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Fig. 1. The Caleydo Matchmaker technique allows users to split multidimensional datasets into subgroups, cluster them separately
and analyze relations between the resulting clusters.

Abstract— When analyzing multidimensional, quantitative data, the comparison of two or more groups of dimensions is a common
task. Typical sources of such data are experiments in biology, physics or engineering, which are conducted in different configurations
and use replicates to ensure statistically significant results. One common way to analyze this data is to filter it using statistical methods
and then run clustering algorithms to group similar values. The clustering results can be visualized using heat maps, which show
differences between groups as changes in color. However, in cases where groups of dimensions have an a priori meaning, it is not
desirable to cluster all dimensions combined, since a clustering algorithm can fragment continuous blocks of records. Furthermore,
identifying relevant elements in heat maps becomes more difficult as the number of dimensions increases. To aid in such situations,
we have developed Matchmaker, a visualization technique that allows researchers to arbitrarily arrange and compare multiple groups
of dimensions at the same time. We create separate groups of dimensions which can be clustered individually, and place them in an
arrangement of heat maps reminiscent of parallel coordinates. To identify relations, we render bundled curves and ribbons between
related records in different groups. We then allow interactive drill-downs using enlarged detail views of the data, which enable in-depth
comparisons of clusters between groups. To reduce visual clutter, we minimize crossings between the views. This paper concludes
with two case studies. The first demonstrates the value of our technique for the comparison of clustering algorithms. In the second,
biologists use our system to investigate why certain strains of mice develop liver disease while others remain healthy, informally
showing the efficacy of our system when analyzing multidimensional data containing distinct groups of dimensions.

Index Terms—Multidimensional data, cluster comparison, bioinformatics visualization.

1 INTRODUCTION

While a lot of research has been conducted on multidimensional data
analysis, most approaches try to either visualize the data as a whole
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using techniques such as parallel coordinates, or to extract the most
relevant aspects using dimensionality reduction. In many cases, how-
ever, multidimensional datasets have an additional property which is
often not employed to gain insights. Metadata, either explicitly en-
coded or just informally known by the user, allows us to split data into
smaller batches, analyze and process it separately and then compare
the batches with each other.

The Caleydo visualization framework [19] developed at our insti-
tute addresses the field of biomolecular data visualization. When dis-
cussing analysis methods with our collaborators, we discovered that
most of their data has inherent groupings. For example, they want to
compare measurements from different genotypes of a species, or from
patients suffering from diverse forms of cancer. In biomolecular data



analysis, clustering is used to group records into meaningful subsets.
However, clustering, especially of many dimensions, can conceal im-
portant relations. Figure 2(a) illustrates one such case. The samples 1
and 2 in this parallel coordinates plot will probably not end up in the
same cluster when all dimensions are clustered at the same time. In
many cases this is desirable. However, if we know that the first three
axes are from experimental conditions different from the last two, the
information that these records behave differently under these condi-
tions may exactly be what we want to know. Our work aims to make
this difference explicit to the user, by clustering those groups of di-
mensions (i.e., subspaces of the dimensions) separately and showing
the differences and similarities between them.

(a) (b)

Fig. 2. (a) An example of data records which would be assigned to dif-
ferent clusters depending whether the dimensions were clustered com-
bined or separately. (b) Scrambled, inhomogeneous cluster where no
clear biological function can be assigned.

For a biologist, the optimal clustering lets him designate a clear
biological meaning to a cluster. This is impossible for a cluster as
shown in Figure 2(b), since the cluster is too inhomogeneous. The
biologist’s goal is to find all records that, for example, increase over
time in one group, and then explore how these behave in another. This
is not possible when all groups are clustered at the same time.

A related problem is the need to compare the results of clustering
algorithms. Different algorithms, parameters and similarity measures
can have a profound impact on the result [25, 26]. Quality metrics for
clustering algorithms are hard to find. Usually, the quality is assessed
manually through interpretation by the user. A method that clearly
visualizes the differences between two algorithms could support the
process of judging the quality of a clustering result significantly.

To solve these problems, we developed Matchmaker. Our primary
contribution is a comprehensive Focus+Context technique employing
details-on-demand and drill-down capabilities for comparing multiple,
separately clustered groups of dimensions. As a secondary contribu-
tion, we introduce an order preserving curve bundling strategy which
minimizes crossings between clusters.

Clustering is actually only one method to group records. Alter-
natively, other strategies could be applied, for example, grouping of
genes based on their source chromosome. For the sake of clarity, we
will refer to groups of records as clusters, independent of how they
are grouped in order to distinguish between groups of dimensions and
groups of records.

The paper is structured as follows: in the next Section we discuss
related work. The system including the Matchmaker technique is in-
troduced in Section 3. Section 4 contains two case studies, the first
for clustering algorithm comparison, the second describing how a bi-
ologist uses our system for biomolecular data analysis. Section 5 con-
cludes the paper.

