Towards an Automatic Algorithm for the
Numerical Solution of Parabolic Partial
Differential Equations Using the Method of
Lines

J. Lawson and M. Berzins

Universily of Leeds

1 Introduction

An algorithm which uses the Method of Lines to solve parabolic partial
differential equations (PDEs) in one space dimension is presented. The
spatial mesh used in the spatial discretization of the PDE is modified by
the algorithm in such a way that the energy norm of the relative spatial
discretization error is controlled with respect to a user specified tolerance.
An accuracy tolerance to be used in the solution of the ordinary differen-
tial equations (ODEs) is calculated in order that the spatial discretization
and global time errors are approximately balanced. This ensures that the
Method of Lines can be used in an automatic way to solve parabolic PDEs
in one space dimension. The results of numerical experiments are used to
illustrate the performance of this algorithm.

The Method of Lines is widely used in general purpose software for the
numerical solution of parabolic PDEs. In the Method of Lines the spatial
derivatives in the PDE are approximated at each point of a spatial mesh
using, for example, finite difference or finite element techniques. This re-
sults in a system of time dependent ODEs which can be solved using an
ODE solver. The accuracy of the Method of Lines is influenced by the
spatial discretization method used, the spatial mesh and the method of in-
tegration of the ODEs. The spatial discretization points should be chosen
so that the computed solution accurately models the true solution. The
ODEs should be integrated with just sufficient accuracy so that the global
time error does not significantly corrupt the spatial accuracy. In exist-
ing Method of Lines software, the user usually supplies a spatial mesh at
the start of the computation. More recent packages, such as SPRINT [4],
may then modify this spatial mesh during the computation. Most adap-

309 1472

310 Method of Lines

tive techniques currently available do not, however, attempt to control the
spatial discretization error explicitly. In the time integration, the standard
procedure is to control the local time error per step (LEPS) with respect
to an accuracy tolerance, tol. In general, this tolerance cannot be easily
related to the spatial discretization error.

The purpose of this paper is to present an automatic algorithm which
uses the Method of Lines to solve parabolic PDEs in one space dimen-
sion. The algorithm requires the user to provide only a specification of
the problem, an initial spatial mesh and a spatial discretization error toler-
ance. In the algorithm presented here, it is the energy norm of the relative
spatial discretization error that is to be controlled with respect to a user
supplied tolerance, EPS. This control is achieved through the use of an
h — refinement adaptive spatial mesh method, based on that proposed
by Bieterman and Babuska [5]. The novel feature of the algorithm is that
the accuracy tolerance used in the integration of the ODEs is calculated
automatically. It is calculated in such a way that the spatial discretization
and time integration errors are of the same order of magnitude, but so that
the spatial discretization error dominates the time integration error. Other
approaches in a similar spirit are those of Babuska and Luskin [1}, Johnson
[6] and more particularly Schofiauer, Schnepf and Raith [9]. The relative
merits of these approaches are discussed by Lawson [8].

The paper is structured in the following way. Section 1 describes the
Method of Lines and indicates how the global error may be decomposed and
estimated, Berzins [3]. This allows the error control strategy for the time
integration, proposed by Lawson, Berzins and Dew [7], to be summarized
in Section 2. Section 3 contains a summary of the adaptive spatial mesh
algorithm used to control the spatial error, while Section 4 explains how this
algorithm is modified to work with the error balancing approach. Finally,
in Section 5, the results of numerical experiments are presented which show
that the algorithm successfully controls the spatial discretization error, and
as a result, also the time integration error, automatically. This algorithm
appears to be a promising start to developing fully automatic mathematical
software for the numerical solution of PDEs.

