimension group, in which one dimension contains unbound
values, their color coding becomes meaningless.

Visualization techniques for more relaxed data types have to allow
their records to take on a wider variety of states, making the individual
record more expressive, but also harder to abstract. This does not mean
that a technique for a more relaxed characteristic is not suitable for a
stricter characteristic; rather, it means, that such a judgment cannot be
derived automatically.

Note that it is not reasonable to employ a technique that is suitable
for more relaxed characteristics to all stricter ones. Usually, more re-
laxed techniques are not able to fulfill the scalability criterion as well
as stricter techniques do.

Scalability Criterion VisBricks rely heavily on the abstraction
technique of segmentation into homogeneous groups at the top level,
and in fact we employ a multi-level approach: bricks are required to
provide at least one abstraction method for every data characteristic.
Hence, each visualization technique can make use of the provided ab-
straction methods as needed. Dix and Ellis note that multi-level ab-
straction solutions are common; for example, a sampled data set can
be used as the input for aggregation techniques [5].

We distinguish among four classes of bricks, where each has differ-
ent requirements considering the scalability criterion:

1. Regular Dimension Bricks
Dimension bricks represent all records in a dimension group. As
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Fig. 6. The different classes of bricks used in VisBricks. (a) Regular
Dimension Brick, summarizing a dimension group. (b) Compact Dimen-
sion Brick, used in the arch legs. (c) Regular Cluster Brick, showing one
homogeneous cluster. (d) Compact Cluster Brick used for overviews.

the number of records can be large, techniques that rely on the
scaling of width or height with the number of records are not suit-
able for Dimension Bricks. Consequently, aggregation methods,
such as histograms, or methods using sub-setting and natural ag-
gregation, such as parallel coordinates, are suitable. In contrast,
methods that require additional space for every record, e.g., clus-
tered heat maps [7, 31] or tables, are not suitable. A Regular
Dimension Brick is shown in Figure 6(a).

2. Compact Dimension Bricks
When a dimension group is moved to the legs of the arch, its
Cluster Bricks are hidden, and the Dimension Brick is reduced
to a static size, optionally showing a high-level aggregation of
the data. Figure 6(b) shows an example for numerical data, in
which the whole dimension group is aggregated into one single
line of a heat map. Although this abstraction is very crude, it
may show a major trend in the data.

3. Regular Cluster Bricks
Regular Cluster Bricks have the most freedom of all bricks. They
may use any visualization technique suitable for the data, includ-
ing those that require the scaling of width and height with the
number of records. For example, Figure 6(c) shows a Cluster
Brick containing a parallel coordinates view. However, basically
any imaginable visualization technique that is able to provide an
overview of a number of multi-dimensional records can be used
inside a Regular Cluster Brick.

4. Compact Cluster Bricks
For each data characteristic, VisBricks require one technique that
represents a cluster at minimal height. This technique is used by
default if the bricks would otherwise not fit in the view. Al-
though this technique cannot completely avoid clipping, it sig-
nificantly increases scalability. The actual height is not specified,
because, for example, efficient visual abstractions of categorical
data are much more difficult to achieve than those for numerical
data. Compact Cluster Bricks have a reduced set of user inter-
face elements, which help to keep the size minimal. Figure 6(d)
shows an example for numerical data, in which a heat map line,
similar to the abstraction used in the Compact Dimension Brick,
shows an aggregation of the cluster. Under the assumption that
the records in the brick are in fact homogeneous, this abstraction
is a valid representation for the cluster.

In addition to these four fundamental modes, views are also notified
of the actual size of a brick to enable them to adapt to the available res-
olution, which makes it possible to prevent users from switching to vi-
sualization techniques that require more space than the brick currently
has available or to adapt the level of detail. The parallel coordinates,
for example, add captions when a certain size threshold is surpassed
and user interface elements when the view is enlarged further.

With these scalable bricks at hand, users can interact with the data,
drill down into clusters of dimension groups, explore the details of re-
lationships between clusters and dimension groups, and even see the
actual values of every single record in the data. In Section 6, we will
present the results achievable with a prototype implementation. How-



ever, we will first discuss some design choices, implementation details
and scalability issues.

5 PRACTICAL CONSIDERATIONS
5.1 Design Choices

In addition to the main paradigms already discussed in the previous
section, there are some additional considerations to improve the us-
ability of bricks.

One piece of information that is lost when abstracting homogeneous
groups for dimensions and records is the scale of the group. A homo-
geneous brick containing only a few elements would, for example, be
assigned the same space as another brick containing half the data set.
It is therefore necessary to encode the relative size of the groups in
terms of the number of dimensions for the dimension group and the
number of records for the Cluster Bricks. To encode the number of
dimensions, we use a row of squares with one square for each dimen-
sion; the squares are filled if this dimension is part of the dimension
group (see Figures 6(a) and (b)). We encode the number of records in
the Cluster Bricks with a bar, as shown in Figures 6(c) and (d).