2 RELATED WORK

Comparing data is typically achieved using coordinated and multiple
views [23] where at least one view is shown for each data set (e.g.,
[29]). Exceptions are for example Graham and Kennedy [6] who use
a directed acyclic graph to explore multiple trees in the same view, or
Hong et al. [12] who use a union of two trees and highlight differences
(similar in effect to image differencing used in image processing). Tu
and Shen [33] visualize changes of hierarchical data using tree maps.
Their approach also uses a union tree which is visualized with contrast
tree maps. Changes of attributes are shown by blending the attribute

colors in one square from the attribute value in the first tree to the
value in the second tree. For multiple attributes they use bars in the
tree map squares to show the ratio between the two datasets. Changes
in structure are visualized with special colors.

For data with many differences, however, such representations are
ill suited, since, for example, integrating two trees into one view is
difficult to understand. Consequently, we chose to employ an approach
utilizing coordinated and multiple views.

However, the human visual system is not very good at comparing
elements in different views. Therefore, it is advantageous that relations
are shown explicitly to a user. Three basic ways to show relations be-
tween elements exist: color coding, drawing lines and blinking [25].
While blinking is the strongest attractor, it is also considered disturb-
ing by many users and can hardly be used for more than one or two
items. Color, as the second possibility to show relations, has been
widely used in the literature. Van Long and Linsen [20] use colored
brushing to show relations between a cluster tree and the concrete val-
ues in a parallel coordinates browser. Graham and Kennedy [5] show
multiple trees and visualize their relations by interactive linking and
brushing. They use orthogonal stretching [24] to focus on an area of
interest. Munzner et al. [22] developed TreeJuxtaposer, a system that
supports comparing large trees. They introduce the concept of guaran-
teed visibility, where elements identified as relevant are guaranteed to
be visible, as well as structural comparison – i.e., to find for all nodes
of a tree their most similar nodes in every other tree. This allows them
to use structural brushing, which highlights corresponding areas in all
trees. TreeJuxtaposer also employs orthogonal stretching for areas of
interest.

Using color alone, however, has several drawbacks. Healy [9] found
out in a study that more than seven colors lead to reduced performance
in accurately and rapidly detecting the colors. As a consequence, using
color to encode differences does not scale well. In applications such
as Seo and Shneiderman’s Hierarchical Cluster Explorer (HCE) [25]
or our Matchmaker, color is already heavily employed to show other
data attributes. Consequently, we have chosen curves and ribbons to
show relations. Lines and curves have the unique ability to scale to
many elements, especially if measures such as bundling to avoid visual
clutter have been taken.

HCE [25] is probably the work most closely related to ours. It sup-
ports comparing the effects of two different clustering algorithms on
the same dataset. It renders two heat maps side by side and draws
straight connection lines between the related items. While Seo and
Shneiderman state that this basic implementation was already very
helpful for their users, they also identify the problem that simply criss-
crossing lines can cause confusion for the users. Furthermore, they
show their method only for very small datasets (<50 records and 6
dimensions).

Holten [10] proposes a hierarchical edge bundling method which
adds adjacency information of hierarchically structured data on top
of an existing visualization. Holten and van Wijk [11] extended the
concept of hierarchical edge bundling for the comparison of two hier-
archies, which is similar to our problem. Their method works well if
the leaves in one hierarchy can be resorted to minimize crossings of
inter-tree edges. However, in our case the order of the records cannot
be changed since the order encodes information.

Meyer et al.’s Mizbee [21] and Krzywinski et al.’s Circos [17]
use bundled curves respectively ribbons to show relations and differ-
ences between genomes arranged in a circular layout. Mizbee uses
two circles of chromosomes, one for each species’ genome. The se-
lected chromosome of the outer circle is copied to the inner ring, and
curves are drawn between the location of conserved regions in this one
chromosome and all other chromosomes in the target species. Conse-
quently, only relations of one source chromosome to the target’s chro-
mosome are shown at a time. Additionally, an enlarged rectangular de-
tail of the source chromosome, which uses color coding to convey the
same information, and a view of one block’s details compared to the
block in the target species, is provided. In contrast to MizBee, Match-
maker can compare many datasets at the same time in an overview,
while MizBee can compare only one chromosome of a source to a tar-



get. In addition, Matchmaker integrates detail views, which are shown
separately from the circular layout in MizBee, into the overview and
thereby makes the relation between overview and detail more obvious.

Circos [17] can place several datasets in concentric rings and show
position changes with curves connecting the rings. However, this
method does not scale to many changes in position, which is why al-
ternatively chromosomes from different samples can be arranged on
a single circle. Using a multi-circular layout for analysis of clusters
in multidimensional datasets would not be possible due to the many
changes in sequence. Furthermore, analyzing inter-relations between
more than one dataset (or in our case groups of dimensions) with a
circular layout would result in heavy over-plotting.

