
In-Situ Feature Extraction of
Large Scale Combustion Simulations Using

Segmented Merge Trees

Aaditya G. Landge∗, Valerio Pascucci∗, Attila Gyulassy∗, Janine C. Bennett‡,
Hemanth Kolla‡, Jacqueline Chen‡, and Peer-Timo Bremer∗†

∗SCI Institute, University of Utah, Salt Lake City, UT
†Lawrence Livermore National Laboratory, Livermore, CA

‡Sandia National Laboratory, Livermore, CA

Abstract—The ever increasing amount of data generated by
scientific simulations coupled with system I/O constraints are fu-
eling a need for in-situ analysis techniques. Of particular interest
are approaches that produce reduced data representations while
maintaining the ability to redefine, extract, and study features in
a post-process to obtain scientific insights.

This paper presents two variants of in-situ feature extraction
techniques using segmented merge trees, which encode a wide
range of threshold based features. The first approach is a
fast, low communication cost technique that generates an exact
solution but has limited scalability. The second is a scalable,
local approximation that nevertheless is guaranteed to correctly
extract all features up to a predefined size. We demonstrate
both variants using some of the largest combustion simulations
available on leadership class supercomputers. Our approach
allows state-of-the-art, feature-based analysis to be performed
in-situ at significantly higher frequency than currently possible
and with negligible impact on the overal simulation runtime.

Keywords—topological data analysis, feature extraction, in situ
analysis, merge tree computation, segmented merge tree

I. INTRODUCTION

The continuing increase in available computing power
allows scientists to simulate ever more complex phenomena at
higher temporal and spatial resolutions. Correspondingly, the
analysis of these datasets is becoming increasingly sophisti-
cated, moving from global to local statistics and more recently
to detailed studies of small, intermittent features of interest
along with their characteristics and temporal evolution [1]–[3].
However, while the need for advanced data analysis techniques
increases, the (relative) amount of data that can be permanently
stored keeps decreasing. This can severely impede and may
ultimately prevent an accurate and reliable analysis. State-of-
the-art simulations are already reaching the point at which
snapshots are stored too infrequently to accurately track fast
moving or intermittent events, increasing the likelihood that
potentially important phenomena are lost between snapshots.

While there exist a number of mitigating strategies such as
compression [4] or advanced data management techniques [5],
[6], the challenges discussed above will likely only be ad-
dressed by moving the analysis in-situ i.e., to perform it
concurrently with the simulation. Since analysis results are

typically orders of magnitude smaller than the original data,
efficient in-situ algorithms would allow an effective analysis at
much higher frequencies than otherwise feasible. To this end
a number of in-situ visualization and analysis techniques have
been proposed [7]–[11] either as stand alone tools or as part
of existing systems. However, so far these efforts have been
restricted to comparatively simple and largely data parallel
operations and few solutions for more complex algorithms ex-
ist [12]. Furthermore, most of these analyses were designed in
the context of a post-processing workflow, in which scientists
test hypotheses by interactively adjusting input parameters to
analysis algorithms that provide a single answer to a given
question, to slowly converge to their results. In an in-situ
setting, however, all parameters, spatial sub-domains, temporal
windows, etc., must be specified a priori, making current
algorithms ineffective at best and misleading at worst. Instead,
a new kind of meta-analysis is required that can efficiently
compute and encode a range of answers for an entire class
of questions, effectively re-enabling a flexible and unbiased
exploration of the results in post-processing.

Fig. 1. Extinction regions in a lifted ethylene jet flame extracted using
segmented merge trees and adaptive relevance thresholds.

One promising class of techniques are topology-based
segmentations based on merge trees [13], contour trees [14],
or Morse-Smale complexes [15]. These techniques segment
the domain into features according to either the level-set (e.g.
thresholding) or gradient behavior of one of the simulation
variables. In particular, segmentations of the domain derived
from merge trees have been shown to efficiently encode
threshold-based features. For example, as shown in Fig. 1,
segmented merge trees can be used to extract extinctionSC14, November 16-21, 2014, New Orleans

978-1-4799-5500-8/14/$31.00 c©2014 IEEE

regions defined as areas of high scalar dissipation in turbulent
combustion simulations. Other examples include burning cells
in turbulent combustion [13], eddies in the oceans [16], and
bubbles in Raleigh-Taylor instabilities [17]. Segmented merge-
trees provide two key advantages over traditional threshold-
based segmentation techniques: 1) they efficiently encode a
wide range of possible segmentations, and 2) they allow for
the selection of localized thresholds [18]. However, existing
approaches are restricted to off-line serial computations [13]
and even solutions to the simpler problem of computing merge
trees without segmentation have been limited to small-scale
parallel efforts [14], [19].

In this paper we present the first large-scale parallel al-
gorithms to compute segmented merge trees. In particular,
we present a new framework consisting of three simple to
implement functions that can be assembled into different
variants of a parallel algorithm with different characteristics.
We demonstrate two variants: first, computing globally consis-
tent merge tree segmentations; and second, computing locally
consistent approximations which nevertheless provide strong
correctness guarantees. Our global algorithm performs on par
with the best previous merge tree approach while at the same
time additionally computing the corresponding segmentation.
We show that our approach allows for the extraction of
features large-scale at ten times the frequencies of current
snapshots with minimal impact on the overall performance of
the simulation. In addition, we show that our local approach
strictly limits the computations at any scale, is an order of
magnitude faster than the global approach, and yet guarantees
correct segmentation of all features below a predefined size.
We demonstrate our results using S3D [20] a large-scale direct
numerical simulation code that models combustion in turbu-
lence, and show that in an in-situ setting our approach allows
for highly sophisticated, exploratory, feature-based analysis at
the full scale of the simulation and with minimal overheads.

II. RELATED WORK

As the performance gap between compute and I/O capa-
bilities increases, the need for concurrent workflows for data-
intensive analysis is growing. Recently, several algorithms have
been presented that bypass the I/O barrier by operating directly
on in-memory simulation data in-situ, or use asynchronous
data movement to compute in separate dedicated resources in-
transit. While successfully deployed in-situ algorithms have
largely focused on visualization techniques [7], [21], [22],
recent efforts are exposing additional analysis capabilities,
[10], [11], [23]. Initial in-transit frameworks focused largely
on mitigating I/O costs [24]–[27], however more recent efforts
have begun to integrate analysis prior to dumping data to
disk [9]. The development of infrastructures and frameworks
that enable in-situ visualization and analysis is also on the
rise with a focus to reduce I/O and perform efficient data
management [28], [29] and/or use idle resources from the
simulation for analysis [30].

Topology-based representations of scalar functions provide
a discrete structure upon which to formulate queries for robust
feature extraction. Reeb graphs [31] and their variants, contour
trees [32] and merge trees, encapsulate level set behavior, and
Morse- and Morse-Smale complexes [33] capture gradient flow
based features. In each case, a continuous function is converted

to a representation that is efficiently stored using an annotated
graph data structures. This discrete representation can be orders
of magnitude smaller than the original data, yet maintains
enough information, for example, to enable the exploration
of features at multiple threshold values. Furthermore, topolog-
ical simplification is used to represent features hierarchically,
classifying their importance based on a user selected metric,
possibly persistence, volume, hypervolume, or relevance [18],
[33], [34]. Topology-based techniques have proven useful for
sophisticated analysis in computational sciences, for example,
in the identification of features from turbulent combustion [13],
[18], the detection of bubbles in turbulent mixing [35], or the
extraction of the core structure of a porous solid [36].

While many algorithms have been proposed to compute
topological representations, the lack of inherent spatial locality
of features has led to few successful distributed implemen-
tations. Most algorithms fall under the categories of fully
in-memory [32], [33], [37], [38], streaming out-of-core [13],
[39], or small-scale parallel [14], [19], [40]. Similar to other
complex analysis techniques, the global nature of topological
feature extraction makes it challenging to develop scalable,
parallel algorithms, (since any one feature may span the
entire domain). Furthermore, the algorithms are highly data
dependent leading to severe load imbalances and are largely
not data parallel leading to poor scaling. As a result few
parallel algorithm exists.

