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ABSTRACT   

 
Reflectance confocal microscopy (RCM) has seen increasing clinical application for noninvasive diagnosis of skin 
cancer. Identifying the location of the dermal-epidermal junction (DEJ) in the image stacks is key for effective clinical 
imaging.  For example, one clinical imaging procedure acquires a dense stack of 0.5x0.5mm FOV images and then, 
after manual determination of DEJ depth, collects a 5x5mm mosaic at that depth for diagnosis. However, especially in 
lightly pigmented skin, RCM images have low contrast at the DEJ which makes repeatable, objective visual 
identification challenging. We have previously published proof of concept for an automated algorithm for DEJ 
detection in both highly- and lightly-pigmented skin types based on sequential feature segmentation and classification. 
In lightly-pigmented skin the change of skin texture with depth was detected by the algorithm and used to locate the 
DEJ. Here we report on further validation of our algorithm on a more extensive collection of 24 image stacks (15 fair 
skin, 9 dark skin). We compare algorithm performance against classification by three clinical experts. We also 
evaluate inter-expert consistency among the experts. The average correlation across experts was 0.81 for lightly 
pigmented skin, indicating the difficulty of the problem. The algorithm achieved epidermis/dermis misclassification 
rates smaller than 10% (based on 25x25 mm tiles) and average distance from the expert labeled boundaries of ~6.4 μm 
for fair skin and ~5.3 μm for dark skin, well within average cell size and less than 2x the instrument resolution in the 
optical axis.  
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1. INTRODUCTION  

 
One of the most common cancer types is skin cancer. Every year, in the US alone, about 3.6 million new cases of 

skin cancers are diagnosed1-2. Skin cancer screen in clinic is performed with a visual examination by naked eye and 
with a dermoscope3-4. Biopsy and histology is performed when an abnormal skin region is located during a visual 
exam. Biopsies are invasive, painful, destroy the site and leave a scar. Studies show that around 80% of biopsies return 
negative results. 
 
Noninvasive imaging of skin for cancer screening and diagnosis with reflectance confocal microscopy (RCM) has 
been studied and reported in previous studies5-9. Epidermis and superficial dermis layers below the surface of the skin 
can be imaged with RCM. Maximum imaging depth is limited to the papillary dermis or superficial reticular dermis, 
depending on the state of the overlying epidermis and the dermis/epidermis junction. Nuclear and cellular detail is 
imaged with nominal optical sectioning of 1-3 μm and lateral resolution of 0.5-1.0 μm, which is comparable to that of 
conventional pathology. Sensitivity and specificity of detecting skin cancer with RCM reported in recent studies shows 
that RCM is advancing toward clinical utility for early noninvasive screening and diagnosis of skin cancers in real 
time while minimizing the need for biopsies8,10.  
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Here we report on the results of a validation study that we performed over 24 RCM stacks (9 dark skin, 15 fair skin) of 
normal skin to compare the DEJ detected by the algorithms with the DEJ manually labeled by experts. The results 
indicated that the algorithm localized DE junction for those test stacks with average errors of 5.32±4.27 μm for the 
DEJ in dark skin and 6.82±5.44 μm for epidermis boundary and 6.04±5.07μm for dermis boundary in fair skin. 

 

2. METHODS 
 
2.1 Data acquisition and preprocessing 

Imaging was performed on healthy volunteers with a VivaScope 1500™ (Lucid Inc., Rochester NY, operating at 785 
nm wavelength).  A stack of horizontal images was captured starting at a position below the skin surface. The 
resolution was 0.5 μm in lateral direction and about 3 μm in the axial direction.  The field-of-view was 500μm. After 
capturing each image, the en-face optical section was translated 1 μm deeper along the optical axis into the tissue from 
the starting position below the skin surface to a sufficient depth to be in the dermis. The clinician performing the 
imaging selected both starting and end points as arbitrary positions in epidermis and dermis respectively. After 
acquisition of a confocal stack, the stack of 8-bit tiff images were loaded into Matlab software for automated 
processing to locate the DEJ. The image stack was first converted into a volume matrix and the automated 
preprocessing algorithm was applied.  

The images were not aligned and there was shift in lateral directions (x and y) from one image to the next due to 
patient movement during acquisition. To correct for this shift a standard stack registration algorithm was applied. 

 

2.2 Automated DEJ Detection Algorithm 

Skin Type Detection: For a given RCM stack, we first applied the automated skin type detection algorithm we 
proposed in previous work18, which determined whether the given stack was dark skin (pigmented skin) or fair skin 
(very lightly pigmented skin) (See Figs. 2 and 3). To determine the skin type, one obvious useful feature is the 
presence of very bright basal cells in dark skin, which are not present in fair skin. Therefore these basal cells need to 
be searched for within the given stack; if they are present, we can conclude that the stack is from dark skin. 

After skin type detection, according to the detected skin type, the DEJ detection algorithm for fair or dark skin was 
applied to the given stack. Both DEJ detection algorithms operated on tiles, i.e. small square regions that are large 
enough to include a few cells; hence the first step was partitioning of the stack into tiles.  To detect the boundaries of 
epidermis and dermis layers (i.e. the DEJ), both fair and dark skin algorithms used the dynamics of skin layer 
appearance with depth information.  