Telea and Auber [32] describe Code Flow, a system for compar-
ing different versions of source code on the code level. They do this
by rendering icicle plots along vertical axes, where each axis repre-
sents the version of the software system under investigation. They
then draw spline tubes between corresponding fragments in the differ-
ent versions. The tubes are opaque in the middle and translucent at the
borders, to allow a clear separation of the tubes. To draw the user’s
attention to changes, they use color for the bands that changed within
the range of currently inspected versions, while others are rendered
gray. Telea and Auber’s application domain is vastly different from
ours: source code evolves gradually and thereby makes bundling or
similar measures obsolete. In addition, Code Flow does not provide
drill-down methods which preserve the context to the whole dataset.

Parallel sets by Kosara et al. [16] uses axes with boxes of categories
where the size of the box is proportional to the frequency of elements
in the category. Relations between the categories are shown by con-
necting them with parallelograms. One could consider the clusters
in our datasets as categories and use parallel sets to visualize the re-
lations. However, parallel sets do not show individual elements and
consequently do not use any details-on-demand techniques.

A visualization of clustering stability between several algorithms
was developed by Sharko et al. [26]. They use a cluster stability ma-
trix, which shows the number of times two genes appear in the same
cluster when running different algorithms. To visualize the stability
matrices they use heat maps. While they employ an indirect approach
of calculating and visualizing a metric, we directly show relations be-
tween clustering results. They thus only provide information on how
different results are, but not on the exact differences.

Automatic dimension reduction, using, for example, principal com-
ponent analysis (PCA) [14], is not desirable in our case, because we
assume that the input data is part of a well designed experiment where
the user has a priori knowledge of the dimensions’ semantics and may
already have hypotheses about their relations.

3 OVERVIEW OF MATCHMAKER

The comparative analysis workflow is basically a two-tier approach.
First, the user needs to group the dimensions and cluster their records
separately. This is described formally in Section 3.1 and from a user’s
perspective in 3.2. Second, the interactive analysis is conducted using
Matchmaker. In Section 3.3, we introduce the technique including a
discussion of the applied curve bundling strategy for the inter-group
connections and the overview and detail approach. We conclude this
section with a reflection of the technique’s scalability (3.4) and some
words about its implementation in the Caleydo framework (3.5).

3.1 Formalizing the problem
Formally, the tabular input data is a matrix M = {vi j|1 ≤ i ≤ n,1 ≤
j ≤ m} where the columns D = {d1, ...,dm} are the dimensions and
the rows R = {r1, ...,rn} represent the data records (see Figure 3(a)).
Each matrix cell vi j is a value in row ri of the dimension d j. We intro-
duce a user-driven grouping of dimensions G = {g1, ...,gn|g∈P(D)}
where each dimension can be assigned to multiple groups (in Figure
3(b) for example, d2 is assigned to g1 and g2). For each gi in G we
create a set Ci = {c1, ...,cn} which contains the rows (restricted to the
dimensions in gi) automatically determined by a clustering function
(Figure 3(c)), where r j can only be part of one cluster. The compari-
son is then performed on the grouped and clustered data. The records

Fig. 3. Abstract comparative analysis workflow. The dimensions of the
tabular input data (a) are arbitrarily grouped together (g1, g2, g3 in (b)).
The groups are then clustered (e.g., resulting in c1 and c2 for group g1)
in (c)) and finally are ready for the analysis.

r1, ...,rn are connected among all groups, enabling the user to detect
whether records remain in one cluster or if clustered records are pulled
apart.

3.2 Data preparations

The grouper view (cf. Figure 4) supports the creation of a hierarchi-
cally grouped dimension set in a nested representation. After loading
the input data from a database or CSV file, the grouper presents the
dimensions as a nested tree, where the dimensions are children of the
root. The dimensions can be combined to groups, duplicated, removed
and resorted.

After concluding the group definition, a common first task is the
reduction of data records based on statistical tests. A reduction to data
records that show statistically interesting behavior is often desired. In

Fig. 4. The grouper view supports creating a hierarchical sorting of
data dimensions in a nested tree representation. The user can trigger
statistics on individual groups as well as between groups. Finally, the
user selects a set of groups from arbitrary depths in the hierarchy for
the comparative analysis.



(a) (b) (c) (d)

Fig. 5. The comparison of two datasets with different curve styles for connecting the records. The straight line rendering in (a), where we connect
the records directly, produces a cluttered image, even for this relatively small dataset of about 400 records. In (b) we still use straight lines, but apply
the resorting strategy with added control points on a per-cluster basis (see Figure 6), resulting in a much clearer representation with identifiable
cluster relations. In (c) we replaced the lines with spline curves. The curves are abstracted to ribbons in (d).

molecular biology tests are often designed with a goal or specific ques-
tion in mind, for example to find genes which change expression over
time in one condition while remaining constant in another one. Also,
statistics can be used to remove records which are not consistent over
a series of replicates and therefore do not meet the quality criteria of
a study. Ultimately, data reduction is necessary to bring datasets of
larger scale to a size suitable for exploration with the Matchmaker
technique.