Gyulassy et al. [41] and Bennett et al. [42] propose
hybrid solutions in which the initial data parallel aspects of
the computation are executed in parallel while leaving the
resolution of global features to post-processing. If only the
features themselves are of interest and only after the simulation
has completed these approaches provide a good alternative to
pure post-processing. However, when statistics of other values
conditioned on the features are of interest, e.g., the average
temperature within a feature, or the results are needed to
inform subsequent processing, e.g., feature-based uncertainty
quantification, hybrid approaches do not suffice.

The closest comparison to the techniques proposed here are
the parallel contour tree approach of [14] and the distributed
merge trees of [19]. Both compute level set based trees,
however neither includes the corresponding segmentation –
which adds substantial additional processing. Pascucci and
Cole-McLaughlin use a traditional divide-and-conquer tech-
nique followed by a hierarchical merge similar to our global
algorithm. However, they construct the entire tree during the
merge rather than only resolving the boundary artifacts. This
severely amplifies the scaling problem as each successive
round in the merge becomes more expensive yet utilizes fewer
processors. Ultimately, the entire tree resides on the root
processor which can easily lead to memory problems and
would make incorporating the segmentation infeasible. Instead,
Morozov and Weber [19] compute a truly distributed merge
tree using a binary swap type approach. Their approach relies
on maintaining a severely reduced and potentially simplified
version of the global tree on each local processor thus avoiding
the ever growing trees of [14]. Unfortunately, the information
that is disregarded locally, while not required to represent the
global tree, is necessary to construct the corresponding seg-
mentation which is ultimately how features are described. As
discussed in [19] maintaining this information would severely

Fig. 2. A merge tree tracks the evolution of super-level sets. In a sweep from ∞ to −∞ each maximum (red sphere) creates a new component, that is merged
by saddles (green sphere). The merge tree ends at the global minimum (blue sphere). As indicated by the coloring, each arc in the merge tree represents a subset
of the domain and thus the tree can be used directly for feature segmentation.

increase the size of the local trees with substantial impacts to
the runtime.

Fundamentally, both approaches rely on exchanging and
combining parts of the global tree (either reduced or in its
entirety). Instead, our algorithm restricts these exchanges to
the minimal set of boundary artifacts introduced by the domain
decomposition and distributes all other computation amongst
all processors. This allows us to compute both the merge tree
itself as well as the corresponding segmentation on par with
the tree computation of [19] for medium core counts and to
demonstrate efficient computation for orders of magnitudes
larger core counts than previously reported. Furthermore, for
the first time, we present an approximate algorithm which
strictly limits the computation and communication at all scales
yet guarantees to correctly extract features of a given size.

III. BACKGROUND

Let f be a real-valued map f : M → R defined on a
compact manifold. The region of the domain with value in
f greater than c ∈ R is called the super-level set of c. The
merge tree encodes the evolution of connected components
of the super-level set as the value c is swept from ∞ to −∞.
Local maxima in f create new components, while the merging
of components creates saddles. The merge tree is composed
of nodes and arcs. The nodes represent the critical points that
create, merge, or destroy super-level set components which are
the maxima, saddles and minima respectively. An arc exists
between two nodes if the super-level set component created
by the upper node is merged or destroyed by the lower node.
Figure 2 shows the merge tree for a simple two-dimensional
example. We note that analogous definitions exist for split trees
that encode the evolution of sub-level sets which are those
regions of the domain with value in f less than c ∈ R, as
c is swept from −∞ to ∞. For simplicity sake, we limit our
discussion in this paper to merge trees, however our techniques
can be applied to compute split trees with negligible changes
to the code.

Merge trees describe the topological changes in the super-
level sets of a function. Additionally, the geometric descrip-
tions of the super-level sets are often needed for analysis, for
example, to determine volumes, shapes, track features, or for
visualization. The segmentation of the domain according to
a merge tree is a partitioning where two points belong to
the same region if and only if the contours passing through
them appear on the same arc of the merge tree. Storing the
segmentation along with a merge tree enables the geometric
reconstruction of super-level sets during a post-process. Fur-
thermore, access to the segmentation at run-time allows for the
pre-computation of various conditional feature-based statistics
such as, for instance, average temperatures per feature [2].
Therefore, while the merge tree itself contains only information
about the number of features at each threshold, combining

the merge tree with its corresponding segmentation creates a
powerful and highly flexible analysis tool.

IV. TECHNIQUE

We start from the domain decomposition of the simulation,
which in the case of our example code, S3D, is a block
decomposition of a regular grid with each processor, Pi,
assigned one block, Bi. However, as discussed below, our
framework is flexible and could easily be adapted to non-
regular decompositions or block-regular meshes. Similar to
the existing parallel approaches, our algorithm operates in two
stages. In the first stage we compute a local tree, LTi, (and
its segmentation) for the data of block Bi. In the second stage
we join all local trees into a unified global tree and resolve
the associated segmentations across all blocks. More formally,
the local tree for a block Bi contains all arcs of the global tree
whose corresponding contours intersect Bi.

To support efficient computation of the segmentations in
addition to the tree itself, our scheme differs from previous
parallel approaches in two ways: First, we communicate only
the minimal subset of each local tree that could affect the trees
residing on other blocks; and second, on each processor we
maintain only the locally relevant portions of the global tree
along with the associated information required to construct the
local portion of the global segmentation.

Fig. 3(b) depicts the first phase of this computation for
a small example, in which we compute the local trees LTi

from each Bi independently. In order to later join all LTi

into the global tree, we augment each LTi with it’s block’s
restricted maxima. A restricted maximum is a vertex on the
shared boundary of a block that, when restricted to it’s lowest
dimensional boundary component (a corner, edge or face),
is a maximum (see the grey nodes in Fig. 3(a)). Restricted
maxima comprise the minimal amount of additional data that
we must add to local trees in order to join them into the
final global tree (we refer the reader to [14] for a more in
depth justification). We call those nodes in the local trees that
correspond to restricted maxima boundary nodes.

To construct the final distributed global tree, information is
iteratively exchanged between pairs of local trees in a hierar-
chical fashion. Once information is shared between two local
trees LTi, and LTj , they are considered joined and they encode
those features that span blocks Bi and Bj on the associated
processors Pi and Pj . Intuitively, two neighboring local trees
are combined by gluing together their shared boundary nodes
and “zipping-up” all arcs towards the root (see Fig. 4). Note
that the portions of the local trees that are affected by this
process lie beneath the boundary node, and we call these
subsets boundary trees, BTs. Finally, when combining two
boundary trees representing two spatial regions the resulting
tree is the augmented boundary tree, ABT, of their combined

(a) (b) (c) (d)

Fig. 3. An example of a parallel merge tree computation using four processes in a binary hierarchy. (a) The contour plot of a 2D function color coded by
function value and split into four data blocks (B*) with the critical points and restricted boundary maxima highlighted. The contours of (a) give rise to the local
trees in (b) with their respective boundary trees (BT*) drawn black and interior elements in grey. (c) The first horizontal join creates the augmented boundary
trees (ABT*) which, after removing now interior nodes, results in the boundary trees of the combined blocks. (d) The following vertical join creates the final
augmented boundary tree, whose corresponding boundary tree is empty as there exist no more (shared) boundaries.

(a) (b) (c)

Fig. 4. Joining two trees by glueing loops. (a) Two local trees with some
matching nodes indicated by the arrows. (b) Unifying the shared nodes leads
to cycles which are removed by glueing their two sides leading to the joined
tree of (c).

regions (Fig. 3(c)). The ABT is composed of the boundary
tree of the combined regions plus the nodes and arcs on the
previously shared but now internal boundary. Removing the
internal nodes/arcs of an ABT creates a boundary tree.

A. Algorithm Framework

Given the definitions above, this section provides details
regarding our general framework from which we subsequently
assemble the two versions of the merge tree computation. In
particular, our system consists of three simple routines that
can be combined in a highly flexible manner: First, the local
compute creates an initial local tree; Second, the join combines
two boundary trees; and Third, the correction adjusts a local
tree given an ABT.

