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The molecular structures and energetic stabilities of the three pure polymorphic forms of crystalline HMX
were calculated using a first-principles electronic-structure method. The computations were performed using
the local density approximation in conjunction with localized “fireball” orbitals and a minimal basis set.
Optimized cell parameters and molecular geometries were obtained, subject only to preservation of the
experimental lattice angles and relative lattice lengths. The latter constraint was removed in some calculations
for f-HMX. Within these constraints, the comparison between theory and experiment is found to be good.
The structures, relative energies of the polymorphs, and bulk moduli are in general agreement with the available

experimental data.

I. Introduction

Plastic-bonded explosives (PBXs) are highly filled (ca. 90%
w/w filler) composite materials comprising grains of a high-
explosive (HE) material held together by a polymeric binder.
There is a need to better understand the physical, chemical, and
mechanical behaviors of the constituents of PBX formulations,
as well as the interactions between them, from fundamental
theoretical principles. Among the quantities of interest are
thermodynamic stabilities, reaction kinetics, equilibrium trans-
port coefficients, mechanical moduli, and interfacial properties.
These properties are needed, generally as a function of stress
state and temperature, for the development of improved micro-
mechanics models which represent the composite at the level
of grains and binder. Improved micromechanical models are
needed to describe the response of PBXs to dynamic stress and/
or thermal loading to yield information from which constitutive
laws for use in continuum modeling approaches can be
formulated and/or parameterized.

The compound octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine
(HMX) is the energetic constituent in several high-performance
PBX formulations.! It exists in three pure crystalline forms,
denoted as a-, -, and 6-HMX. Figure 1 contains a three-
dimensional rendering of the unit cell for f-HMX, which is the
thermodynamically stable form under ambient conditions.
However, post-mortem analysis®> of samples recovered from
safety experiments involving low-velocity projectile impacts on
the HMX-based PBX-95013 has revealed formation of 0-HMX
in the vicinity of damaged regions within the material. It is also
known that a layer of 6-HMX is formed at the solid—melt
interphase in deflagrating HMX. These observations present a
safety concern since 3-HMX is considerably more sensitive than
p-HMX.

In this paper we report quantum mechanical studies of the
crystal structures of a-, - and 0-HMX. Previous calculations
using a quantum mechanical approach for these and a similar
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Figure 1. Unit cell of f-HMX.

HE material (RDX) have been reported,*™® but none of this
previous work has examined such materials in the condensed
phase. Although gas-phase calculations have been performed
on various HE materials, such calculations fail to account for
important condensed-phase effects. The purpose of the present
work is to assess the usefulness of a density functional approach
for computing the condensed-phase properties of HMX, and
represents a necessary step in a progression toward first-
principles predictions of some of the physical and chemical
properties mentioned previously. The criteria by which we judge
our results are the comparison of predicted and measured crystal
structures and relative energetics of the polymorphs to experi-
ment, and a comparison of the measured and calculated bulk
modulus and its pressure derivative for -HMX.
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The sections of this paper are organized as follows: The
computational methods are described in section II. Section III
contains a comparison among the results for the three poly-
morphs and discussion of the important points. Finally, section
IV contains concluding remarks.

I1. Computational Methods

The electronic-structure method used to perform the calcula-
tions described in this work is based on norm-conserving
pseudopotentials'®!! and the local density approximation (LDA)
limit of DFT, but uses the Harris functional'? and a minimal
nonorthogonal local-orbital basis of slightly excited orbitals.'3-14
The LDA limit is a reasonable approximation for the HMX
polymorphs calculated here because HMX forms a molecular
crystal largely via electrostatic interactions rather than hydrogen-
bonding interactions. By contrast, this approach would not be
suitable for the HE TATB (1,3,5-triamino-2,4,6-trinitrobenzene)
which exhibits both strong inter- and intramolecular hydrogen
bonding.

The electronic eigenstates are expanded as a linear combina-
tion of pseudoatomic orbitals within a localized sp® basis for
oxygen, nitrogen, and carbon, and an s basis for hydrogen. These
localized pseudoatomic orbitals, which we refer to as “fireballs”,
are slightly excited due to the boundary condition that they
vanish at some radius 7 (Yfop()l=r, = 0) instead of the
“atomic” boundary condition that they vanish at infinity. The
cutoffs (2.9, 3.8, 3.6, and 3.4 A for H, C, N, and O, respectively)
are chosen in a way that preserves the relative ionization
energies and relative atomic sizes for each species. We
accomplish this by noting that the atomic energies of the atoms
all seem to follow a near “universal” behavior as a function of
re.'* The fireball boundary condition has the effect of limiting
the range of coupling matrix elements between orbitals on
different atoms, which creates a sparse Hamiltonian matrix.