For this purpose, we integrated the R software environment [31].
By using R, we can utilize a rich set of statistical methods, produc-
ing validated results with the best possible performance. Currently,
we use t-testing and reduction based on fold-change. However, other
functionality can be easily added by an end-user savvy in R. Filtering
based on statistics is applied on groups defined in the grouper view.
After this data preprocessing, we have a subset of the raw data which
is then used as input for the comparative analysis.

When the user triggers loading of the selected groups in the com-
parison view, a clustering algorithm is run on each of the groups sep-
arately. The clustering results in a classification of the data records
according to an attribute. The Caleydo framework provides partitional
(e.g., k-means, affinity propagation [4]) and hierarchical clustering al-
gorithms (e.g., Eisen et al.’s tree clustering algorithm [3]) as well as
interfaces to Weka [7] and R [31] to utilize external cluster imple-
mentations. The nature of hierarchical clustering algorithms requires
a cut-off along the dendrogram to determine the actual clusters. Ca-
leydo uses a default value for the cut-off, which can be modified using
a slider on a dendrogram in the Matchmaker detail view (see Section
3.3).

3.3 Visualization Technique
The Caleydo Matchmaker technique allows a visual comparison of
multiple groups of clustered data. Since there is no inherent order of
clusters and records in the clusters, we sort both clusters and records
within the clusters according to their mean value. Consequently, we
introduce meaning to the position of the records – which is important
since position is the most powerful visual variable available [1]. In ad-
dition, having introduced a specific ordering, we can use the parallel
coordinates metaphor [13]. We arrange the groups side by side, where
each group is equivalent to an axis in a parallel coordinates plot. By
connecting the identical records between groups, we complete the par-
allel coordinates metaphor. However, instead of using simple lines as
axes, we show the groups as heat maps. This allows us to encode:

• the magnitude of the concrete values in the heat map using color,

• the average magnitude of a cluster via position,

• the average magnitude of a record relative to others in the same
cluster via position in the cluster and

• the relations between clusters and records via connection curves.

Since we aim to visualize amounts of data on a scale where a sin-
gle pixel has to represent more than one value, we face the problem
of level of detail (LOD) culling. Fortunately, the clustering automat-
ically aggregates data, so that even if LOD culling occurs, the global
trends are still visible. However, our requirements make it necessary
to be able to explore the magnitude and the relations of individual data
records. Consequently, following Shneiderman’s mantra – overview
first, zoom and filter, details-on-demand [27] – Matchmaker provides
an overview and interactive embedded detail views for individual clus-
ters (cf. Figure 1). In both overview and detail mode relations are
shown using curves or ribbons. A naive approach for connecting
records, however, results in visual clutter rendering the visualization
unusable. Therefore, we have developed an edge bundling strategy
suitable for our task.

Edge Bundling
The most primitive way to show the cluster distribution among the
groups is to draw straight lines connecting the data records. This ba-
sic approach is for instance employed by Seo and Shneiderman [25]
as an add-on feature of their HCE software. As discussed earlier, this
method does not scale well. Even in small datasets it is hard to identify
trends. Figure 5(a) shows the comparison of two heat maps with about
400 data records. While at the top the data records remain mostly

(a) (b)

Fig. 6. (a) The naive approach using direct connections. (b) Our
bundling strategy, where we introduce support points (green) through
which the curves are routed. Support points are sorted based on the
destination cluster of their connection. This technique minimizes cross-
ings between the clusters at the cost of crossings between the support
points and their cluster.



within the same cluster, everywhere else crossings between clusters
can be observed. Using brushes to highlight records improves the sit-
uation slightly, but relies purely on interaction.

One could argue that the straight lines work reasonably well in
parallel coordinates plots, especially if some basic clutter reduction
methods such as using transparency are employed, which should work
equally well in our analogous system. However, typically parallel co-
ordinates plots are not used to show data that is evenly distributed
along an axis (except for cases where they are used to show categorical
data) in the way Matchmaker does.

One possibility to address this problem would be to sort the records
within clusters, since, as stated before, the order within a particular
cluster has no a priori meaning. Resorting the data records in the clus-
ters by taking their position in the compared group into account can
reduce the number of crossings significantly. However, since we want
to employ position as a visual variable, and want to compare more than
two groups simultaneously, this is not an option.

As a consequence, using methods that rely on sorting for crossing
reduction, as for example Holton’s method of hierarchical edge bun-
dles [11] does, is not possible, even when a hierarchy behind the data
is available (e.g., when a hierarchical clustering algorithm was used
to produce the clusters). We therefore developed a bundling strategy
which:

• makes use of the grouping of records into clusters,

• makes use of the knowledge about the destination position of a
record and

• minimizes crossings of bundles between clusters by accepting
crossings of individual lines within clusters.