Local Compute. We compute the local trees of a given block
using a variant of Carr et al.’s contour tree algorithm [43].
It relies on pre-sorting all vertices followed by a union-find
like traversal to construct the tree. Additionally, we record
the corresponding segmentation by storing for each vertex of
the domain the id of the corresponding arc in the tree. In
practice, a merge tree based analysis typically indicates that
one is interested exclusively in relatively high function values
(or exclusively low values), and thus the structure below some
threshold is often of no interest. Since the lower portion of a
merge tree is actually more expensive to compute and store
(more vertices in fewer branches) without being useful, we
allow the user to specify a cut-off below which vertices are

ignored. We use a ghost zone half a layer wide, essentially only
extending the boundaries in positive x, y, and z direction by one
vertex, to ensure that neighboring regions have identical shared
boundaries. Typically no additional communication is needed,
since the simulation itself maintains significantly larger ghost
regions for the quantities of interest. Finally, we add all
restricted maxima to the local trees. Given a local tree we
extract its boundary tree in a traversal from the root(s) such
that the resulting list of arcs is sorted based on the function
value of their lower nodes.

Join Routine. Given two (or more) boundary trees as lists
of arcs sorted on the function value of their lower nodes,
we construct their resulting augmented tree using the Join
algorithm shown in Algorithm 1. It takes as input two or
more boundary trees, represented as sorted lists of arcs.
The function GetHighestArc() returns the arc with the
highest-valued lower endpoint from the input boundary trees,
and removes it from the corresponding boundary tree. The
AddNode() function adds a node with identifier id if a node
with that id is not already present in ABT, and returns a
reference to the newly added or existing node, respectively.
The LowestDescendant() function returns a reference to the
lowest node reachable in ABT from its input node. AddArc()
updates the structure of ABT, adding an arc between its input
nodes if necessary.

Algorithm 1 Join(BT1, BT2)

ABT ← NewABT ()
while a = (nl, nu)← GetHighestArc(BT1, BT2) do

na = AddNode(nl.id, ABT)
nb = AddNode(nu.id, ABT)
n′
a ← LowestDescendant(na, ABT)

n′
b ← LowestDescendant(nb, ABT)

if n′
a 6= n′

b then
AddArc(n′

a, n
′
b, ABT)

end if
end while
return ABT

Since the number of incoming boundary trees is constant
the GetHighestArc has constant time complexity. The lookup
required for the AddNode() function requires a map from
the global index space of the node to the local one of the
ABT. Implemented as a hash map the complexity is amor-

tized constant. Finally, the LowestDescendent() function is
implemented as a Union-Find data structure with the Union
operation keeping the label of the set with the lowest valued
node. Therefore, searching for descendants also has constant
amortized run time. Thus, the expected runtime for the Join
routine is linear in the number of incoming arcs.

Correction of Local Trees. The final component of our
framework is the correction of the local trees using augmented
boundary trees representing successively larger regions of
the domain. The key idea is to only process and store the
portions of the augmented tree relevant to the corresponding
local block. The corrections to the local tree may involve
splitting arcs when non-local saddles are introduced, joining
arcs where non-local information determines two features to
be connected, and changing the classification of critical points.
As discussed above, at any point only portions of the local
tree beneath boundary nodes can be affected. However, note
that after successive corrections these may include nodes from
boundaries of other blocks introduced by previous augmented
trees. These represent contours that intersect the local block
as well as the boundary of the region represented by the last
augmented boundary tree.

The correction routine of Algorithm 2 is very similar to
the Join Algorithm. For each boundary node in the LT that
may be affected, we find the associated boundary node in the
augmented boundary tree ABT , and join the two trees beneath
these nodes, zipping towards the root. Note that we explicitly
only maintain arcs (and their nodes) in the local tree whose
contours intersect the local block by stopping the traversal
according to the local function range. Lastly, as discussed
above, we compute and store the segmentation of the initial
local trees. However, as trees are corrected, their arcs change
and in fact some labels disappear entirely (i.e. when removing
regular nodes). We use the algorithm of [13] to track label
changes and correct the segmentation once, after all corrections
have finished. This requires a single search of all vertices in
each local block for updated labels, which in practice takes a
negligible amount of time.

Algorithm 2 CorrectLocalTree(LT,ABT)

NodeList← SortNodes(LT)
for all nLT ∈ NodeList do

if nLT = BoundaryNode or NonLocalMaxima then
nABT ← FindNode(nLT , ABT)
// Traverse both trees
while not reached root of LT or root of ABT do

if IsV isited(nLT) or IsOutofRange(nABT) then
break // stop traversal

end if
if nLT → child 6= nABT → child then

Insert nABT → child into LT and connect
end if
MarkV isited(nLT)
nABT = nABT → child
nLT = nLT → child

end while
end if

end for
RemoveRegularNodes(LT)

Example. Fig. 3 and 5 show an example of the algorithms
discussed above using a binary merge (see Section IV-B).
Fig. 3(a) shows super-levelsets on a domain split into four

(a) (b)

Fig. 5. Local merge trees from Figure 3 after the first (a) and second (b)
round of corrections.

quadrants, their critical points, as well the restricted maxima.
Fig. 3(b) shows the initial local trees with the boundary trees
highlighted. Fig. 3(c) shows the augmented boundary trees
after merging horizontally (left) and the resulting boundary
trees representing the upper/lower half of the domain (right).
Fig. 5(a) shows the local trees after the first round of correc-
tions. Finally, Fig. 3(d) shows the final augmented boundary
tree and the resulting boundary tree, which is empty since no
more internal boundaries exist. Fig. 5(b) shows the final local
trees.

Given the three routines described above one can easily
assemble different dataflows computing the entire segmented
merge tree or local approximations. In particular, the following
sections will discuss two different strategies: A hierarchical
k-way reduction similar to existing approaches and a region
growing strategy that allows partial computations with strong
guarantees.

B. k-way Hierarchical Reduction

The simplest way to assemble a global merge tree algo-
rithm from our components is to very similar to a traditional
k-way reduction. The dataflow for the binary reduction from
Figs. 3 and 5 is shown in Fig. 6. In this case the dataflow is

ABT01 ABT 23

ABT 0123

LT0 LT1 LT2 LT3

!(LT0) !(LT1) !(LT2) !(LT3)

!(ABT01) !(ABT23)

Correction Stage I	

Join Stage II	

Correction Stage II	

Join Stage I	

Fig. 6. Dataflow diagram for the binary reduction type merge tree computa-
tion of Figs. 3 and 5.

itself a tree, in which the leaves are local trees LT and internal
nodes are joins of augmented boundary trees. First, all leaves
compute their local trees (LT), extract their boundary trees
(BT = ∂(LT)) and send them to the first join. The resulting
augmented trees are sent back up to be used in the correction
and the reduced boundary trees are sent downward to the next
join. The final augmented tree is then sent back towards the
leaves for the second correction. As indicated in the figure, the

upward communication is routed along the dataflow to avoid
any node having to send an excessive number of messages.
This approach is different from existing approaches in that
the reduction is restricted to only the minimal information
necessary – the boundary trees – while all other computation is
handled in a data parallel fashion at the leaves of the dataflow
tree.

This dataflow pattern easily supports arbitrary k-way joins
with different ks at different levels. One disadvantage is that,
since all processors are typically assigned a local block, the
joins must be assigned to a subset of these, causing load
imbalance and potentially creating bottlenecks. We remark that
in an in-transit setting as the one discussed in [42], one can
interrupt the joins at any point, store the current local and
augmented trees, and finish the computation off-line or on
secondary computing resources. However, this comes at the ex-
pense of no longer being able to compute dependent statistics
in-situ. Ultimately, while this strategy almost perfectly splits
the data parallel and global portions of the computation, the
remaining reduction still suffers form the traditional problem
of too few processors performing work at the lower levels.
Therefore, while typically fast in an absolute sense, scaling
this approach is challenging.