1.1 Problem Class and Method of Solution

The class of parabolic PDEs to be considered is written as

0% = Lr(onn)as (sl
(z,) € = [a,b]x (0,1] (1.1)

and it is assumed that there exist real constants ¢; and ¢; such that

0<c; <cz,t) <cyforall (2,2) €Q (1.2)

J. Lawson and M. Berzins 311

For notational convenience and the sake of brevity, it is assumed that only
one PDE is to be solved and that the boundary conditions are of the form

ga(t,u(a,t)) =0, gs(t,u(b,t))=0 (1.3)
for t € (0,t.]. The initial condition has the form
u(z,0) = uo(z), z € [a, b]. (1.4)

The extensions of the methods discussed in this paper to systems of PDEs

or to problems with Neumann or mixed boundary conditions are straight-

forward, [8]. It is assumed that the PDE defined by the above equation is

well-posed and has a unique continuous solution u(z,t), for all (z,t) € 2.
The PDE is to be approximated at each point of the spatial mesh

b:a=z1<z2< - - <zN=b, (1.5)
which has N — 1 sub intervals of length h;, where h; = z;41 — z;, Jj=
1,2,...,N — 1. The spatial discretization scheme used here, to discretize

the PDE in space, is a modified version of the box scheme, [11], which can
also be thought of as a Galerkin Finite Element method with quadrature.
The method can be written as

. oU
(hj-rci-1/2 +hiciri2) 5 = 2Rjp2— Ri_1/2)
+ (hj-1fic1y2+ hifivry2) (1.6)
where R;;1/2 and R;_)/; are defined by

zj+ 2z, Ulzjit) + U(zj41,)

Riti2 = r(5) 7
U(zj+11t)_U(Ij’t)) j=2 N -1
hJ) [ERS)
T+ T U(z;,t) +U(zj-1,t
Rj_1/2 - r(J 21 l,t, (J) 2(.1 1),
U(zj)t)_U(zJ.—l’t)) j=2 .. N—'l
hj_l b b b

The quantities ¢j41/2, ¢j~1/2, fj+1/2 and fj_1/2 are defined similarly and
U(z;,t) is the approximate solution defined by the spatial discretization
method at the point z;. The boundary conditions at the points £ = a and
z = b reduce to the algebraic equations

ga(t,U(:L‘l,t)) =0, gb(t,U(ZN,t)) =0 (1.7)

and the initial condition is defined by evaluating the function ug(z) at the
spatial mesh points

312 Method of Lines

U(zj,0) = uo(zj), J=1...,N.

This spatial discretization scheme results in a system of differential al-
gebraic equations, given by equations (1.6) and (1.7), which can be written
as the initial value problem(i.v.p.)

AN(t)iJ = FN(ts U(t)), (18)
where the N dimensional vector, U(t), is defined by
U@) = [U(z1,1), U=z, 1), ..., Uz,)],

and Ay(t) is an N x N matrix defined in [3]. In practice equation (1.8) is
a stiff or mildly stiff system of time dependent ODEs that can be solved
using software based on the backward differentiation formulae (b.d.f.), e.g.
SPRINT [4], to compute the approximation, V(t), to the true solution,
u(t), of the PDE. The global error in the numerical solution can be ex-
pressed as the sum of the spatial discretization error, es(t) = u(t) — U(2),
and the global time error, ge(t, TOL) = U(t) — V(t). That is,

u(t) - V(t) = (u(t) - U@®)) + (U() - V(1)
es(t) + ge(t,TOL). (1.9)

E()

This can be estimated using the method of Berzins [3], which approximates
the global error at 2,41 by

E(tn+1) = M—I(AN(tn+1)E(tn) +knTEn+1)+len+1(tn+1,TOL), (110)

where E(t,) is the global error incurred at the start of the current time
step, kn = tn41 — tn. The spatial truncation error at #n41 is denoted by
TE,+1 (the estimation of which requires the spatial discretization error to
dominate the time integration error). The Jacobian matrix M = Ay —
knvJ, (J = %Ft‘fﬁ), is computed by the ODE solver and stored in its LU

decomposed form. Finally, lent1(tns1, TOL) is the local time error per
step.

1.2 Error Control in Codes for Solving Stiff ODEs

Most codes for solving time dependent ODEs control either the local time
error per step, (LEPS), with respect to a user supplied accuracy tolerance,
TOL, or the local time error per unit step (LEPUS), L&‘ﬂ%‘*—ﬂl. When
controlling the LEPS it is difficult to establish a relationship between the
accuracy tolerance, TOL, and the global time error, Shampine [10]. On

J. Lawson and M. Berzins 313

the other hand, if the LEPUS is controlled then it can be shown, Stetter
[12], that the computed solution satisfies tolerance proportionality, that is

ge(t, TOL) = v(t)TOL + o(TOL),

where v(t) is independent of TOL and v(t) and v/(t) are bounded on
[0,2.]. Here, o(TOL) is the notation used in [12] to denote a term that
is numerically negligible compared with terms of order TOL in the same
equation. Although LEPUS control is generally thought to be inefficient
for standard stiff ODEs, there is a fundamentally different situation in the
Method of Lines in that the time error control strategy must take account
of the spatial discretization error already present.