The basic idea is sketched in Figure 6(b). For every record in every
group we introduce a support point (green in Figure 6(b)). Records

within a cluster are connected to any of the support points within the
cluster, but never to a support point from another cluster. The support
points are ordered, so that the topmost support point is associated with
the topmost cluster in the target group for which the source cluster in
the source group has a record. Once this point has been designated,
the next highest point of the source cluster is associated with the next-
highest equivalent record. If there is another equivalence between the
clusters, the target cluster’s next point is used (as for the connection
of r4 in g1.c1 to its equivalent in g2.c1 in Figure 6(b)). Otherwise the
next cluster is searched for equivalences. If there is one, the points are
associated (as for example the connection of r3 in g1.c1 to g2.c2). This
is repeated for all clusters of the source group. The support points in
the source cluster then are iteratively connected with the topmost free
record in the source cluster that is connected to the topmost target
cluster. This is done for the target clusters as well.

As a result, all records from a target cluster which connect to the
same source cluster are assigned to control points that are adjacent in
both the source and the target cluster. Therefore, all connections be-
tween two clusters from the source and the target group now run in
parallel, minimizing the crossings between control points. This tech-
nique enables a user to easily identify trends as well as outliers. The
main trends are shown as wide bands, connecting the clusters at low
angles, if the compared data is somehow similar. Outliers are easily
perceived as thinner bands at steep angles that cross several groups.
As a trade-off, there are now many crossings between the clusters and
their control points, making the precise association between records
of two groups difficult for non-trivial cases. However, since this is
not possible with any other bundling strategy either, and can be alle-
viated using interactive brushing, we believe the bundling strategy is a
significant improvement.

Figure 5 (a)-(d) illustrates the different approaches for showing con-
nections. Figure 5(a) uses straight lines and no bundling, in Figure

Fig. 7. The Matchmaker’s overview displaying 39 different dimensions (78 in total) showing patient and cell line gene-expression data with 400
statistically filtered and clustered genes each. The dimensions are grouped according to diseases (e.g., Cirr = Cirrhosis). The left heat map is
the root group containing all experiments clustered together. Ribbons connect the experiments while abstracting the individual genes, showing the
relations between clusters among the groups. While the genes in the Cirr group are clustered similarly to the combination of all dimensions in Root,
many differences between clusters are evident between HCC B and H3B. The orange overlay highlights all genes selected in the second cluster of
the Root group, showing how this cluster spreads over the compared groups.



(a) (b) (c)

Fig. 8. Different states of the detail mode (also shown in Figure 1). (a) The detail view displaying three selected clusters in detail heat maps and
one selected record for which orthogonal stretching is used to be able to show its caption (see (1) and (2)). Notice the single visible record in the
detail heat map (3) out of the larger cluster to its right. The other elements are hidden because they do not occur in one of the selected clusters.
(b) The detail view showing the same data with orthogonal stretching applied for the selected heat map ((4) and (5)). Notice that the heat maps
with selected elements have more than twice the height as in (a). (c) The otherwise hidden elements (6).

5(b) the bundling strategy was applied, again using straight lines. This
makes the differences between the left and the right group easily rec-
ognizable. The exact nature of changes of the clusters is now obvious.
A further visual improvement can be achieved by replacing the lines
with spline curves, as shown in 5(c). While this visual representation
is already very clear, due to the many parallel curves it suffers from
Moiré patterns in some situations. Additionally, abstracting the indi-
vidual connection lines using ribbons is an option (see Figure 5(d)).
Matchmaker supports both, using individual curves and ribbons, and
leaves it up to the user to choose. Ribbons have three advantages over
individual curves: there are no Moiré patterns, they further reduce vi-
sual clutter and they improve rendering performance. This comes at
the cost of hiding the associations of individual elements. To amend
this, we employ a details-on-demand strategy: as soon as a user hovers
over a ribbon the contained curves are rendered.

Overview Mode

The overview is the starting point after the user finishes the group-
ing and statistical preprocessing in the grouper view. In this mode we
show several groups of dimensions and the connection curves or rib-
bons simultaneously. To minimize visual clutter, we have reduced the
spacing between the control points in the overview mode, resulting in
slimmer ribbons or bundled curves.

As discussed before, Matchmaker shares some basic properties with
parallel coordinates. To alleviate the problems of static parallel coor-
dinates such as following a set of lines across several axes or com-
paring between two particular axes [28] – which are equally rele-
vant in Matchmaker – we provide the ability to brush records and
rearrange axes, which are common in many parallel coordinates im-
plementations. Figure 7 shows the overview with a brushed cluster.
Notice that brushing for clusters or ribbons either via the highlight-
on-hover feature or persistent brushing with colors is reflected in the
whole overview, giving a good impression of the elements’ distribu-
tion across all groups.

Interactive re-arranging is achieved by dragging the group’s caption
in the group bar to the desired position. The group bar always reflects
the order of groups while the blue slider indicates which groups are
visible. Individual re-clustering of a group, for example with different
parameters, removing or duplicating of groups is achieved using the
group bar’s context menu.

