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ABSTRACT

Reflectance confocal microscopy (RCM) has seen increasing clinical application for noninvasive diagnosis of skin
cancer. Identifying the location of the dermal-epidermal junction (DEJ) in the image stacks is key for effective clinical
imaging. For example, one clinical imaging procedure acquires a dense stack of 0.5x0.5mm FOV images and then,
after manual determination of DEJ depth, collects a Sx5mm mosaic at that depth for diagnosis. However, especially in
lightly pigmented skin, RCM images have low contrast at the DEJ which makes repeatable, objective visual
identification challenging. We have previously published proof of concept for an automated algorithm for DEJ
detection in both highly- and lightly-pigmented skin types based on sequential feature segmentation and classification.
In lightly-pigmented skin the change of skin texture with depth was detected by the algorithm and used to locate the
DEJ. Here we report on further validation of our algorithm on a more extensive collection of 24 image stacks (15 fair
skin, 9 dark skin). We compare algorithm performance against classification by three clinical experts. We also
evaluate inter-expert consistency among the experts. The average correlation across experts was 0.81 for lightly
pigmented skin, indicating the difficulty of the problem. The algorithm achieved epidermis/dermis misclassification
rates smaller than 10% (based on 25x25 mm tiles) and average distance from the expert labeled boundaries of ~6.4 pm
for fair skin and ~5.3 um for dark skin, well within average cell size and less than 2x the instrument resolution in the
optical axis.

Keywords: confocal reflectance microscopy, image analysis, skin, classification.

1. INTRODUCTION

One of the most common cancer types is skin cancer. Every year, in the US alone, about 3.6 million new cases of
skin cancers are diagnosed'”. Skin cancer screen in clinic is performed with a visual examination by naked eye and
with a dermoscope®™. Biopsy and histology is performed when an abnormal skin region is located during a visual
exam. Biopsies are invasive, painful, destroy the site and leave a scar. Studies show that around 80% of biopsies return
negative results.

Noninvasive imaging of skin for cancer screening and diagnosis with reflectance confocal microscopy (RCM) has
been studied and reported in previous studies””. Epidermis and superficial dermis layers below the surface of the skin
can be imaged with RCM. Maximum imaging depth is limited to the papillary dermis or superficial reticular dermis,
depending on the state of the overlying epidermis and the dermis/epidermis junction. Nuclear and cellular detail is
imaged with nominal optical sectioning of 1-3 um and lateral resolution of 0.5-1.0 wm, which is comparable to that of
conventional pathology. Sensitivity and specificity of detecting skin cancer with RCM reported in recent studies shows
that RCM is advancing toward clinical utility for early noninvasive screening and diagnosis of skin cancers in real
time while minimizing the need for biopsies™'’.
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RCM acquisition is performed by sequentially capturing optical sections at increasing depths in skin. Horizontal slices
acquired at each depth are recorded as a stack of images (see Fig.1) The point spread function and hence optical
sectioning, resolution and contrast degrade with depth, due to increasing aberrations and scattering. Thus, detection of
certain morphologic features remains challenging. Also, unlike pathological sections that are oriented perpendicular to
the skin surface and are stained purple and pink, reflectance confocal images are oriented parallel (en face) and appear
in grayscale (unstained). Thus, the appearance of RCM images is quite different from that of pathology. Visual
evaluation of the features requires substantial training. Thus, computer automated image analysis tools to assist
clinicians with evaluation and training could lead to adoption and a wider clinical utility of this otherwise attractive
technology.

So far there are few publications on computer automated processing of RCM images to automatically identify
quantitative features''™'*. An example of a clinically important feature is the dermis/epidermis junction (DEJ), which is
the 3 dimensional irregular surface separating the superficial epidermis from the underlying deeper dermis. The DEJ is
clinically and pathologically important to examine, because cancers often originate and later spread from this location.
Therefore, evaluation of the DEJ is important for early diagnosis.