2 Balancing the Space and Time Errors in the Method
of Lines -

In order that the Method of Lines be used efficiently, the time integration
error should not dominate the error due to the spatial discretization of the
PDE nor should the ODEs be integrated with a much higher degree of ac-
curacy than that already attained in space. It follows that the spatial and
temporal errors should be balanced, although in practice the spatial dis-
cretization error must actually dominate so that the estimate of the spatial
truncation error remains accurate, [3]. However, it is difficult to select a
priori an ODE tolerance that will ensure that this is so. This is particularly
difficult if the LEPS is controlled by the integrator, since the global time
error need not be related to the chosen accuracy tolerance. In addition,
the spatial accuracy may vary with time, so any fixed ODE tolerance is un-
likely to be related to the size of the changing spatial discretization error.
This suggests that an error control strategy in which an accuracy tolerance,
related to the spatial discretization error, is automatically selected by the
algorithm is required for the integration of the ODEs. In addition, this
tolerance must be adjusted as the spatial discretization error varies. It is
the global time error that is to be balanced with the spatial discretization
error which suggests that some form of LEPUS control must be used. One
such strategy has been developed by Lawson, Berzins and Dew [7] by con-
sidering the relative contributions of the local time error and the spatial
discretization error to the global error in the numerical solution.

The strategy of [7] uses the approximation of the global error, equation
(1.10), to control the local time error to be a fraction of the growth in the
spatial discretization and existing errors over the interval [tn,tn+1], that is,

lens1(tas1, TOL)|| < ellE(tns1) — E(tn) —lent1(tayr, TOL)||. (2.1)

It can be shown, [7], that, for a suitable value of ¢, this yields a time
integration error which is dominated by the spatial discretization error.

314 Method of Lines

That this is a form of LEPUS control can be seen more easily by considering
the implementation of the strategy (2.1) in which equation (1.10) is used
to substitute for E(t,4+1). Thus, the local time error can be controlled
according to

Nen+1(tnt1, TOL)|| < M~ (E(tn) + kn TEn41) = E(ta)ll (2:2)
which, on using the definition of the matrix M, gives
Nen+1(tnsr, TOL)|| < knel|M~(7JE(ta) + TEn41)l (23)

This expression shows how the accuracy tolerance used in the LEPUS con-
trol strategy varies with the spatial truncation error and the global error.
A more complete description of the control strategy is given in [7].

3 Control of the Spatial Discretization Error

The adaptive mesh method adopted is based on the adaptive finite element
Method of Lines (FEMOL) algorithm proposed by Bieterman and Babuska,
[5). This section provides an outline of the strategy, further details about
the adaptive FEMOL are to be found in [5] and [8]. The aim of the strategy
is to control the energy norm of the relative spatial discretization error with
respect to a user specified error tolerance, EPS. That is, the spatial mesh
is modified in order that the vector of the spatial discretization error, es(t),
when mapped onto a piecewise linear function in space, es(?, z), satisfies

Iles(2, I

= < EPS 3.1

(e M 2
where |||v(t,-)[]| is the energy norm defined as (f: v2dz)!/? on the appro-
priate space, [5). An important feature of this algorithm is that the error
is controlled while constructing meshes that are also suitable for a number
of future time steps. :

3.1 Estimation of the Spatial Error

An estimate, €(t), of |||es(t, -)||| can be given by, see Babuska and Rhein-
boldt [2],

N-1 1/2
e(t) = {Z Inn(t)l"} ; (3.2)
n=1

where |n,,(t)|? is the local error indicator for the spatial element [z, z,41).
This estimate can also be used with, for example, the finite element like
modified box discretization scheme for non-polar parabolic equations given

J. Lawson and M. Berzins 315

by Skeel and Berzins [11]. The following piecewise constant function is
used in constructing the new mesh

w(t, z) = A7 (12]7a(8))Y3, z € (Zn, Zn41), n=1,...,N-1 (3.3)

and is related to the second spatial derivative of the solution, [5].