Also, the bricks need to contain user interface elements to, for ex-
ample, display the name of a dimension group or allow switching
between visualization techniques. Many approaches are conceivable.
For our prototype, we chose a mixture between static and pop-up but-
tons, which can be seen in Figure 6.

5.2

We realized the VisBricks technique as a prototype in the Caleydo in-
formation visualization framework2[18]. For numerical data, we pro-
vide a parallel coordinates implementation, a heat map, a histogram,
and the required abstract views. For clustering, we use Affinity Prop-
agation [10] and the Weka implementation of k-means [11].

Except for the red-green color mapping commonly used in
biomedicine, all color-schemes, for the figures in this paper and the
application, are taken from Colorbrewer [3]. To accommodate red-
green blind users, Caleydo provides alternative color schemes.

The VisBricks technique is implemented in OpenGL using the Java
OpenGL Binding®. We use the Eclipse RCP framework and plug-
in mechanism. Through this mechanism, views for VisBricks can be
added without access to the source code. The layout of all elements is
recursively defined with a specially designed, flexible layout package.

Implementation

5.3 Scalability

VisBricks scale to a large number of records and dimensions. The pri-
mary limiting factor for the number of records is the computational
limitation of the clustering algorithms. A secondary limitation is the
available resolution: On a WSXGA+ screen with 1680 x 1050 pixels,
VisBricks can handle up to 30 clusters in one dimension group. The
cluttering of connections associated with a high number of clusters be-
tween many dimension groups can be improved by rendering ribbons
only when brushed, or by using the trend filter. VisBricks can accom-
modate about ten to fifteen dimension groups, up to eight of which
may be in the focus region.

6 USAGE SCENARIO

We evaluated our tool with a data set from our partners at the Institute
of Pathology at the Medical University of Graz. Their team focuses
on determining the genetic factors of liver cirrhosis. Cirrhosis is a
multifactorial disease, which means that many factors, both environ-
mental and genetic, influence its development. Contrary to popular
perception, cirrhosis is linked not only with alcoholism, but also with
diabetes and obesity. Our partners have developed a mouse model that
allows them to monitor the progression of steatohepatitis (fatty liver
disease), which is a disease that eventually leads to cirrhosis. They
perform experiments in which steatohepatitis is induced by feeding
mice poison for eight weeks. They discovered that different genotypes
(genetic types) of mice are not equally prone to develop symptoms. To
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uncover the genetic factors that lead to this discrepancy, they measure
the gene expression of the mice at different times.

We have previously worked with this data set [19] to demonstrate
differences between clustering algorithms and to exemplify an analysis
using multi-level heat maps. The VisBricks concept goes well beyond
the previously presented approach in supporting the full range of vi-
sual analysis, from a comprehensive overview of the topology of the
entire data set that integrates diverse computational and visual options,
seamlessly down to the individual data record.

Following the Visual Analytics mantra, the computational analy-
sis constitutes the first step. In this data set, there are multiple levels
of semantic inhomogeneities, i.e., experiments conducted at different
points in time or with different genotypes of mice. Sensible groupings
of the data depend on the research question. Thus, if changes over
time comprise the main focus, grouping based on similar points in time
would be the best choice. However, because the differences in geno-
type are central to the research question, grouping based on genotypes
makes the most sense. To avoid insignificance within control groups,
the analyst filters the data using statistical methods and also removes
values that are constant within a threshold across all conditions. The
filtered data set shown in Figure 7 has 37 dimensions, each containing
the measurements of 1 experiment, grouped by the 7 different geno-
types of mice, with 766 expression values per dimension.

In this scenario, the analyst is interested in differences between the
AJ genotype and the other genotypes (C* and PWD) because mice
with the AJ genotype are less susceptible to steatohepatitis. An exam-
ple of a relevant difference is gene expression is a gene that remains
at the same regulatory level in the AJ mice but is upregulated as time
progresses in the C* mice. Such a gene might be involved in causing
steatohepatitis in the C* mice.

Figure 7(a) shows the layout of the Dimension Bricks, one for each
of the seven genotypes as an overview of the data set. Two dimension
groups have already been clustered, and their corresponding Cluster
Bricks are shown. The histograms in the Dimension Bricks show the
summarized distribution of the values in the dimension groups, from
low expression (at the left in green) to over-expression at the right in
red. Subtle differences between the dimension groups are noticeable.

The analyst then proceeds by clustering the remaining dimension
groups to uncover their statistical inhomogeneities. As the dimensions
within the dimension groups are sorted by time (early experiments are
on the left, whereas the final measurements are on the right), there is
a visibly strong tendency of increased expression from left to right in
the appearing Cluster Bricks in all dimension groups.