PATHOLOGY
Orthogonal sections - Perpendicular to skin surface

About 60 pm

Vertical Histology cross-section RCM Image stack
Figure 1. Comparison of pathology and histology with RCM. The top panel shows skin tissue on the left and a
vertical histology cross-section on the right. The bottom panel shows vertical histology cross-section on the left

with the blue curve drawn to indicate the location of the DEJ. The yellow lines indicate the horizontal slices
imaged with RCM. A 3D RCM image stack is shown on the right.
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Computer-automated image analysis may assist clinicians with the detection of the DEJ (and other morphologic
features). However, in RCM images, the DEJ, like many other such features, is marked by optically subtle changes
and features and is difficult to detect, with particular difficulty for lightly pigmented skin types where RCM contrast at
the DEJ is poor (see Figs. 2 and 3). Additional challenges for automated-image analysis of RCM stacks from skin
include heterogeneity of skin tissue, high inter- and intra-subject variability and low optical contrast. To overcome
these challenges, we proposed a hybrid segmentation/classification algorithm for DE junction localization in lightly
pigmented skin types'>™'’. This approach was a combination of two algorithms: First algorithm is the sequential image
segmentation algorithm that partitioned the image sequences in depth (z) direction into homogenous groups using the
dynamics of image features. Then, the second one, the machine learning—based locally smooth classification algorithm
labeled these groups as epidermis and dermis regions sequentially. Both algorithms used a set of textural features
calculated form the en face images.

Recently, we extended this algorithm to locate the DE junction in dark skin'®, in which strong backscatter from the
melanin pigment causes the basal layer right above the DE junction to appear bright and with high contrast and was
easier to detect compared to DE junction in fair skin stacks. In dark skin RCM stacks, the algorithm found the
appropriate peak of the smoothed average intensity depth profile of an image region centered at position (x,y). To do
so, we used 2-D texture features computed for each tile corresponding to a peak in intensity depth profile of that tile
and automatically selected the right peak corresponding to basal cells by a texture similarity based analysis.

We also proposed a skin type detection algorithm'®, which decided the skin type of a given RCM stack based on
existence of basal layer. After skin type detection, the appropriate DEJ localization method for either fair or dark skin
was applied to that stack.
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Figure 1. The left and right panels show two slices from an RCM stack from fair skin (on the left) and dark skin
(on the right) respectively. The white boundary drawn is the DE junction.

Figure 2. The left and right panels show two vertical slices from an RCM stack from fair skin (on the left) and
dark skin (on the right) respectively. The white boundary drawn is the DE junction.
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Here we report on the results of a validation study that we performed over 24 RCM stacks (9 dark skin, 15 fair skin) of
normal skin to compare the DEJ detected by the algorithms with the DEJ manually labeled by experts. The results
indicated that the algorithm localized DE junction for those test stacks with average errors of 5.32+4.27 pum for the
DEJ in dark skin and 6.8245.44 um for epidermis boundary and 6.04+5.07um for dermis boundary in fair skin.

2. METHODS

2.1 Data acquisition and preprocessing

Imaging was performed on healthy volunteers with a VivaScope 1500™ (Lucid Inc., Rochester NY, operating at 785
nm wavelength). A stack of horizontal images was captured starting at a position below the skin surface. The
resolution was 0.5 pm in lateral direction and about 3 pm in the axial direction. The field-of-view was 500pm. After
capturing each image, the en-face optical section was translated 1 um deeper along the optical axis into the tissue from
the starting position below the skin surface to a sufficient depth to be in the dermis. The clinician performing the
imaging selected both starting and end points as arbitrary positions in epidermis and dermis respectively. After
acquisition of a confocal stack, the stack of 8-bit tiff images were loaded into Matlab software for automated
processing to locate the DEJ. The image stack was first converted into a volume matrix and the automated
preprocessing algorithm was applied.

The images were not aligned and there was shift in lateral directions (x and y) from one image to the next due to
patient movement during acquisition. To correct for this shift a standard stack registration algorithm was applied.

2.2 Automated DEJ Detection Algorithm

Skin Type Detection: For a given RCM stack, we first applied the automated skin type detection algorithm we
proposed in previous work'®, which determined whether the given stack was dark skin (pigmented skin) or fair skin
(very lightly pigmented skin) (See Figs. 2 and 3). To determine the skin type, one obvious useful feature is the
presence of very bright basal cells in dark skin, which are not present in fair skin. Therefore these basal cells need to
be searched for within the given stack; if they are present, we can conclude that the stack is from dark skin.

After skin type detection, according to the detected skin type, the DEJ detection algorithm for fair or dark skin was
applied to the given stack. Both DEJ detection algorithms operated on tiles, i.e. small square regions that are large
enough to include a few cells; hence the first step was partitioning of the stack into tiles. To detect the boundaries of
epidermis and dermis layers (i.e. the DEJ), both fair and dark skin algorithms used the dynamics of skin layer
appearance with depth information.