C. Region Growing

One observation from the reduction based algorithm is
that many of the (spatially) smaller features will get resolved
relatively early while features spanning a large portion of
the domain require the full computation. In general, spatially
large features are what fundamentally limits the scalability of
our reduction based as well as earlier algorithms [14], [19].
However, in many practical applications one is only interested
in relatively small features which is how feature based analysis
techniques achieve their speed and flexibility [2], [3], [13].
Therefore, restricting the computation to local neighborhoods
may be sufficient to extract all or most features of interest
while significantly reducing the scalability problem.

Unfortunately, existing approaches as well as the k-way re-
duction are not well suited to compute local features. Because
the techniques successively join blocks along one of the axes,
some decomposition boundaries are resolved in the first step
while others are resolved much later. Depending on the actual
spatial pattern any one small feature may cross one of the
more persistent boundaries and thus stopping the computation
early may result in artifacts and/or missing features. Instead,
we propose a region growing pattern in which each local block
maintains both its local tree as well as a boundary tree for an
increasingly large region of the domain centered around itself.

For simplicity we have chosen a uniformly growing bound-
ary as shown in Fig. 7. Each node computes its local tree
and exchanges the resulting boundary tree with all its spatial
neighbors (Fig. 7(a)). After joining all boundaries trees and
performing the corrections, each node is left with a boundary
tree that represents the boundary of its region of influence,
which is the union of its neighbors boundaries – the green
region in Fig. 7(a). In the second stage each node exchanges
the boundary tree of its region of influence with the neighbors
whose regions of influence border that of the node (Fig. 7(b)).
This recursive pattern results in regions of influence centered

(a) (b)

Fig. 7. The region grows exponentially in powers of 3. In (a), the first level
of joining is shown where boundaries from immediate neighbors are joined
to obtain the region of influence shown in green. In (b), the second level of
joining is done where boundaries are exchanged with blocks that are at a
distance of 31. The region of influence grows to a size of 9 × 9 shown in
blue.

around each block that grow with factor of three thus creating
3 × 3 × 3, 9 × 9 × 9, etc., regions, and distance tripling
communication. The generic dataflow for this approach is

LT0

ABT '
0

∂(ABT0)
∂(ABTneigh)

∂(ABTneigh)
∂(ABTneigh)

∂(ABTneigh)
…	 …	

Next Level…	

∂(ABT '0) ∂(ABT '0)

…	 …	

(from neighbors)	
(from neighbors)	

(internal)	

(to neighbors)	
(to neighbors)	

(in
te

rn
al

)	

(internal)	

∂(LT0) ∂(LTneigh)

∂(LTneigh) ∂(LTneigh)
∂(LTneigh)

…	 …	
(from neighbors)	
 (from neighbors)	

(internal)	

Correction Stage I	

(internally sent)	

Join Stage II -	

Boundary trees
received from
neighbors	

Correction Stage II	

(internally sent)	

Join Stage I – local
trees received from
neighbors	

Boundary tree sent
to neighbors	

ABT0
∂(ABT0) ∂(ABT0)

(to neighbors)	
 (to neighbors)	

…	 …	

(to neighbors)	
 (to neighbors)	

∂(LT0)∂(LT0)

Fig. 8. The data flow for a single process which is replicated on all processes.
The algorithm can be terminated at any level with guaranteed features of a
certain size.

shown in Fig. 8 and after the initial local compute step consists
of alternating boundary joins and local corrections.

This techniques has two significant advantages: First, all
nodes are participating in the computation at all times; and
Second, each local tree is correct for all features smaller than
a given bounding box. More specifically, given a k × k × k
region of local blocks all features within (k/2+1)×(k/2+1)×
(k/2+1) blocks are guaranteed to be correctly resolved. Note
that these are local blocks, not grid points of the simulation
mesh. For example, a two-round region growing with 9×9×9
regions of influence in the full scale HCCI dataset resolves all
features within a 5× 5× 5 block corresponding to a bounding
box of 100×100×100 grid points. As a result, if we know an
expected feature size or a realistic upper bound, limiting the
region growing provides an algorithm that strictly limits the
computation and communication independent of weak scaling
while guaranteeing that all features below a given size are

correctly captured. As will be discussed in Section V, in
practice even one or two rounds may resolve all features of
interest. Finally, similar to the reduction based algorithm, the
results of a limited number of joins can always be integrated
into a globally correct result after the fact, at the cost of not
computing statistics for data that is not also saved.

One potential problem with the region growing as described
above is that many regions of influence will quickly touch
the global boundary, as shown in Fig. 9(b). More importantly,
neighbors needed to complete a region may lie “outside” the
boundary. At the same time, neighbors which are closer in the
same direction, in principle, contain the needed information,
but their boundaries do not conform (Fig. 9(c)). The solution
is to assume a periodic domain in which case all necessary
neighbors exit (Fig. 9(d)). Interestingly, if the simulation is
inherently non-periodic the local and boundary trees of regions
spanning the periodic boundary will simply not share any
nodes and thus, can be maintained naturally as two seperate
entities. This strategy also balances the computation load better
as boundary blocks, which in traditional schemes are often
under-loaded, now contribute equally. However, care must
be taken once the regions of influence of two conforming
neighbors overlap around the periodic boundary, i.e. joining
the blue region of Fig. 9(c) with its neighbor. In this case
parts of the boundary will conform while others will not. To
address this issue nodes of the corresponding boundary tree can
be filtered to include only those on shared boudaries. However,
since the region growing is specifcally designed to be local we
currently do not support this mode of computation.

V. RESULTS

To validate our approach and demonstrate its effectiveness
we have applied it to two different large scale combustion
simulations, originally generated by S3D, as well as to a
commonly available medical dataset to compare with previous
techniques. S3D performs first principles based direct numer-
ical simulations of turbulent combustion. In these simulations,
both turbulence and chemical kinetics associated with burning
gas phase hydrocarbon fuels introduce spatial and temporal
scales characteristically spanning at least five decades. S3D
operates on a three-dimensional regular grid typically using a
domain decomposition around 30 × 30 × 30 grid points per
processor. For our in-situ test case described below, we use
the identical core counts, domain decompositions, and data
distribution used in the original simulations or their equivalents
for lower core counts. Due to the large I/O overheads data is
currently saved only every 500th time step, and this frequency
expected to decrease further in the future. Analyzing the same
type of extinction regions in very similar data, Mascarenhas et
al. [18] have already shown that such snapshots are insufficient
for reliably tracking features. Instead, here we show how
applying the same analysis in-situ can be done every 50th time
step – increasing the effective frequency tenfold – while adding
less than one percent to the overall runtime of the simulation.

Datasets and Computing Environment. We use three dif-
ferent regular grid datasets for our experiments. The Vertebra
data set is a rotational angiography scan of a head aneurysm
obtained from http://www.volvis.org with dimensions 512 ×
512 × 512. This is the largest publicly available dataset used
in previous work on distributed merge tree computation [19]

12.53	

9.25	

7.04	

9.82	
8.42	

15.72	

9.03	

6.04	
7.22	

18.04	

0	

2	

4	

6	

8	

10	

12	

14	

16	

18	

20	

128	 256	 512	 1024	 2048	

Ti
m
e	
(s
ec
)	

	

Number	 of	 Processes	 (Cores)	

Volvis.org	 -‐	 Vertebra16	 dataset	 (512	 x	 512	 x	 512)	 	

Full	 Solu2on	 8-‐way	 merge	 Morozov	 and	 Weber	 technique	

Fig. 12. Comparison with the distributed merge trees of [19]. Even though
our techniques computes the full segmentation in addition to the merge tree
at a significant additional cost we are on par with their fastest results and
significantly outperform their technique at larger core counts.

and is included for comparison. The HCCI data set is a
560×560×560 simulation of a homogenous charge compres-
sion ignition process in which a lean, premixed fuel-air mixture
is compressed until it ignites spontaneously in many separate
locations. The HCCI data was generated on Jaguar (now Titan)
at the Oak Ridge Leadership Computing Facility (OLCF) using
21,952 cores with 20× 20× 20 grid points per processor. We
have constructed a larger version by repeating the periodic
HCCI data twice to form a 1120 × 560 × 560 volume, to
conduct weak scaling study. Finally, the Lifted Flame dataset is
a 2025×1600×400 volume used to investigate turbulent lifted
flames with the goal of better understanding direct injection
stratified spark ignition engines for commercial boilers, as well
as fundamental combustion phenomena. The lifted flame data
was originally generated on Jaguar using 30,000 cores with
27× 40× 40 grid points per processor.