In some cases, users may want to see only three or four groups to be
able to inspect relations more clearly. This can be achieved by drag-
ging the slider in the group bar at the bottom of the overview to include
only the desired groups. The other groups’ heat maps are hidden, but
their caption remains visible in the group bar. The group bar therefore
always helps the user to remember which other groups are currently
available, albeit not visible.

Even though the overview is able to convey the main trends in the
data, for a deeper understanding of the dataset a drill-down to the

level of individual data records is necessary. To make this possible
Matchmaker uses a detail mode, which is activated by using the mouse
wheel. We use animated transitions to switch between overview and
detail mode, thus making the changes of the layout transparent to the
user.

Detail Mode

Initially, the detail mode (see Figure 1), similar to the overview,
presents the heat maps of two groups and the relations between them.
However, several GUI elements were added: The cluster bar (at the
outer sides of the heat maps in green respectively gold when selected)
allows the user to pick individual clusters for detailed inspection. Mul-
tiple clusters can be selected by pressing the Ctrl-key while selecting
the clusters. Furthermore, we provide a slider next to the cluster bar,
which simplifies the selection of multiple clusters at the same time. Fi-
nally, buttons at the top corners allow the user to slide-in dendrograms,
showing the relations between records as determined by a hierarchical
clustering algorithm.

Figure 8 shows the detail view with three clusters selected for com-
parison in different states. Figure 8(a) shows the default spacing where
every heat map has a height proportional to the number of elements it
contains. For every record in one of the selected detail heat maps the
clusters from the target group are selected. Records of the target group
that are not in the selected source clusters are hidden, which is most
evident in the single enlarged element at the bottom which belongs to
a larger cluster (see (3) in Figure 8(a)). Hiding non-referenced records
allows us to show the relevant, referenced records at maximum size.
Hidden records are indicated by the caption in the gray tool-bar below
the detail heat map, which is shown when a record is selected or the
mouse is hovering over the heat map. In addition, the relation of size
between the overview and the detail indicates hidden records.

The detail heat maps use orthogonal stretching for their records [24]
to show currently selected and immediately surrounding records (see
(1) and (2) in Figure 8(a)). Optionally, orthogonal stretching can also
be employed for whole detail heat maps (cf. (4) and (5) in Figure 8(b)),
enabling a more detailed analysis of the selected heat map. Compared
to Figure 8(a), several more records have captions in Figure 8(b), since
more space is available.

In some cases, hiding records might not be desirable, therefore it
can be turned off. An example is shown in Figure 8(c), marked with
(6). The previously hidden records at the bottom of the large heat map
on the right are naturally not connected to records on the left. Showing
or hiding can be triggered by clicking the button in the tool bar.

While individual records are rescaled to fit within the current size
of the heat maps, we chose to define a minimum size for a detail heat
map. This ensures that all heat maps in the detail view are usable and
not reduced to only a couple of pixels. If the number of heat maps is
too large to be shown simultaneously, some heat maps at the bottom
are culled since they are out of the view frustum. They can be brought



Fig. 9. Detail dendrogram with dynamic adjustment of hierarchy cut-off
for cluster selection. Changes in cut-off are immediately reflected in
both the overview and the detail heat maps.

back into focus by reducing the number of selected heat maps.
Finally, the button at the top corners makes a dendrogram for dy-

namically adjusting the size of clusters appear (see Figure 9). To
change the cluster size, the user can drag the cut-off bar up and down
the hierarchy and the cluster borders are set where it is released.

3.4 Scalability
The proposed methods and the underlying implementation perform
well for datasets with up to 100 dimensions and up to 2000 data
records on standard hardware (an Intel Core Duo CPU with an
NVIDIA GTX 8800 GPU and a 22 inch screen with a resolution of
1680x1050). The number of dimensions is not a hard limit, as they are
managed in the grouper view where a subset of combined dimensions
can be selected for the analysis. By default, the Matchmaker view can
present up to 10 groups of which 6 can be rendered simultaneously, the
rest is accessible using the group bar at the bottom. This was found to
be a good compromise between the desire to show more data and the
desire to avoid visual clutter. This can be changed in the settings to
accommodate unconventional displays, for example. How many data
records the Matchmaker can handle depends largely on the number
of clusters and the similarity of the groups. Given the described hard-
ware configuration, experiments showed that, for about 10 clusters, the
technique can handle up to 3000 data records with acceptable visual
clutter. However, since records cannot be resorted, a larger number
of clusters or vastly different datasets result in a growing number of
crossings. Our order-preserving bundling technique produces a read-
able overview comparison for up to 20 clusters for datasets with less
than 2000 records. However, by using the detail mode for the cluster
inspection, the user can analyze many more clusters.

3.5 Implementation
The Matchmaker technique is implemented in Java as a part of the
Caleydo visualization framework1 [19, 30]. For rendering, we use the
Java binding for OpenGL (JOGL)2. We access R via rJava3.