Automated DEJ detection for dark skin: In dark skin, the basal layer has bright basal cells including highly
reflective melanin pigment. The DEJ is located at the lower boundary of the basal layer, separating the basal layer
from the underlying dermis. To detect DEJ in dark skin, due to existence of strong intensity contrast at basal layer,
intensity information with depth was used. However, this strong peak in intensity at the basal layer was not consistent
across the stack. Some tiles had multiple strong peaks due to bright appearing epidermis region or deep dermal
collagen fibers. For those tile a texture based basal layer detection algorithm was applied to select the peak including
basal cells. This algorithm was proposed and explained in detail in our previous work'®.

Automated DEJ detection for fair skin: For fair skin types, due to low amount of melanin pigment, the basal cells
do not appear bright in RCM stacks. Therefore, for these stacks the DE junction detection task is harder due to the lack
of contrast and strong features, as well as heterogeneity of skin tissue. In fair skin RCM stacks, instead of detecting a
strict DE junction, a transition zone was detected. This transition zone has upper boundary, (i.e. lower boundary for
epidermis layer) and has lower boundary (i.e. upper boundary for dermis layer). The DE junction is located in between
these two boundary surfaces. To detect these dermis and epidermis boundaries, due to lack of contrast, instead of
inten?;ty information, we utilized the texture dynamics of skin tissue in depth direction, as proposed in our previous
work .
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The algorithm used 2D texture features calculated for a z-stack of tiles to discriminate the textural differences between
different skin layers. The set of features used in automated skin type detection and DE junction detection algorithms
were the same set of features used in previous work'”'®. From each tile, we extracted this same set of 170 texture
features including gray level co-occurrence matrix features (contrast, energy, correlation and homogeneity), statistical
metrics (mean, variance, skewness and kurtosis), features from a wavelet decomposition'’, log-Gabor features and
radial spectral features. From these 170 features, we selected the most discriminative and least redundant subset of
features with an automated feature selection algorithm over a training set of manually labeled stacks'’?.

The dynamics of the skin texture in depth was represented by the multivariate feature sequence in depth calculated for
a tile stack. This feature sequence was used to partition the stack into homogenous segments in z (depth). To do so, a
model of skin layer dynamics was fitted to these features from the z-stack of tiles. Then, those tile segments were
classified as epidermis, dermis, or transitional DEJ region using texture features. The classifier was trained on an RCM
stack where the DE junction was manually labeled and applied to new RCM stacks to automatically locate the DE
junction.

3. RESULTS

We applied the DEJ detection algorithm on 24 RCM stacks (15 fair skin stacks, 9 dark skin stacks) from our database.
For each stack, we had ground truth (expert labeling) available. We compared the boundaries located by the algorithm
with the ground truth. Table 1 shows the mean and standard deviation of the distances between expert labeled DEJs
and the automatically located DEJs in 9 dark skin RCM stacks. The DEJs found by the algorithm (dotted red) and the
DEJs marked by the expert (green) are compared for two sample vertical cross sections (x-z) and (y-z) from the first
two stacks from Table 1 in Fig. 3 and 4.

Surface plot of the DEJs automatically found by the algorithm are shown in 3D in comparison to expert labeled DEJ
for the first three stacks from Table 1 in Fig 5. The surface itself indicates the resultant DEJ of the algorithm and the
color map indicates the distance from the expert labeled DEJ (error).

In Fig. 6, the resultant automatically located epidermis (shaded with red) and dermis regions (shaded with blue) are
shown for various axial RCM slices at various depths imaged parallel to the skin surface for RCM stack 1.

Table 1. Table shows the mean and standard deviation of the distances between expert labeled DE junctions and the
automatically located DE junctions in 9 RCM stacks from dark skin.

RCM Stack Mean + ¢ (um)

[

4.4743.13
3.3143.11
2.9043.02
2.8843.22
8.4316.46
9.2618.44
9.93+4.56
2.61+3.45

O 0 N O W R~ W

4.1613.04
Mean *c (um) 5.32+4.27

The results of the DE junction detection algorithm for fair skin were reported in our previous work for 4 RCM stacks.
Here we report the results for 15 fair skin RCM stacks. We compared the epidermis and dermis boundaries located by
the algorithm with the ground truth. The DEJ is located in between these boundaries. However, at some regions, where
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wrinkles are present, DEJ location is not calculated, therefore those regions are excluded from the results. Table 1
shows the mean and standard deviation of the distances between expert labeled epidermis and dermis boundary
surfaces and the automatically located surfaces in 15 fair skin stacks. The last column shows the average error over all
stacks.