For our tests, we use both the Hopper system at the Na-
tional Energy Research Scientific Computing Center (NERSC)
and Titan at the OLCF. Hopper is a peta-flop Cray XE6
system consisting of 6,384 nodes each with 2 twelve-core
AMD MagnyCours 2.1Ghz processors resulting in a total of
153,216 compute cores. Titan is a peta-flop Cray XK7 system
with 18,688 nodes each with a sixteen-core AMD Opteron
2.2 Ghz processor for a total of 299,008 compute cores. The
Hopper system was primarily used for the comparisons.

Comparison with Previous Work. As mentioned above, ours
is the first large-scale, parallel approach to compute segmented
merge trees. However, to provide some context we compare our
results with the distributed merge trees of [19]. Note that one
of the main innovations of that approach has been a sparse
representation of the local trees which significantly reduces
their size and thus speeds up all computations. Unfortunately,
the missing information is strictly required for the segmen-
tation and thus these optimizations are not applicable when
extracting spatial features rather than simply the tree itself.
Therefore, our approach must deal with significantly larger
trees as well as the additional computation to maintain the
segmentation. Nevertheless, as shown in Fig. 12, our global
reduction algorithm is on par for the fastest overall runtime and
significantly outperforms [19] for larger core counts, indicating
a better scaling behavior.

(a)

?

?

?

(b)

(No shared boundary)

(c) (d) (e)

Fig. 9. The handling of region growing near the global domain boundary. In (a), the first level of joining is shown where boundaries from immediate neighbors
are joined to obtain the region shown in green. In (b), the second level of joining is done where boundaries are exchanged with blocks that are at a distance of
31. Notice how the neighbors on the left are not present as we have reached the global domain boundary. In (c), we show that the blocks at the edge of the
domain are not useful as they do not share a boundary. In (d), the solution to the problem is shown by considering the global domain boundary to be periodic
and overloading the boundary trees from one side onto the other side. In (e), we show the guaranteed feature size of 5× 5 within the grown boundary of 9× 9.

2.1	

1.27	
0.9	 0.83	 0.7	 0.67	

0.89	

1.43	 1.28	

2.88	

2.39	 2.55	
2.33	

2.65	

3.55	
3.8	

4.12	 4.24	

128	 256	 512	 1,024	 2,048	 4,096	 8,000	 15,680	 21,952	
0	

0.5	

1	

1.5	

2	

2.5	

3	

3.5	

4	

4.5	

Ti
m
e	
(s
ec
)	

Numper	 of	 Processes	 (Cores)	

HCCI	 diff_OH	 field	 -‐	 560x560x560	 (Threshold	 =	 0.001)	

Region	 Growing	 Full	 Solu;on	 8-‐way	 merge	

(a)

9.21	

3.39	

2.15	
1.43	 1.31	 1.27	

2.22	

2.88	

2.39	

2.55	 2.33	 2.65	
3.55	 3.8	

320	 960	 1,920	 3,840	 11,520	 23,040	 30,000	
0	

1	

2	

3	

4	

5	

6	

7	

8	

9	

10	

Ti
m
e	
(s
ec
)	

Number	 of	 Processes	 (Cores)	

Li3ed	 Flame	 2025x1600x400	 (Threshold	 =	 10.0)	 	

Region	 Growing	 Full	 Solu;on	 8-‐way	 merge	

(b)

Fig. 10. Time taken by the analysis on Titan for (a) the HCCI data set and (b)the Lifted Flame data set with various process counts.

In-situ Feature Extraction. The ultimate goal is to support
in-situ feature extraction and thus we have tested our approach
using two known use cases in large scale turbulent combustion.
In the HCCI case we choose the diff-OH field at a time
step just as most of the flame kernels start igniting. This is
one of the most interesting times in the simulation with the
largest number of features and thus expected the most complex
analysis task. Features are define as regions of high diff-OH
and form mainly flat sheets that for lower thresholds quickly
become dominated by a single large structure as shown in
Fig. 13. After consulting with domain experts we have chosen
a conservative cut-off of 0.001 to ignore uninteresting portions
of the tree.

Fig. 13. Features extracted from the HCCI simulation for a diff-OH threshold
of 0.12 (left) and 0.09 (right).

For the lifted ethylene flame we extract extinction regions
indicated as regions of high scalar dissipation as done in [18]
for a similar data set. The scalar dissipation field is know to
have a high dynamic range and thus instead of a fixed threshold
we use the relevance metric of [18] to set local thresholds. This
extracts significantly more and better isolated features across
all scales As shown in Fig. 1 the flame contains a large number
of flat “pancake” like structures packed around the two flame
sheets. Similar to the HCCI we have chosen a conservative
threshold of 10 that nevertheless ignores unnecessary portions
of the domain.

We first applied the reduction based global algorithm using
an 8-way reduction that we experimentally found produced
the fastest results for both datasets. Fig. 10 shows the running
times for increasing core counts up to the original simulation
configuration. In both use cases the absolute running times
are very low and often at or even below the variance caused
by the system [44] for different runs. Nevertheless, especially
for the more space-filling features of the HCCI data, running
times increase for larger core counts. As the core counts
increase more work is shifted away from the data parallel
local computation and local corrections and more towards
the reduction which is know to scale poorly. Nevertheless,
the running times at full scale, assuming an analysis every
50th timestep (a tenfold increase from current state-of-the-art),
would require only 0.7% (lifted flame) and 2.5% (HCCI) of the
total simulation runtime even assuming S3D scales perfectly

54,270.0	

18,090.0	
8,770.9	

4,522.5	

1,507.5	
753.8	 578.9	

2.9	 2.4	 2.6	 2.3	 2.7	 3.6	 3.8	
9.21	

3.39	
2.15	

1.43	 1.31	 1.27	
2.22	 2.27	

1.43	 1.09	 0.89	
0.58	 0.42	 0.33	

0.1	

1	

10	

100	

1000	

10000	

100000	

320	 960	 1,980	 3,840	 11,520	 23,040	 30,000	

Ti
m
e	
(s
ec
)	

Number	 of	 Processes	

Analysis	 Time	 per	 50	 S3D	 <me	 step	
(Li?ed	 Flame	 data	 set	 :	 2025	 x	 1600	 x	 400)	

Time	 spent	 by	 simula;on	 to	 compute	 50	 S3D	 ;mesteps	
Time	 required	 by	 in-‐situ	 analysis	 using	 8-‐way	 merge	 strategy	
Time	 required	 by	 in-‐situ	 analysis	 using	 region	 growing	 strategy	
Time	 required	 to	 store	 analysis	 results	

(a)

0.00%	

0.01%	

0.10%	

1.00%	

10.00%	

100.00%	

32
0	

96
0	

1,9
80
	

3,8
40
	

11
,52
0	

23
,04
0	

30
,00
0	

Number	 of	 Processes	

Percentage	 of	 Simula4on	 Time	 spent	 in	 	
In-‐situ	 Analysis	

(Li=ed	 Flame	 Data	 set	 :	 2025	 x	 1600	 x	 400)	 	

%	 Time	 to	 compute	 50	 S3D	 9msteps	

%	 Time	 required	 by	 in-‐situ	 analysis	 (region	 growing)	

(b)

28,469.0	
14,234.5	

7,117.3	
3,558.6	

1,779.3	
889.7	

455.5	
232.4	 166.0	

2.9	 2.4	 2.6	 2.3	 2.7	 3.6	 3.8	 4.1	 4.2	
2.1	

1.27	 0.9	 0.83	 0.7	 0.67	 0.89	 1.43	 1.28	

0.3	 0.28	 0.22	
0.12	

0.07	 0.05	
0.03	 0.03	 0.03	

0.01	

0.1	

1	

10	

100	

1000	

10000	

128	 256	 512	 1,024	 2,048	 4,096	 8,000	 15,680	 21,952	

Ti
m
e	
(s
ec
)	