The images were produced using a real-life published dataset [15],
except for Figures 2(b), 11(a) and 11(b) where we used the dataset dis-
cussed in Section 4.2. The data is a compound set of gene-expression
experiments from patients with different diseases, on which we based
the experiment grouping for the comparisons. The color coding for
all heat maps is on a logarithmic scale. The color mapping from
green to black to red is the standard for heat map visualizations of
gene-expression data. We also provide alternative mappings suitable
for red-green blind users. All other colors for both the visualization
technique as well as the figures in this paper were taken from Color
Brewer [2].

1http://www.caleydo.org
2http://kenai.com/projects/jogl
3http://www.rforge.net/rJava/ interface

4 CASE STUDIES

In the following, we will present two case studies of analysis con-
ducted with the Matchmaker technique. The first shows how Match-
maker can visualize differences between clustering algorithms, the
second explains a real-world use case for our technique in biomolecu-
lar data analysis.

4.1 Comparison of clustering algorithms

Usually, data analysis tools provide a wide range of clustering possi-
bilities to the user. There are several types of clustering algorithms
(e.g., partitional vs. hierarchical, unsupervised vs. supervised) and
other influential factors such as the choice of a distance measure or
parameters. However, users are often not aware of the consequences
of these factors, and cannot anticipate the results. Due to the flexi-
ble arrangement of dimension grouping in Matchmaker, the user can
load the same data (sub)sets multiple times into the comparison view,
showing each as an identical heat map. In turn, each of the underly-
ing datasets can be clustered separately with either the same algorithm
and varying parameters, or completely different algorithms. This way,
Matchmaker enables a user to understand the impact of the cluster
algorithms and its parameters applied to a concrete dataset. Conse-
quently, the user can decide which clustering algorithm fits the data
best. Figure 10 shows the clustering algorithm comparison scenario
using data from [15]. Experiments (i.e., dimensions) of two cell lines
were grouped together and clustered multiple times using different al-
gorithms: hierarchical clustering on the left, k-means clustering in the
middle and affinity propagation on the right. All algorithms were pa-
rameterized so that they would choose a similar number of clusters
and the same distance measure (Euclidean distance) was used. Figure
10 clearly shows that the k-means algorithm (used in (b)) assigned ob-
viously differently expressed genes to the same cluster, while affinity
propagation and the hierarchical clustering algorithm created separate
clusters (highlighted in yellow and orange respectively in Figure 10).
At the bottom of the heat maps k-means splits the group of genes,
which both the tree clustering algorithm and affinity propagation as-
signed to one cluster, into three separate clusters, with no clear evi-
dence of difference between the elements. This leads to the conclusion
that the k-means algorithm is not a good choice for this data, while the
two other algorithms achieve comprehensible – but still different – re-
sults.

Fig. 10. A comparison of three clustering algorithms run with 1800
records: (1) hierarchical clustering, (2) k-means and (3) affinity prop-
agation. The yellow and orange brushing show how the k-means algo-
rithm assigned obviously different records to one cluster, while the other
two worked as desired.



(a) (b)

Fig. 11. Screenshots of the Caleydo Matchmaker taken during an analysis session by a biologist. (a) We see four groups (1-4). The first two,
C57 and AJ are homogeneous. Each consisting of 9 experiments: control, 7 days of intoxication and 8 weeks of intoxication, with 3 replicates per
category (from left to right). The third (Combined AJ and C57) contains all experiments from the first two groups. The fourth group is a copy of
the first to enable better comparisons. Notice the inhomogeneous clusters for the combined group (5). Clustering the single columns yields more
consistent results, allowing a biologist to assign meaning to a cluster. The biologist brushed the bottom cluster in AJ (6), identifying that the genes
in this cluster are split into two groups in C57, one being similarly regulated over time to AJ (7), the other (8) containing genes not-deregulated
(equally regulated) in C57 while upregulated (going up over time) in AJ (6). Since this difference may be important, he chose to explore this cluster
in detail. (b) We see the deregulated cluster in AJ on the right, and the not-deregulated cluster for C57 containing the same genes on the left. By
exploring the genes and using Caleydo’s built-in features to find contextual information on genes, he was able to hypothesize that these genes are
involved in apoptosis and thus alter the phenotype of the liver tissue by removal of cells damaged by oxidative stress.

4.2 Biomolecular analysis by a biologist

Our collaborators from the Medical University of Graz are studying
why patients differ in their susceptibility to develop steatohepatitis (in-
flammation and fattiness of the liver) even when exposed to the same
amount of steatohepatitis-inducing conditions like alcohol abuse, di-
abetes or obesity. The reason for this difference in susceptibility to
steatohepatitis inducing agents has to be genetic, and the purpose of
our partner’s experiments are to define genetic regions or modifier
genes which are differentially expressed in these two groups and are
responsible for the different reaction to the same causative agent [18].