«==== DE Junction Algorithm

Figure 3. The upper and lower panels on the right compare the DE junction found by the algorithm (dotted red)
with the one marked by the expert (green) for two sample vertical cross sections (x-z) and (y-z) from the RCM
stack 1-3. The solid lines in the left figures indicate the vertical slice location on a sample horizontal slice. Note
that the expert marks the DE junction not on the vertical slices but on horizontal slices.

==+ DE Junction Algorithm
Figure 4. Similar figure as Fig. 3 for RCM stack 2
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Figure 5. Surface plots of the DE junctions automatically found by the algorithm are shown in 3D in
comparison to expert labeled DE junctions for RCM stacks 1 to 3 from dark skin. The surface itself indicates
the resultant DE junction of the algorithm and the color map indicates the distance from the expert labeled DE
junction (error).
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Figure 6. The resultant automatically located epidermis (red) and dermis (blue) regions are shown on the axial
RCM slices at various depths imaged parallel to the skin surface for RCM stack 1 from dark skin. The numbers
on top left corner indicates the depth in reference to the most superior axial slice of the image stack

Table 2. The mean and standard deviation of the distances between expert labeled epidermis and dermis
boundaries and the automatically located epidermis and dermis boundaries in 15 RCM stacks from fair skin are
reported. The last column of the table shows the mean over all 15 stacks.

RCM Stack no 1 2 3 4 5 6 7 8
Epidermis 7.89+737 7.77£635 5.89+£5.19 546+£3.92 11.0249.62  5.75£3.70  3.68+2.89 6.63+4.12
Mean+c (um)

Dermis 533+£511  7.29+740 5.19£5.12  4.24+3.40 9.73+7.92 538+4.11 2.24+1.77 5.89+3.04
Mean+c(um)

RCM Stack no ? 10 1 12 13 14 15 Meanzo(pm)
Epidermis 7.12£3.70  8.08+6.54  8.46+6.53  5.44+4.77  5.60+5.47 7.90+6.15  5.73+5.28 6.82+5.44
Mean+o(pm)

Dermis 7.29+£399  5.53+6.13  6.94+6.61 5.83:4.82  6.14£5.33 8.81£6.65  4.83+4.79 6.04+5.07
Mean+o(pum)
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Figure 6. Surface plot of the epidermis boundary and the dermis boundary in 3D in comparison to the expert labeled
boundaries of RCM stack 4 and 7 from Table 2. Top blue (bottom red) surfaces show the expert labeled epidermis (dermis)
boundary The colored surfaces indicate the resultant boundaries of the algorithm. The color maps indicate the distance
from the expert labeled boundary. The axes are is in micrometers. Flat regions are the masked out wrinkles. For the smooth
visualization purpose, the boundaries are plotted after interpolating them twice in 2D with spline interpolation.
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We also evaluated the inter-expert consistency among the experts. We asked all of our three expert clinicians to label
the same fair skin RCM stack. On that stack, the average correlation calculated across experts was 0.81 for lightly
pigmented skin, indicating the difficulty of the problem.

4. CONCLUSION AND FUTURE WORK

In this work, we performed a validation study for the algorithms we proposed earlier to to detect whether the RCM
stack is from light or dark skin type and to then locate the DEJ surface in RCM image stacks using the DEJ detection
algorithm for either dark or fair skin types. The skin type detection algorithm classified the stacks including reflective
basal cell as dark skin. The dark skin DEJ detection algorithm first detected the peaks in the mean intensity profiles for
each tile and then selected the peaks that corresponded to the basal cells. After locating the basal cells, the lower
boundary of the basal cells corresponding to the DEJ was found and the DEJ surface was constructed. The fair skin
algorithm used texture featured to first partition z-stacks of tiles into homogenous segments corresponding to skin
texture changes with depth and then detected the epidermis and dermis layers sequentially with a locally smooth
classifier. The results show that the DEJ algorithm for dark skin type resulted in reasonable performance with average
distance from the ground truth DEJ surface around 5.32pm. Similar results for DEJ detection algorithm for fair skin
types resulted in epidermis/dermis misclassification rates smaller than 10% and average distance from the expert
labeled boundaries around 6.4 um.
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