When a mesh is modified, both (or either of) its shape and intensity
may change. The shape of a mesh defines the general distribution of the
mesh points identifying the areas where the points should be clustered and
the areas where relatively few points are needed. The shape of a mesh can
be described through a mesh function, defined by

£s(z) = 1/hy i 2 € (ZTn,Tn41), n=1,...,N =1
SE=1 (/2 ka1 +1/hy) iz =25, n=1,...,N =1
The intensity of a mesh is the number of points actually in the mesh.

From the definition of €(t), (3.2), it can be seen that this estimate
depends on the function w(t, -) and the mesh function describing the present

mesh, that is,
(1 [w3, z) 12
®=(5 [%56) (34

3.2 Construction of the New Mesh

Consider a time ¢ = t,, and a current mesh 8. Suppose that
€(tm) > 0.95 EPS |||V(tm,)ll|

so that a new mesh, 6t say, must be constructed from the current mesh.
The new mesh is chosen so that the predicted error on the new mesh at
the time step immediately after remeshing, that is at t = ¢}, satisfies

e(tt) = EPSDN |||V(t},), EPSDN €[0.6,0.8] EPS (3.5)

where EPSDN 1is chosen adaptively each time remeshing occurs. The
underlying assumption in this adaptive process is that the introduction of
extra mesh points will cause the error to decrease. There are three stages to
the formation of the new mesh. The formation of a suitable mesh function
defining the shape of the new mesh, £, . This is achieved using a pattern
recognition technique and heuristics to predict where the mesh points will
be needed for future time steps, see [5] for details. The multiplication
of this mesh function so that the mesh has the required intensity for the
requirement (3.5) is to be satisfied. The addition and subtraction of points
from the current mesh to yield a mesh whose shape resembles the shape of

316 Method of Lines

&5, and which has the required intensity for (3.5) is to be satisfied. Details
of exactly how this is accomplished can be found in [5]. The computed
solution is then interpolated onto the new mesh and the time integration
restarted using the approach adopted in [4].

4 Towards an Automatic Algorithm

The automatic algorithm basically consists of the error control strategies
described in the previous two sections. In order that they work together
efficiently, modifications to each strategy are required.

The input required from the user consists only of the problera specifi-
cation, an initial spatial mesh (which is usually coarse and uniform) and
an error tolerance for the spatial discretization error, EPS. The PDE is
discretized in space using the modified box scheme [11] and the resulting
system of time dependent ODEs is integrated using the SPGEAR (b.d.f.)
module of SPRINT [4]. The time integration routine must be suitably
modified to use the LEPUS control strategy given by (2.1). Rather than
test for possible remeshing only at user specified times, [5], at each time
step the estimate ¢(t) of |||es (t,-)||] is calculated, and if

€(t) > 0.95 EPS [||V(¢,)l

then a new mesh is constructed that ensures that

e(t*) =~ EPSDN ||V (3,)il

The remeshing strategy is more efficient if EPSDN is allowed to vary
and so it is chosen adaptively at each remeshing time. The actual value
given to EPSDN is governed by how much the estimate of the energy
norm of the relative spatial discretization error fails to satisfy the error
test (3.1). That is,

0.8 EPS if 0.95< R.<0.975
EPSDN =< 07TEPS if 0975<R.<1

0.6 EPS if R.>1
where R.(t) = Wﬁfﬁ—E_ﬁ' In order that remeshing does not occur too
frequently and to allow the stepsize and order of the ODE solver to increase,
a heuristic constraint is included to enforce at least 10 time steps between
remeshings (unless e(t) > 1.75 EPS |||V (t,-)|l|, in which case remeshing
is allowed). This restriction can result in a violation of the user supplied
error tolerance. In practice this has been found to be preferable to the
possibility of remeshing at every time step, in which case the influence of
interpolation errors becomes rather large. The estimation of the spatial
truncation error, TE, used in the global error estimator of Berzins (3],

J. Lawson and M. Berzins 317

requires pairs of adjacent spatial element sizes to be equal. To obtain such
meshes, remeshing takes place on a coarse mesh defined by

ra=z1<23< - -<zy=b
where 2; = z3i-1, i=1,...,M, M = (N +1)/2, N is odd.