Number	 of	 Processes	

Analysis	 Time	 per	 50	 S3D	 <me	 step	
(HCCI	 diff_OH	 data	 set	 :	 560	 x	 560	 x	 560)	

Time	 spent	 by	 simula;on	 to	 compute	 50	 S3D	 ;mesteps	
Time	 required	 by	 in-‐situ	 analysis	 using	 8-‐way	 merge	 strategy	
Time	 required	 by	 in-‐situ	 analysis	 using	 region	 growing	 strategy	
Time	 required	 to	 store	 analysis	 results	

(c)

0.00%	

0.01%	

0.10%	

1.00%	

10.00%	

100.00%	

12
8	

25
6	

51
2	

1,0
24
	
2,0
48
	

4,0
96
	

8,0
00
	

15
,68
0	

21
,95
2	

Number	 of	 Processes	

Percentage	 of	 Simula4on	 Time	 spent	 in	 	
In-‐situ	 Analysis	

(HCCI	 Data	 set	 :	 560	 x	 560	 x	 560)	 	

%	 Time	 to	 compute	 50	 S3D	 9msteps	

%	 Time	 required	 by	 in-‐situ	 analysis	 (region	 growing)	

(d)

Fig. 11. Time spent by the in-situ analysis as compared to the time taken by S3D simulation to compute 50 time steps. The absolute times and the percentage
overhead added by the analysis along with storing of the results for the Lifted Flame data set((a) & (b)) and the HCCI data set((c) & (d)). Notice that the time
taken by the analysis along with writing the results is below 1% of the total simulation time.

(see Fig. 11).

However, as indicated by Figs. 13 and 1 most of the
features of interest are spatially small and do not require
a globally resolved segmentation. To verify this hypothesis
we extracted the total number of features as well as features
contained within various axis-aligned bounding boxes for wide
range of thresholds and relevances respectively. Figs. 14 and 15
show the results and for context also the total volume classified
as features as well as the volume of the largest feature. The
latter is a rough indication for a reasonably threshold since in
these cases scientists expect many small features and once the
volume is dominated by a single large feature the parameter
values are likely out of a practical range. For the HCCI dataset,

regions of size 280× 280× 280 cover virtually all features of
interest for all thresholds. Even the smaller 100× 100 region
would likely be sufficient in practice as practical parameter
ranges are above 0.12 resulting in only few missed features.
Features in the lifted flame are generally smaller and even for a
52×80×80 region virtually all features are correctly extracted
for the entire parameter range.

Taking advantage of these results we used the region
growing algorithm with a restricted number of rounds and
report the results in Fig. 10. For both use cases we apply
the most conservative approach and grow the biggest regions
short of computing the global result. Note that since the size
of the region is determined by the number of blocks in a

0 0.05 0.1 0.15 0.2
0

100

200

300

400

Fe
at

ur
e

C
ou

nt

Total Feature Count
Features Within
280x280x280
Features Within

0 0.05 0.1 0.15 0.2
Threshold

10

100

1000

10000

1e+05

1e+06

1e+07

V
o
lu

m
e

Total Volume
Largest Feature

100x100x100

Fig. 14. Feature statistics for the HCCI diff-OH data set. Most features
are captured for the 100× 100× 100 regions and virtually all for the larger
280×280×280 regions. A practically parameter is likely above 0.12 making
even the smaller regions sufficient for the analysis.

0 0.2 0.4 0.6 0.8 1

2e+04

4e+04

6e+04

8e+04

1e+05

1.2e+05

1.4e+05

F
e
a
tu

re
 C

o
u

n
t

Total Feature Count
Features within 378x560x200
Features within 135x200x200
Features within 52x80x80

0 0.2 0.4 0.6 0.8 1
Relevance Threshold

1e+05

1e+06

1e+07

1e+08

1e+09

V
o
lu

m
e

Total Volume
Largest Feature

Fig. 15. Feature statistics for the Lifted Flame data set. Virtually all features
are captured within 52× 80× 80 regions corresponding to only two blocks
of the original decomposition.

decomposition and block counts increase by a factor of three
the effective bounding box sizes change for different configura-
tions. As a result the running time across different core counts
are not perfectly comparable. Tables I and II show the domain
decompositions, regions of influence, and guaranteed feature
sizes for the HCCI and lifted use case respectively. Note that at
full scale both use cases resolve virtually all features of interest
at significantly reduced runtimes. Furthermore, as discussed
above, the sizes, especially for the lifted flame, could be further
reduced resulting in even bigger time savings.

To better evaluate the region growing algorithm at equal
region sizes and feature densities we use the HCCI data to
construct a weak scaling study. Using various subsets as well
as a twice repeated version of the data we use the original
domain decomposition of 20× 20× 20 grid points at different

Domain Region Feature
Cores Decomposition Grown Size

(blocks) (blocks) (grid points)
128 8× 4× 4 3× 3× 3 70× 140× 140
256 8× 8× 4 3× 3× 3 70× 70× 140
512 8× 8× 8 3× 3× 3 70× 70× 70
1024 16× 8× 8 9× 3× 3 175× 70× 70
2048 16× 16× 8 9× 9× 3 175× 175× 70
4096 16× 16× 16 9× 9× 9 175× 175× 175
8000 20× 20× 20 9× 9× 9 140× 140× 140
15680 28× 28× 20 27× 27× 9 280× 280× 140
21952 28× 28× 28 27× 27× 27 280× 280× 280

TABLE I. THE FEATURE SIZES CAPTURED AT VARIOUS CORE COUNTS
FOR HCCI SIMULATION

Domain Region Feature
Cores Decomposition Grown Size

(blocks) (blocks) (grid points)
320 5× 8× 8 3× 3× 3 405× 200× 50
960 15× 8× 8 9× 3× 3 675× 200× 50
1920 15× 16× 8 9× 9× 3 675× 500× 70
3840 15× 16× 16 9× 9× 9 675× 500× 125
11520 45× 16× 16 27× 9× 9 630× 500× 125
23040 45× 32× 16 27× 27× 9 630× 700× 125
30000 75× 40× 10 27× 27× 9 378× 560× 200

TABLE II. THE FEATURE SIZES CAPTURED AT VARIOUS CORE COUNTS
FOR LIFTED FLAME SIMULATION

core counts. To obtain a sufficient number of experiments we
use two rounds of region growing, corresponding to 9× 9× 9
blocks and a guaranteed feature size of 100× 100× 100. For
each run we double the size of the data and the core counts to
keep the load constant on each core. As shown in Fig. 16 we
achieve good scaling up to almost 44K cores by which time
the data has grown by a factor of 16 at twice the runtime,
which also remains very low in an absolute sense. Profiling
the performance shows that at larger scale the algorithm is
communication bound while the computation by construction
remains virtually identical as each processor is doing the
same amount of work (bar some data dependencies) at all
scales. Therefore, the increasing diameter of the corresponding
network as well as interference from other jobs on the machine,
as shown by Bhatele et al. [44] is likely responsible for the
increase in time.

2,744	 5,488	 10,976	 21,952	 43,904	
0	

0.5	

1	

1.5	

2	

Ti
m
e	
(s
ec
)	

Number	 of	 Processes	 (Cores)	

Weak	 Scaling	 of	 Region	 Growing	 Strategy	 using	
HCCI_diff_OH	 (threshold	 =	 0.001)	

features	 100x100x100	
grid	 points	

	 	

Fig. 16. Weak scaling results for the HCCI data, extracting all features
contained with 100× 100× 100 grid points.