The clustering groups together those genes with similar expression
patterns. Such groups are often also functionally similar [7], making
the clusters semantically meaningful. In looking for differences be-
tween a gene’s expression in the AJ and the C* mice, the analyst is
searching for two clusters that share elements (i.e., they are connected
with ribbons) but also show a different behavior for the genotypes. As
the mice are treated exactly the same, such a difference is likely to
stem from the difference in genotype and might thus be linked to the
causes of steatohepatitis.

The analyst begins a more detailed analysis by filtering. He moves
some dimension groups to the arch legs to take a close look at the dif-
ferences of the dimension groups of interest. To see some of the more
interesting bricks in detail, the analyst switches them to the parallel co-
ordinates view. Other, less interesting Cluster Bricks, in which values
remain nearly constant over time, are switched to the compact mode.
The many broad ribbons between closely related Cluster Bricks show
that much of the data is largely consistent across the dimension groups,
indicating that those genes behave similarly in the different genotypes.
However, there are connections between rather distant Cluster Bricks,
hinting at possible outliers. Using interactive colored brushing, the
analyst explores the relationships of selected Cluster Bricks in more
detail. The brushing highlights the ribbons and the actual data in the
parallel coordinates. When brushing the Cluster Brick that shows the
parallel coordinates in the second dimension group (orange brushing
in Figure 7(b)), the analyst notices one brick in the neighboring di-
mension group that is far away and very dissimilar. However, it still
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Fig. 7. Steps in an analysis of gene expression in different genotypes of mice. (a) The overview with two dimension groups clustered. (b) All
dimension groups clustered and two bricks brushed. Notice the connection from the top-left brick showing the parallel coordinates (orange brush)
to the lower brick in the center (blue brush). The blue brick contains outliers of the orange brick, which indicates genes of interest. (c) Enlarged
bricks of interest, showing only ribbons for the outliers of brushed bricks. (d) The bricks of interest in focus mode, which enables detailed analysis.

shares a few records with the brushed brick. The analyst switches the
brick’s aggregative view containing the outliers to a parallel coordi-
nates view, where the outliers are immediately obvious. To explore
the outliers in more detail, the analyst increases the size of the bricks
and chooses to show only ribbons for outliers of brushed bricks (see
Figure 7(c)). The shared records seem interesting and deserve closer
investigation. The analyst therefore switches to the focus mode, as
shown in Figure 7(d), where the genes are explored in detail using two
parallel coordinates views. The genes found may indeed play a role in
steatohepatitis. The analyst continues to investigate by reviewing the
literature on the found genes in online databases.

Note that the accompanying video shows this usage scenario, in-
cluding all intermediate steps not discussed in this text.

The feedback from our partners was very positive; they were able
to conduct an analysis only after a brief training period, in which the
novel spatial arrangement and the meaning of the ribbons were ex-
plained. Our partners appreciated the interactivity of the system and
its ability to focus on several different parts of the data at the same
time. They noted that this was very hard to achieve in their previous
workflow using earlier versions of Caleydo, other state-of-the-art mi-
croarray analysis tools, or statically generated R-plots. An interesting
suggestion made was to integrate other, non-tabular data sources, such
as pathways, into VisBricks as well.

7 CONCLUSION AND FUTURE WORK

We have shown that the VisBricks concept can handle large and in-
homogeneous data spaces by employing it in a real-life, complex
analysis scenario. The main advantage of VisBricks, compared with
traditional approaches is their ability to handle all types of inhomo-
geneities within data, both in the dimensions and in the records. This

is achieved by treating each homogeneous sub-part of the data with the
best available computational and visual tools. By using abstractions in
the bricks, VisBricks are very scalable in terms of the magnitude of
records. At the same time, the division into bricks and the rich set of
interaction patterns allow users to employ multi-level approaches, in
which each brick contains an abstraction suitable to show the data at
the desired level of detail.

The VisBricks concept is sufficiently powerful to describe previous
visualization approaches in terms of bricks, groups, and the relation-
ships among them. One example for categorical data is Parallel Sets
[16]. Each brick can represent a category, and Parallel Sets’ “com-
posed dimensions” can be interpreted as dimension groups. Parallel
Sets optionally show histograms inside the categories, which is also
possible in bricks. For numerical data, Matchmaker [19] can be for-
mulated in terms of bricks. The clusters shown in the heat maps used
in Matchmaker are essentially small bricks.

At the very core of the VisBricks strategy are two concepts: the
creation of homogeneous sub-parts of the data and the establishment
of multiform visualization for those parts. These concepts are in no
way limited to tabular data; they may also be applied to other data
forms. However, the encoding of topological structures, positions, and
connections between more general forms of data, such as geo-spatial
data, will be the subject of future research.
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