The selection of the mesh function and subsequent construction of the
new mesh is carried out using the technique described by Bieterman and
Babuska [5]. The mesh on which the solution is to be computed after
remeshing, is found by simply bisecting each element in the newly formed
coarse mesh. Once a new mesh has been found, the computed solution
and the Nordsieck history array used by the time integrator are interpo-
lated, using a complete cubic spline interpolant, onto this mesh and the
time integration is restarted. A flying restart, which uses the same step-
size and order used immediately before remeshing, is performed. This is
often faster than performing a full restart, but there is an increased risk
of convergence failures. This risk is minimised by keeping the intensity of
consecutive meshes constant, unless a significant change (greater than ten
percent) in the number of points is required. A full restart will be per-
formed automatically by SPRINT [4] in the event of repeated convergence
failures.

Since the accuracy tolerance for the time integration over the next time
step depends partially on the error incurred prior to spatial remeshing, this
tolerance must be modified according to the expected reduction in the spa-
tial discretization error. Once the time integration has been restarted, the
time integration proceeds until the next point where remeshing is required
is reached or the end of the computation, whichever is soonest.

5 Numerical Experiments

In this section, it will be shown that it is possible for the new automatic
algorithm to be competitive with other algorithms based on the Method of
Lines. Although the automatic algorithm has been used to solve a number
of parabolic problems, here, for reasons of brevity, only one example will be
used to demonstrate the performance of the algorithm. Full details of more
extensive numerical testing are given in [8]. The example used is Burgers’
equation defined by

2
e w21 €(0,1) % (0,1], ¥ = 0.005,
with Dirichlet boundary conditions and the initial condition consistent with
the analytic solution

014+ 05B+C
A+B+C

u(z,t) =

318

Method of Lines

Table 1. Using the LEPS strategy and a fixed mesh

PTS TOL GERR REST CP NST FN J AVG
41 0.1D-3 0.12D00 0.31D00 4 99 255 9 0.1
81 0.5D-4 0.36D-1 0.69D-1 9 144 367 13 0.65

161 0.1D-4 0.91D-2 0.50D-1 20 196 485 16 0.72
321 0.5D-5 0.22D-2 0.30D-1 53 241 621 25 0.81

Table 2. Using the LEPUS strategy and a fixed mesh

PTS GERR REST CP NST FN J AVG
41 0.12D00 0.31D00 4 62 197 7 051
81 0.38D-1 0.72D-1 8 94 260 12 0.61

161 0.96D-2 0.50D-1 19 140 397 21 0.69
321 0.24D-2 0.30D-1 47 185 506 24 0.73

PTS number of spatial mesh points.

TOL accuracy tolerance for LEPS strategy.

EPS spatial discretization error tolerance.

GERR maximum global error in the computed solution.

REST maximum estimate of relative error, €(2)/||[V (2, -)]]|.

CP CPU time in seconds on an Amdahl 5860.

NST number of ODE time steps used.

FN number of function evaluations made.

J number of Jacobian evaluations made.

AVG average value of the global error index, see below.

REM number of remeshings.

Figure 1. Key to Tables 1, 2 and 3

J. Lawson and M. Berzins 319

Table 3. Using the LEPUS strategy and remeshing

MIN/MAX ”
PTS EPS GERR REST CP NS FN J AVG REM
41/45 0.30 0.11D00 0.31D00 5 77 283 23 0.56 7
41/83 0.07 0.62D-1 0.67D-1 10 124 475 42 0.63 7

81/111 0.05 0.26D-1 0.50D-1 11 120 404 29 0.70 12
81/177 0.03 0.16D-1 0.34D-1 18 160 491 30 0.71 28

where A = e(-005(z=05+4.95)/v) B — ¢=0.25(z=0.540.75)/v) and C =
(—0.5(z—0.375)/v)

The testing procedure adopted was as follows. First, the problem was
solved using fixed evenly spaced meshes, with the LEPS controlled in the
ODE integration with respect to a user supplied tolerance. Table 1 shows
these results. The accuracy tolerances used were the coarsest tolerances
that could be found through repeated experimentation, such that the spa-
tial discretization errors dominate the time integration errors. In this case,
if the user wishes to obtain a computed solution with a certain degree of
accuracy, the problem has to be repeatedly solved using different spatial
meshes and with different accuracy tolerances for the ODE integration,
until a suitable solution is obtained.