Because the Harris functional is inherently nonself-consistent,
its applications are somewhat limited to systems which do not
exhibit a significant difference in the electronegativity of their
constituents, such as in the case of HMX. As a result, a recent
extension of the Fireball method is used to self-consistently
evaluate the atomic densities, allowing one to deal with systems
which exhibit a significant charge transfer between atoms.'> This
self-consistency method maintains the short-range nonorthogonal
local-orbital basis, real-space analysis (except in the simple
Ewald summation), and there are no integrals involving four
or more centers. This first-principles-derived tight-binding-like
methodology has been applied to many complicated systems
and has proven to be computationally fast and quantitatively
accurate.!

Within this electronic structure method, forces for each atom
are determined using a variation of the Hellmann—Feynman
Theorem.!¢ The derivatives taken to determine the forces are
of the matrix elements themselves; therefore, the Pulay correc-
tions!” are included exactly and without additional effort. The
resulting forces are used in conjunction with a dynamical
quenching method to search for local energy minima. In this
approach the equations of motion are solved using a Gear
predictor—corrector algorithm, and the resulting kinetic energy
is calculated; for a maximum kinetic energy, as defined by the
temperature of the system, the velocities are quenched. The
process is repeated until a zero-force configuration is obtained.

Because the calculations reported here consist of materials
in the condensed phase, periodic boundary conditions are used.
For the integration over the Brillouin zone four special k-points
of the irreducible wedge are used.'®! Compiler directives were
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TABLE 1: Experimental Space Groups, Lattice Parameters,
and Molecular Volumes for the Three Pure Crystalline
Forms of HMX (a2, 2!, and §%?)

lattice lattice
crystal space constants (A) angles (°)
phase  systems group a b ¢c A B C

B monoclinic  P2/c 6.54 11.05 8.70 90 1243 90
o orthorhombic Fdd2 15.14 23.89 591 90 90 90
0  hexagonal P6,orP6s 7.71 7.71 32.55 90 90 120

implemented into the electronic structure code so that calcula-
tions for the band structure energy at each special k-point could
be performed on a separate processor. This allows the code to
run in parallel over a number of processors equivalent to the
number of special k-points (Ny), yielding a speed-up of
approximately M. All calculations were performed using four
processors on an SGI Origin R10000.

I11. Results for the Three Pure HMX Polymorphs

In this section our first-principles electronic structure predic-
tions for the three pure polymorphs of HMX (a., f3, and 0) are
presented, compared to experiment, and discussed. In addition,
estimates of the bulk moduli are presented. The observed
experimental structures with relevant space groups and lattice
parameters?’~22 are provided for comparison in Table 1.

We considered two levels of constraint in our calculations.
In the first, which we refer to as “uniform dilation”, we fix the
lattice angles to measured values for the appropriate polymorph
and then increase or decrease the lattice lengths by a uniform
percentage of the experimentally observed values, i.e., a =
(I + €)aexp, b = (1 + €)bexp, and ¢ = (1 + €)cexp, Where € =
40.01, £0.02, ..., etc. A complete unconstrained optimization
of all atomic positions for a given set of lattice lengths and
angles is then performed. This approach was applied to all three
polymorphs.

For the case of f-HMX, more extensive calculations were
performed using an “independent dilation” approach. In this
case, the energy of the crystal was determined for a unit cell in
which the lattice parameters a, b, and ¢ were independently
increased or decreased by a percentage of the experimental
value, again with lattice angles fixed to experimental values.
The procedure for independent dilation was implemented by
cycling through sequential, independent variations in a, b, and
¢, with full atomic position optimization for each (a, b, c) triad.
That is, a was varied for fixed values of 5 and ¢ to obtain the
minimum energy Emin = Emin(q; a, b, ¢), where q denotes atomic
positions. This process was repeated successively for each lattice
length until the minimum energy configuration Epmin = Emin(q;
a, b, ¢) was determined. This approach has the added benefit
of yielding a fairly good representation of the potential-energy
surface E = E(q; a, b, c¢) in the neighborhood of the minimum.
In all cases, the reciprocal lattice vectors (special k-points) for
the integration of the Brillouin zone were scaled according to
the corresponding choice in lattice parameters a, b, and c.