They use a mouse model of steatohepatitis induction, where an-
imals develop steatohepatitis features, like ballooning of hepatocytes
(break down of the cell’s skeleton) and Mallory-Denk-Body formation
(aggregates of misfolded proteins), after being fed with rodent chow
supplemented with DDC (3,5-diethoxycarbonyl-1,4-dihydrocollidine)
for 8 weeks [8]. Our collaborators identified two mouse strains, A/J
(AJ) and C57Bl6/J (C57), which show distinct phenotypes upon DDC
feeding. By histological analysis of liver tissue it is possible to deter-
mine that AJ mice develop steatohepatitic features, whereas C57 mice
do not. To determine which genes are differentially deregulated in the
two mouse strains, they performed an experiment where three groups
of animals in each strain were fed with DDC for 8 weeks, 7 days
or not at all (control). Gene expression data was generated from the
liver tissue of these animals using whole genome microarrays (Applied
Biosystems Inc). The analysis of this data involves finding deregulated
genes (i.e., changing expression over time) in the course of DDC feed-
ing in AJ animals, the responder strain, but are not deregulated in the
C57 animals, and vice versa. This analysis is difficult to perform with
traditional tools, which do not treat the groups individually.

Using the Caleydo framework and the Matchmaker visualization
technique, they were able to perform cluster analyses on the DDC
feeding experiment in each mouse strain separately. Figure 11 shows
two screenshots taken during an analysis session by a biologist. Fig-
ure 11(a) shows the regulation over time (control, 7 days and 8 weeks,
with 3 experiment replicates each) for different mouse strains: on
the left the C57 strain (1), next to it the AJ strain (2), then a group
where both were combined (3) and a duplicate of the C57 strain (4).
In the overview, we see that the bottom two clusters are very inho-
mogeneous (5). When following the highlights it becomes obvious
that if the clustering is done on a single strain the genes present in

the highlighted cluster in AJ are being split up into two clusters in
C57 (7 and 8 in Figure 11(a)). One of those clusters in C57 con-
tains genes not-deregulated (equal over time) in C57 (8). The expert
noted that these genes might be important in the different reaction of
C57 to DDC intoxication. He then continued to analyze this cluster
in more detail (Figure 11 (b)). While browsing the list of genes in
this cluster he found several genes involved in the regulation of apop-
tosis (programmed cell death) which might cause cellular turnover in
the liver and alter the phenotype by removing cells damaged by ox-
idative stress. The removal of these damaged cells, which are prone
to ballooning and have Mallory-Denk bodies by apoptosis, could be a
reason why these features of steatohepatitis are absent in C57.

The expert stated that for him the key advantage of clustering dis-
tinct groups (AJ and C57) separately is that he can quickly assign a
biological meaning to a cluster (for example ”up-regulated in AJ”).
Matchmaker then enabled him to follow these genes in the other strain
and see how they behave there. This is more difficult if the groups are
clustered together, as the clustering algorithm tries to find a best match
over both groups and thus makes the clusters inhomogeneous.

4.3 Discussion

When observing our users during the case studies we noticed that the
process of data preparation (filtering, choosing and generating groups,
running clustering algorithms on the groups) needs to be improved.
While this was not the focus of our research for this paper, it is crucial
for an adoption by end-users that this process is made intuitive.

For the Matchmaker interface itself, feedback on ease of use was
positive throughout. However, we noticed significant differences of
how easily users understand the benefits of the methods for the two
use cases. When comparing clustering algorithms, the meaning of the
groups and their relations are immediately obvious - one group corre-
sponds to one clustering algorithm and all groups show the same data.
However, for biomolecular analysis where meaningful sub-spaces of
the data need to be created in order to benefit from the Matchmaker
technique, a more thorough introduction was necessary. Only after the
expert was instructed that clusters are now largely homogeneous, al-
lowing him to easily identify how clusters change between groups, did
he realize the benefits for his application.



5 CONCLUSION AND FUTURE WORK

In this paper we have presented Matchmaker, a visualization technique
that makes it possible to split and individually combine a multidimen-
sional dataset into several groups of dimensions, run clustering algo-
rithms on these groups separately and then visually compare the re-
sults. This enables users to find patterns in the data which otherwise
would be obscured, and to compare the effects of different cluster-
ing algorithms. In an informal case study we have shown that our
technique is a valuable tool for biomolecular data analysis, especially
combined with other features of Caleydo which help bring the raw data
into their biological context. We also demonstrate how the technique
can be used to evaluate the quality and properties of clustering algo-
rithms or their parameters. We believe that this can be very helpful in
choosing the right clustering algorithm for a wide audience.

In the future, we want to make our technique more scalable, to be
able to visualize whole-genome data and also data generated by other
high-throughput techniques like metabolomics, proteomics and auto-
mated analysis of tissue sections. This will also be very relevant when
these individual datasets are combined in a holistic analysis for the
upcoming field of systems biology. We plan to do so by introducing
methods that hint at potentially interesting patterns while hiding un-
interesting ones. Furthermore, an additional level of focus, as already
used in Caleydo’s hierarchical heat map [19], will help dealing with
large-scale data. However, sensible routing of connection curves that
still convey trends is difficult in such a hierarchical setup and therefore
will be an interesting challenge.
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