Second, to assess the performance of the new LEPUS control strategy,
the problem was solved on fixed evenly spaced meshes, with the LEPUS
controlled, according to (2.1), in the ODE integrator. The results are
shown in Table 2. In this case, the user must repeat the computation
using different spatial meshes until a solution with the desired accuracy is
calculated. The accuracy tolerance used in the LEPUS control strategy
(2.1) is computed automatically by the algorithm in such a way that the
time integration error does not dominate the spatial discretization error.
The parameter eps in the strategy (2.1) was given the conservative value
0.3; reasons for this choice can be found in [7] and [8].

Table 3 contains the results obtained when using the automatic algo-
rithm described in Section 4 to solve the test problem. In this algorithm,
the spatial mesh is adapted so that the estimate of the energy norm of the
relative spatial discretization error in the computed solution satisfies the
user’s error tolerance EPS. The ODEs are integrated using the LEPUS
control strategy (2.1) which ensures that the spatial discretization error
dominates the time integration error. The values given to the error toler-
ance, EPS, are the values of the energy norm of the spatial discretization
errors incurred when solving the problem on fixed, evenly spaced meshes
(see Tables 1 and 2). Unlike the previous two algorithms, the user does
not have to experiment to obtain a solution of desired accuracy, instead

320 Method of Lines

the user has to simply specify the required accuracy in terms of an en-
ergy norm error tolerance. The automatic algorithm also provides the user
with estimates of the global error in the computed solution. In addition,
although the new algorithm cannot claim to be always as computationally
efficient as other approaches, the results below show that the overheads of
remeshing do not increase the cost dramatically. The approximation (3.2)
estimated the error to within 10% of its true value and the performance of
the global error indicator (1.10) was measured using the index

I= || Estimated global errors at time t ||
T ||Actual global errors at time t||c

The results from Tables 1 and 2 show that when employing either the
LEPS or the new LEPUS strategy, (2.1), solutions of comparable accuracy
are obtained. The efficiency of the computations can be compared by
considering the number of ODE time steps used, the number of function
and Jacobian evaluations and the CPU time required for each run. It can
be seen that it is more efficient to use the LEPUS strategy which calculates
the accuracy tolerance at each time step. Similar results can be found in
[7] and [8]. However, this result is typical of the performance of this new
strategy. Difficulties occur if the global error estimate, (1.10), is larger than
the actual error. This may happen if the mesh is too coarse or the spatial
discretization error so large that the estimate of the spatial truncation error
is no longer reliable. In which case the calculated accuracy tolerance may
not ensure that the spatial discretization error dominates. In such cases, it
is possible to use a comparison between the error estimate given by (3.2)
and the global error estimate given by (1.10) to finely tune the parameter
¢ used in the LEPUS control strategy (2.1). This is shown in [8].

The aim of the mesh modification technique used within the automatic
algorithm is to control the estimate of the energy norm of the spatial dis-
cretization error with respect to the user specified tolerance, EPS. The
results in Table 3 show that the required control has been achieved. Al-
though, for EPS = 0.3 and 0.03, the error in the computed solution does
not quite satisfy the tolerance. This is due to the heuristic restriction which
enforces each mesh to remain fixed for at least ten time steps. When con-
sidering this error, the new automatic algorithm compares favourably, in
terms of accuracy and efficiency, with the fixed mesh results presented in
Tables 1 and 2. In addition, the user no longer has to experiment with
different spatial meshes and accuracy tolerances for the ODE integration.
Instead, the user can now specify the required accuracy in the computed
solution and in most cases a suitable solution can be computed on the first
attempt. The actual remeshing process is not computationally expensive,
but the restarting process can be. This is reflected in the increased number
of function and, more particularly, Jacobian evaluations performed. How-
ever, the computational cost of a function call in Table 3 does not match

J. Lawson and M. Berzins 321

Table 4. Using the LEPUS strategy and remeshing

MIN/MAX
PTS EPS GERR REST CP NST FN J AVG REM
81/261 0.0175 0.35D-2 0.19D-1 47 305 1139 102 0.61 15
81/277 0.0160 0.17D-2 0.15D-1 49 260 874 65 0.66 9
81/361 0.0110 0.91D-3 0.11D-1 77 327 1117 88 0.53 12

the computational cost of a function call in the corresponding entries in
Tables 1 and 2. This is because the size of the ODE system varies in the
experiments shown in Table 3.