Figure 2 contains plots of the calculated energies of each
polymorph (total energy per atom) for several relative volumes,
using the uniform dilation approach. The relative volumes shown
in Figure 2 are defined with respect to the experimental volume
of the f-HMX (V, = fop = 259.70 A3/molecule). In general,
the results are of quadratic form, but the low symmetry of the
structures and the imposition of constraints on the lattice angles
lead to nonmonotonicity in the results. Theoretical predictions
of the relative energies of the three polymorphs are provided in
Table 2. We find that Eg < E, < Es, in agreement with
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Figure 2. Energy (per atom in eV) as a function of the relative volume

(with respect to the experimental volume of the individual polymorph)
for the three pure crystalline forms of HMX.

TABLE 2. Theoretical Relative Energy in eV, Bulk Moduli
(K,) in GPa for the Three Pure Crystalline Forms of HMX*

phase E (eV/molecule) K, (GPa)
< 0.0000 12.5
B 0.0648 10.2
ob 0.1497 38.6
ol 0.4046 48.0

4 The relative energy is the energy per HMX molecule as measured
relative to the energy of an HMX molecule in the lowest energy
crystalline form (5-HMX). The bulk moduli were determined by fitting
the data from the curves in Figure 2 to a parabola and then calculating
the bulk moduli by K = (1/V)(E/dV?) " For the case of uniform
dilation (see text). © For the case of independent dilation (see text).

TABLE 3: Comparison between the Experimental and
Theoretically Determined Volumes for the Three Pure
Polymorphs of HMX

Vesp Vineor relative
phase (A’molecule)  V/Vs  (A’/molecule) V/Vg  error %
Bt 259.70 1.0000 236.92 1.0000 8.8
pe 259.70 1.0000 246.20 1.0392 5.2
a’ 267.34 1.0294 248.36 1.0483 7.1
o 279.38 1.0758 262.92 1.1097 5.9

“For the case of uniform dilation (see text). ” For the case of
independent dilation (see text).

experiment.”* Gas-phase calculations of the different HMX
polymorphs show a similar ordering and suggest a correlation
between the impact sensitivity and the total energy for these
three forms.

Within the uniform dilation constraint, the optimized unit cell
volumes of the three pure polymorph HMX structures were
calculated. These results are contained in Table 3, along with
the experimentally determined volumes, and indicate reasonable
agreement between experiment and theory. (Note that the results
are presented as volume/molecule for ease of comparison among
the polymorphs, which differ in the numbers of molecules per
unit cell.) The calculated unit cell volumes are in error by 5.2%,
7.1%, and 5.9% for f3-, a-, and 6-HMX, respectively, with the
calculated density higher than measured in each case. The
relative volumes are in fairly good agreement with experiment.
The predicted independent dilation optimized S-HMX crystal
parameters are a = 0.97aeyp, b = 0.95bcyp, and ¢ = 0.99¢cyp,
while uniform dilation yielded lattice parameters a, b, and ¢
that are 95% of the experimental values.
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The calculated bond lengths and bond angles of the S-HMX
molecules in both minimum energy structures compare favorably
with the experimental structure. For the independent dilation
method, the RMS deviation in bond lengths from experiment
was 0.083 A with a maximum deviation of 0.143 A in the
equatorial N—N bond length. The uniform dilation method gave
an RMS bond length deviation of 0.082 A with a maximum
deviation of 0.146 A in the equatorial N—N bond length. In
addition to the results given for the bond lengths, the RMS
deviation in bond angles was 3.8 (3.7) degrees with a maximum
deviation of 9.3 (8.7) degrees for the independent (uniform)
dilation methods. The maximum deviation is in the C—N—C
angle encompassing the equatorial N—N bond.

In general, errors in the N—N bond length and C—N—C
angles encompassing the equatorial N—N bond contribute
significantly to a larger RMS deviation from experimental bond
lengths. These relatively large deviations from experiment are
attributed to the combination of using a minimal basis set as
well as the LDA limit of DFT. It is expected that improvements
in both levels of theory would significantly improve these N—N
bond lengths. The RMS deviation from experiment is only 0.051
A (0.052 A for uniform dilation) when these N—N bond lengths
are removed in the RMS calculation.

Calculations to yield 0 K estimates of the bulk modulus, K,
were performed. Specifically, the bulk modulus was ap-
proximated by fitting the results shown in Figure 2 to a parabola
[i.e., K, = (1/V)(dPE/dV?)]. This approximation is appropriate
only to the extent the extent that the relative compressibility of
the unit cell is isotropic under hydrostatic loading; otherwise,
uniform dilation will result in a nondiagonal, nonuniform stress
tensor rather than a simple hydrostatic pressure. The approxima-
tion is improved upon somewhat in the case of independent
dilation (done for S-HMX only). However, in either instance
the predicted values must be regarded as first-order estimates,
due to the constrained lattice angles and use of the uniform
dilation approximation.