VI. CONCLUSION

This paper introduces the first scalable algorithm to com-
pute segmented merge trees for large-scale data. In particular,
we demonstrate that applying sophisticated data analysis tech-
niques in-situ at frequencies significantly higher than previ-
ously feasible is viable with minimal overhead to a simulation.
Furthermore, we present a locally consistent, approximate
algorithm with good weak scaling properties and strong cor-
rectness guarantees. By allowing frequent, in-depth analysis at
low cost our approach as the potential for significant scientific
impact. Going forward we plan to extent the framework to
include on-the-fly statistics, shape characterizations, and or
tracking. Furthermore, we plan to adjust the bulk synchronous
model used here to the many-core architectures expected in
future hardware.

ACKNOWLEDGMENT

This research was supported by the Department of Energy
Office of Advanced Scientific Computing Research. This re-
search used resources of the Oak Ridge Leadership Computing
Facility, which is a DOE Office of Science User Facility at
the Oak Ridge National Laboratory, which is supported by the
Office of Science of the U.S. Department of Energy under
Contract No. DE-AC05-00OR22725. This research used re-
sources of the National Energy Research Scientific Computing
Center, which is supported by the Office of Science of the
U.S. Department of Energy under Contract No. DE-AC02-
05CH11231. Sandia National Laboratories is a multi-program
laboratory managed and operated by Sandia Corporation, a
wholly owned subsidiary of Lockheed Martin Corporation,
for the U.S. Department of Energy’s National Nuclear Se-
curity Administration under contract DE-AC04-94AL85000.
The authors wish to thank the members of the the ExaCT
Center for Exascale Simulation of Combustion in Turbulence
for useful discussions and support. This work is supported
in part by BNSF CISE ACI-0904631, NSG IIS-1045032,
NSF EFT ACI-0906379,DOE/NEUP 120341, DOE/Codesign
P01180734, DOE/SciDAC DESC0007446, and CCMSC DE-
NA0002375.

This work was performed under the auspices of the U.S.
Department of Energy by Lawrence Livermore National Lab-
oratory under Contract DE-AC52-07NA27344 (LLNL-PROC-
657419).

REFERENCES

[1] M. Day, J. Bell, P.-T. Bremer, V. Pascucci, V. Beckner, and M. Lijewski,
“Turbulence effects on cellular burning structures in lean premixed
hydrogen flames,” Combustion and Flame, vol. 156, pp. 1035–1045,
2009.

[2] J. Bennett, V. Krishnamoorthy, S. Liu, R. Grout, E. R. Hawkes, J. H.
Chen, J. Shepherd, V. Pascucci, and P.-T. Bremer, “Feature-based
statistical analysis of combustion simulation data,” IEEE Trans. Vis.
Comp. Graph., vol. 17, no. 12, pp. 1822–1831, 2011.

[3] W. Widanagamaachchi, C. Christensen, P.-T. Bremer, and V. Pascucci,
“Interactive exploration of large-scale time-varying data using dynamic
tracking graphs,” in Proc. IEEE Symposium Large-Scale Data Analysis
and Visualization, 2012.

[4] S. Lakshminarasimhan, N. Shah, S. Ethier, S. Klasky, R. Latham,
R. Ross, and N. F. Samatova, “Compressing the incompressible with
isabela: In-situ reduction of spatio-temporal data,” in Proceedings of the
17th International Conference on Parallel Processing - Volume Part I,
ser. Euro-Par’11, 2011, pp. 366–379.

[5] H. Abbasi, J. Lofstead, F. Zheng, S. Klasky, K. Schwan, and M. Wolf,
“Extending i/o through high performance data services,” in IEEE
Cluster. IEEE International, 2009.

[6] V. Vishwanath, M. Hereld, and M. Papka, “Toward simulation-time data
analysis and i/o acceleration on leadership-class systems,” in Large Data
Analysis and Visualization (LDAV), 2011 IEEE Symposium on, 2011,
pp. 9–14.

[7] H. Yu, C. Wang, R. Grout, J. Chen, and K.-L. Ma, “In Situ Visualization
for Large-Scale Combustion Simulations,” IEEE Computer Graphics
and Applications, vol. 30, no. 3, pp. 45–57, 2010.

[8] A. Tikhonova, H. Yu, C. D. Correa, J. H. Chen, and K.-
L. Ma, “A preview and exploratory technique for large-scale
scientific simulations,” in Eurographics Symposium on Parallel
Graphics and Visualization, EGPGV 2011, Llandudno, Wales, UK,
2011. Proceedings, T. Kuhlen, R. Pajarola, and K. Zhou, Eds.
Eurographics Association, 2011, pp. 111–120. [Online]. Available:
http://dx.doi.org/10.2312/EGPGV/EGPGV11/111-120

[9] V. Vishwanath, M. Hereld, and M. Papka, “Toward simulation-time data
analysis and i/o acceleration on leadership-class systems,” in Proc. of
IEEE Symposium on Large Data Analysis and Visualization (LDAV),
October 2011.

[10] N. Fabian, K. Moreland, D. Thompson, A. Bauer, P. Marion, B. Geve-
cik, M. Rasquin, and K. Jansen, “The paraview coprocessing library: A
scalable, general purpose in situ visualization library,” in Proc. of IEEE
Symposium on Large Data Analysis and Visualization (LDAV), October
2011, pp. 89 –96.

[11] J.-M. F. Brad Whitlock and J. S. Meredith, “Parallel In Situ Coupling
of Simulation with a Fully Featured Visualization System,” in Proc. of
11th Eurographics Symposium on Parallel Graphics and Visualization
(EGPGV’11), April 2011.

[12] W. Hendrix, D. Palsetia, M. Patwary, A. Agrawal, W.-K. Liao, and
A. Choudhary, “A scalable algorithm for single-linkage hierarchical
clustering on distributed memory architectures,” in Proceedings of
3rd IEEE Symposium on Large-Scale Data Analysis and Visualization
(LDAV), 2013.

[13] P.-T. Bremer, G. Weber, J. Tierny, V. Pascucci, M. Day, and J. B. Bell,
“Interactive exploration and analysis of large scale simulations using
topology-based data segmentation,” IEEE Trans. on Visualization and
Computer Graphics, vol. 17, no. 99, 2010.

[14] V. Pascucci and K. Cole-McLaughlin, “Parallel computation of the
topology of level sets,” Algorithmica, vol. 38, no. 1, pp. 249–268, Oct.
2003.

[15] A. Gyulassy, P.-T. Bremer, V. Pascucci, and B. Hamann, “A practical
approach to Morse-Smale complex computation: Scalability and gen-
erality,” IEEE Transactions on Visualization and Computer Graphics,
vol. 14, no. 6, pp. 1619–1626, 2008.

[16] S. Williams, M. Petersen, P.-T. Bremer, M. Hecht, V. Pascucci,
J. Ahrens, M. Hlawitschka, and B. Hamann, “Adaptive extraction and
quantification of atmospheric and oceanic vortices,” IEEE Trans. Vis.
Comp. Graph., vol. 17, no. 12, pp. 2088–2095, 2011.

[17] D. Laney, P.-T. Bremer, A. Mascarenhas, P. Miller, and V. Pascucci,
“Understanding the structure of the turbulent mixing layer in hydrody-
namic instabilities,” IEEE Trans. Visualization and Computer Graphics
(TVCG) / Proc.of IEEE Visualization, vol. 12, no. 5, pp. 1052–1060,
2006.

[18] A. Mascarenhas, R. W. Grout, P.-T. Bremer, E. R. Hawkes, V. Pas-
cucci, and J. H. Chen, “Topological feature extraction for comparison
of terascale combustion simulation data,” in Topological Methods in
Data Analysis and Visualization, ser. Mathematics and Visualization,
V. Pascucci, X. Tricoche, H. Hagen, and J. Tierny, Eds. Springer
Berlin Heidelberg, 2011, pp. 229–240.

[19] D. Morozov and G. H. Weber, “Distributed merge trees,”
in ACM SIGPLAN Symposium on Principles and Practice of
Parallel Programming, PPoPP ’13, Shenzhen, China, February
23-27, 2013, A. Nicolau, X. Shen, S. P. Amarasinghe, and
R. Vuduc, Eds. ACM, 2013, pp. 93–102. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2442516

[20] J. H. Chen, A. Choudhary, B. de Supinski, M. DeVries, E. R. Hawkes,
S. Klasky, W. K. Liao, K. L. Ma, J. Mellor-Crummey, N. Podhorski,
R. Sankaran, S. Shende, and C. S. Yoo, “Terascale direct numerical
simulations of turbulent combustion using s3d,” Computational Science
and Discovery, vol. 2, pp. 1–31, 2009.