The accuracy of the computed solution can also be assessed through the
global error estimate, (1.9) which is used in the LEPUS control strategy
(2.1). A comparison between the results in Tables 1, 2 and 3 shows that,
when controlling the estimate of the energy norm of the relative spatial
discretization error, control over the Lo, norm of the global error cannot
be guaranteed. It is possible, when using the automatic algorithm, to
compute solutions with global errors comparable to those incurred when
using fixed spatial meshes. This can be achieved by using different values of
EPS. The results presented in Table 4, show that the automatic algorithm
remains competitive, in terms of efficiency, when computing solutions with
global errors similar to those incurred when using fixed spatial meshes.
In addition, the energy norm of the relative spatial discretization error is
smaller.

Again, further results and a more detailed discussion of these results,
when using the automatic algorithm, can be found in [8].

6 Conclusions

The results obtained when applying the automatic algorithm to a limited
class of PDEs indicate that the algorithm is a promising start to devel-
oping Method of Lines codes which automatically control the error in the
computed solution. The adaptive mesh strategy used gives good control
over the relative spatial discretization error without having to remesh too
frequently. The LEPUS strategy then ensures efficient time integration by
approximately balancing the space and time errors. The combination of
these two approaches provides a new, fully automatic algorithm with both
spatial and temporal error control.

Acknowledgements: Jane Lawson acknowledges the support of Shell
Research Limited and the S.E.R.C. through a CASE studentship. Mar-
tin Berzins acknowledges the financial support of the Rensselaer Design
Research Center while on leave from Leeds University.

322 Method of Lines

References

[1] Babuska, I. and Luskin, M. (1981) An Adaptive Time Discretization
Procedure for Parabolic Problems, Advances in Comp. Meths. for
PDEs, IV, 5-8.

[2] Babuska, I. and Rheinboldt, W.C. (1978) A Posteriori Error Esti-
mates for the Finite Element Method, Ini. J. for Num. Meths. in
Engng., 12, 1597-1615.

[3] Berzins, M. (1988) Global Error Estimation in the Method of Lines
for Parabolic Equations, STAM J. Sci. Stal. Comput., 9, 687-703.

[4] Berzins, M., Dew, P.M. and Furzeland, R.M. (1989) Developing
PDE Software Using the Method of Lines and Differential Algebraic
Integrators, Appl. Numer. Maths., 5, 275-347,

[5] Bieterman, M. and Babuska, 1. (1986) An Adaptive Method of Lines
with Error Control for Parabolic Equations of the Reaction-Diffusion
Type, J. Comput. Phys., 63, 33-66.

(6] Johnson, C. (1987). Numerical Solution of PDEs by the Finite Ele-

ment Method, Cambridge University Preslsl(‘”
[7] Lawson, J., Berzins, M. and Dew, P.M. (¥8g) Balancing Space and

Time Errors for Parabolic Equations. SIAM J. Sct. Stat. Comput.,
~oeppear. |2) S73-594

[8] Lawson, J. (1989) Towards Error Control for the Numerical Solution
of Parabolic Equations, Ph.D. Thesis, School of Computer Studies,
University of Leeds.

[9] Schoiiauer, W., Schnepf, E. and Raith, K. (1984) Experiences in De-
signing PDE Software with Self Adaptive Variable Stepsize / Order
Difference methods, Computing, 5, 227-242.

[10) Shampine, L.F. (1987) Tolerance Proportionality in ODE Codes,
SMU Math. Rept. 87-8, Southern Methodist University, TX 75275,

US.A. 1140

[11] Skeel, R.D. and Berzins, M. (¥489) Improving Routines for Solving
Parabolic Equations in One Space Variable, STAM J. Sci. Stat. Com-

put) ll, 1'32- .
[12] Stetter, H.J. (1976) Considerations Concerning a Theory for ODE
Solvers, Numerical Treatment of Differential Equations, ed. by R.

Bulirsch, R.D. Grigorieff and J. Schroder, Lecture Notes in Mathe-
matics 631, Springer Verlag, New York 188-200.