The bulk modulus and its pressure derivative K’ have been
experimentally determined for room-temperature -HMX;* the
values are 13.6 GPa and 9.3, respectively. For the case of
uniform dilation, our estimate for that polymorph, as recorded
in Table 2 is in error by 25%. Interestingly, we predict that
B-HMX has a significantly lower bulk modulus than either a-
or 0-HMX, whose calculated values are 33.6 and 34.8 GPa,
respectively. Unfortunately, corresponding experimental values
for these polymorphs do not exist.

The bulk modulus for S-HMX for the case of independent
dilation is also included in Table 2. Here, the set of points fit
to quadratic form was taken to be that which defined the lower
edge of the “envelope” of energies obtained in a plot analgous
to Figure 2 for the entire set of (50 locally minimized) energies
obtained during the independent dilation algorithm. The value
obtained in this case is significantly better than that obtained
for the case of uniform dilation, K, = 12.5 GPa, and is in error
from experiment by 8%.

Finally, a calculation of K, and its pressure derivative K" was
performed for f-HMX using the Murnaghan equation of state
(EOS)® for the case of uniform dilation. The Murnaghan EOS
is the one originally used to fit the experimental p — V data.?*
Our predicted values, K, = 12.5 GPa and K" =7.5, agree fairly
well with the measured ones, K, = 13.6 GPa and K’ = 9.3.
The Murnaghan EOS was not used for the case of independent
dilation due to ambiguities in how best to fit this multi-parameter
function to the data.
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Figure 3. Contour plots demonstrating the energetics for f-HMX as a function of the lattice parameters, a, b, and c¢. The contour interval is

2.875 meV.

As mentioned previously, the independent dilation scheme
leads to a set of geometry-minimized energies in the neighbor-
hood of the potential energy minimum, subject only to imposi-
tion of fixed lattice angles; i.e., a potential energy surface £ =
E(a, b, c¢). The results of a multidimensional interpolation of
50 minimized energy values for S-HMX are shown in Figure
3. The contour plots in Figure 3 reveal qualitative features of
the energetics of B-HMX. The total energy of the unit cell rises
steeply as the crystal is compressed along the direction of the
c lattice parameter (panels b and c; see also Figure 1).

Closer examination of the crystal structure shows that
compression along ¢ would result in a direct interaction between
the axial NO, groups on neighboring HMX molecules. Com-
pression along the @ axis also results in an increase in energy
(panels a and b). However, compression along a results primarily
in an NO,—CHj interaction that is not as spatially constrained
as the NO,—NO, interaction described above. As a result, the
energy contours increase with compression, but not as steeply
as for compression along the ¢ axis. Likewise, compression
along the b axis (panels a and c) results primarily in an NO,—
CHj; interaction that is also not as spatially constrained as the
NO,—NO; interaction. These interactions also carry implications
for the possible condensed phase thermal decomposition mech-
anism of HMX, which will be the subject of a forthcoming
publication.

IV. Concluding Remarks

In this paper, quantum mechanical methods were used to
predict the bulk properties of the three pure crystalline phases

of HMX. Two schemes, corresponding to full geometric
optimization of atomic positions with either fixed lattice angles
and constant relative lattice lengths (“uniform dilation”) or fixed
lattice angles and independent lattice lengths (“independent
dilation”) were used to study the sensitivity of the results to
constraints in the calculations. This work is a first step toward
obtaining theoretically determinable, first-principles input which
can be used for improving micromechanical simulations that
are increasingly employed to aid in the development of
continuum models for plastic-based explosives.

Both uniform and independent dilation were used to find
optimized structures and energies for f-HMX. These yielded
comparable results for the structure, bulk modulus, and pressure
derivative; and the results from both methods were in reasonable
accord with experiment. Optimized molecular structures, relative
energetics, bulk moduli and pressure derivatives were computed
for the two remaining polymorphs, within the constraints
associated with uniform dilation. The predicted energetic
ordering of the three phases agrees with the results of gas-phase
calculations and experiment. Moreover, the present prediction
of the bulk modulus and its pressure derivative obtained for
B-HMX using the Murnaghan equation of state phase agrees
well with experiment.

Overall, the computational method used here reasonably
predicts bulk phase properties of the three phases of HMX and
seems to provide a defensible description of the crystalline
environment of HMX. Future work will focus on prediction of
the kinetic properties of condensed phase HMX using extensions
of this methodology.
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