[21] T. Tu, H. Yu, L. Ramirez-Guzmanz, J. Bielak, O. Ghattas, K.-L. Ma, and
D. R. O’Hallaron, “From Mesh Generation to Scientific Visualization:
An End-to-End Approach to Parallel Supercomputing,” in Proceedings
of ACM/IEEE Supercomputing Conference, 2006.

[22] H. Yu, T. Tu, J. Bielak, O. Ghattas, J. C. López, K.-L. Ma, D. R.
O’Hallaron, L. Ramirez-Guzmanz, N. Stone, R. Taborda-Rios, and
J. Urbanic, “Remote Runtime Steering of Integrated Terascale Sim-
ulation and Visualization,” in ACM/IEEE Supercomputing Conference
HPC Analytics Challenge, 2006.

[23] S. Lakshminarasimhan, J. Jenkins, I. Arkatkar, Z. Gong, H. Kolla, S.-
H. Ku, S. Ethier, J. Chen, C. Chang, S. Klasky, R. Latham, R. Ross,
and N. Samatova, “Isabela-qa: Query-driven analytics with isabela-
compressed extreme-scale scientific data,” in Proc. of the ACM/IEEE
International Conference for High Performance Computing, Network-
ing, Storage and Analysis (SC), November 2011, pp. 1 –11.

[24] F. Zheng, H. Abbasi, C. Docan, J. Lofstead, S. Klasky, Q. Liu,
M. Parashar, N. Podhorszki, K. Schwan, and M. Wolf, “PreDatA -
preparatory data analytics on peta-scale machines,” in Proc. of 24th
IEEE International Parallel and Distributed Processing Symposium
(IPDPS’10), April 2010.

[25] H. Abbasi, M. Wolf, G. Eisenhauer, S. Klasky, K. Schwan, and
F. Zheng, “Datastager: scalable data staging services for petascale
applications,” in Proc. of 18th International Symposium on High Per-
formance Distributed Computing (HPDC’09), 2009.

[26] C. Docan, M. Parashar, and S. Klasky, “DataSpaces: An Interaction and
Coordination Framework for Coupled Simulation Workflows,” in Proc.
of 19th International Symposium on High Performance and Distributed
Computing (HPDC’10), June 2010.

[27] H. Abbasi, G. Eisenhauer, M. Wolf, K. Schwan, and S. Klasky, “Just
In Time: Adding Value to The IO Pipelines of High Performance Ap-
plications with JITStaging,” in Proc. of 20th International Symposium
on High Performance Distributed Computing (HPDC’11), June 2011.

[28] B. Lorendeau, Y. Fournier, and A. Ribes, “In-situ visualization in fluid
mechanics using catalyst: A case study for code saturne,” in Large-
Scale Data Analysis and Visualization (LDAV), 2013 IEEE Symposium
on, Oct 2013, pp. 53–57.

[29] M. Dorier, R. Sisneros, T. Peterka, G. Antoniu, and D. Semeraro,
“Damaris/viz: A nonintrusive, adaptable and user-friendly in situ visu-
alization framework,” in Large-Scale Data Analysis and Visualization
(LDAV), 2013 IEEE Symposium on, Oct 2013, pp. 67–75.

[30] F. Zheng, H. Yu, C. Hantas, M. Wolf, G. Eisenhauer, K. Schwan,
H. Abbasi, and S. Klasky, “Goldrush: Resource efficient in situ scientific
data analytics using fine-grained interference aware execution,” in
Proceedings of the International Conference on High Performance
Computing, Networking, Storage and Analysis, ser. SC ’13. New
York, NY, USA: ACM, 2013, pp. 78:1–78:12. [Online]. Available:
http://doi.acm.org/10.1145/2503210.2503279

[31] G. Reeb, “Sur les points singuliers d’une forme de pfaff completement
intergrable ou d’une fonction numerique [on the singular points of a
complete integral pfaff form or of a numerical function],” Comptes
Rendus Acad.Science Paris, vol. 222, pp. 847–849, 1946.

[32] H. Carr, J. Snoeyink, and U. Axen, “Computing contour trees in all
dimensions,” in Proc. of the 11th Annual ACM-SIAM Symposium on
Discrete Algorithms, ACM. New York, NY, USA: ACM Press, Jan.
2000, pp. 918–926.

[33] H. Edelsbrunner, J. Harer, and A. Zomorodian, “Hierarchical Morse-
Smale complexes for piecewise linear 2-manifolds,” Discrete Compu-
tational Geometry, vol. 30, pp. 173–192, 2003.

[34] H. Carr, J. Snoeyink, and M. van de Panne, “Simplifying flexible
isosurfaces using local geometric measures,” in IEEE Visualization ’04.
IEEE Computer Society, 2004, pp. 497–504.

[35] D. Laney, P. T. Bremer, A. Mascarenhas, P. Miller, and V. Pascucci,
“Understanding the structure of the turbulent mixing layer in hydrody-
namic instabilities,” IEEE Transactions on Visualization and Computer
Graphics, vol. 12, no. 5, pp. 1053–1060, Sep. 2006.

[36] A. Gyulassy, M. Duchaineau, V. Natarajan, V. Pascucci, E. Bringa,
A. Higginbotham, and B. Hamann, “Topologically clean distance
fields,” IEEE Transactions on Visualization and Computer Graphics,
vol. 13, no. 6, pp. 1432–1439, 2007.

[37] P.-T. Bremer, H. Edelsbrunner, B. Hamann, and V. Pascucci, “Topologi-
cal hierarchy for functions on triangulated surfaces,” IEEE Transactions
on Visualization and Computer Graphics, vol. 10, pp. 385–396, 2004.

[38] A. Gyulassy, V. Natarajan, V. Pascucci, P.-T. Bremer, and B. Hamann,
“A topological approach to simplification of three-dimensional scalar
functions,” IEEE Transactions on Visualization and Computer Graphics,
vol. 12, no. 4, pp. 474–484, 2006.

[39] V. Pascucci, G. Scorzelli, P.-T. Bremer, and A. Mascarenhas, “Robust
on-line computation of Reeb graphs: simplicity and speed,” ACM Trans.
Graph., vol. 26, no. 3, Jul. 2007.

[40] A. Gyulassy, P.-T. Bremer, B. Hamann, and V. Pascucci, “A practical
approach to Morse-Smale complex computation: scalability and gen-
erality,” IEEE Transactions on Visualization and Computer Graphics,
vol. 14, no. 6, pp. 1619–1626, 2008.

[41] A. Gyulassy, T. Peterka, R. Ross, and V. Pascucci, “The parallel
computation of Morse-Smale complexes,” IEEE International Parallel
and Distributed Processing Symposium, to appear, 2012.

[42] J. Bennett, H. Abbasi, P.-T. Bremer, R. Grout, A. Gyulassy, T. Jin,
S. Klasky, H. Kolla, M. Parashar, V. Pascucci, P. Pebay, D. Thompson,
H. Yu, F. Zhang, and J. Chen, “Combining in-situ and in-transit pro-
cessing to enable extreme-scale scientific analysis,” in Proc. ACM/IEEE
Conference on Supercomputing (SC12), 2012.

[43] H. Carr, J. Snoeyink, and U. Axen, “Computing contour trees in all
dimensions,” Comput. Geom. Theory Appl., vol. 24, no. 3, pp. 75–94,
2003.

[44] A. Bhatele, K. Mohror, S. H. Langer, and K. E. Isaacs, “There goes
the neighborhood: performance degradation due to nearby jobs,” in
ACM/IEEE International Conference for High Performance Computing,
Networking, Storage and Analysis, ser. SC ’13. IEEE Computer
Society, Nov. 2013 (to appear), lLNL-CONF-635776.