Automated DEJ detection for dark skin: In dark skin, the basal layer has bright basal cells including highly 
reflective melanin pigment. The DEJ is located at the lower boundary of the basal layer, separating the basal layer 
from the underlying dermis. To detect DEJ in dark skin, due to existence of strong intensity contrast at basal layer, 
intensity information with depth was used. However, this strong peak in intensity at the basal layer was not consistent 
across the stack. Some tiles had multiple strong peaks due to bright appearing epidermis region or deep dermal 
collagen fibers. For those tile a texture based basal layer detection algorithm was applied to select the peak including 
basal cells. This algorithm was proposed and explained in detail in our previous work18. 

Automated DEJ detection for fair skin: For fair skin types, due to low amount of melanin pigment, the basal cells 
do not appear bright in RCM stacks. Therefore, for these stacks the DE junction detection task is harder due to the lack 
of contrast and strong features, as well as heterogeneity of skin tissue. In fair skin RCM stacks, instead of detecting a 
strict DE junction, a transition zone was detected. This transition zone has upper boundary, (i.e. lower boundary for 
epidermis layer) and has lower boundary (i.e. upper boundary for dermis layer). The DE junction is located in between 
these two boundary surfaces. To detect these dermis and epidermis boundaries, due to lack of contrast, instead of 
intensity information, we utilized the texture dynamics of skin tissue in depth direction, as proposed in our previous 
work17.  
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The algorithm used 2D texture features calculated for a z-stack of tiles to discriminate the textural differences between 
different skin layers. The set of features used in automated skin type detection and DE junction detection algorithms 
were the same set of features used in previous work17-18. From each tile, we extracted this same set of 170 texture 
features including gray level co-occurrence matrix features (contrast, energy, correlation and homogeneity), statistical 
metrics (mean, variance, skewness and kurtosis), features from a wavelet decomposition19, log-Gabor features and 
radial spectral features. From these 170 features, we selected the most discriminative and least redundant subset of 
features with an automated feature selection algorithm over a training set of manually labeled stacks17,20.  

The dynamics of the skin texture in depth was represented by the multivariate feature sequence in depth calculated for 
a tile stack. This feature sequence was used to partition the stack into homogenous segments in z (depth). To do so, a 
model of skin layer dynamics was fitted to these features from the z-stack of tiles. Then, those tile segments were 
classified as epidermis, dermis, or transitional DEJ region using texture features. The classifier was trained on an RCM 
stack where the DE junction was manually labeled and applied to new RCM stacks to automatically locate the DE 
junction.  

3. RESULTS 
 
We applied the DEJ detection algorithm on 24 RCM stacks (15 fair skin stacks, 9 dark skin stacks) from our database. 
For each stack, we had ground truth (expert labeling) available. We compared the boundaries located by the algorithm 
with the ground truth. Table 1 shows the mean and standard deviation of the distances between expert labeled DEJs 
and the automatically located DEJs in 9 dark skin RCM stacks. The DEJs found by the algorithm (dotted red) and the 
DEJs marked by the expert (green) are compared for two sample vertical cross sections (x-z) and (y-z) from the first 
two stacks from Table  1 in Fig. 3 and 4.  

Surface plot of the DEJs automatically found by the algorithm are shown in 3D in comparison to expert labeled DEJ 
for the first three stacks from Table 1 in Fig 5.  The surface itself indicates the resultant DEJ of the algorithm and the 
color map indicates the distance from the expert labeled DEJ (error). 

In Fig. 6, the resultant automatically located epidermis (shaded with red) and dermis regions (shaded with blue) are 
shown for various axial RCM slices at various depths imaged parallel to the skin surface for RCM stack 1.  

 

Table 1. Table shows the mean and standard deviation of the distances between expert labeled DE junctions and the 
automatically located DE junctions in 9 RCM stacks from dark skin. 

RCM Stack Mean ± σ (μm) 

1 4.47±3.13 

2 3.31±3.11 

3 2.90±3.02 

4 2.88±3.22 

5 8.43±6.46 

6 9.26±8.44 

7 9.93±4.56 

8 2.61±3.45 

9 4.16±3.04 

Mean ±σ (μm) 5.32±4.27 

 

The results of the DE junction detection algorithm for fair skin were reported in our previous work for 4 RCM stacks. 
Here we report the results for 15 fair skin RCM stacks. We compared the epidermis and dermis boundaries located by 
the algorithm with the ground truth. The DEJ is located in between these boundaries. However, at some regions, where 
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We also evaluated the inter-expert consistency among the experts. We asked all of our three expert clinicians to label 
the same fair skin RCM stack. On that stack, the average correlation calculated across experts was 0.81 for lightly 
pigmented skin, indicating the difficulty of the problem. 

 

4. CONCLUSION AND FUTURE WORK 
 
In this work, we performed a validation study for the algorithms we proposed earlier to to detect whether the RCM 
stack is from light or dark skin type and to then locate the DEJ surface in RCM image stacks using the DEJ detection 
algorithm for either dark or fair skin types.  The skin type detection algorithm classified the stacks including reflective 
basal cell as dark skin. The dark skin DEJ detection algorithm first detected the peaks in the mean intensity profiles for 
each tile and then selected the peaks that corresponded to the basal cells. After locating the basal cells, the lower 
boundary of the basal cells corresponding to the DEJ was found and the DEJ surface was constructed. The fair skin 
algorithm used texture featured to first partition z-stacks of tiles into homogenous segments corresponding to skin 
texture changes with depth and then detected the epidermis and dermis layers sequentially with a locally smooth 
classifier. The results show that the DEJ algorithm for dark skin type resulted in reasonable performance with average 
distance from the ground truth DEJ surface around 5.32μm. Similar results for DEJ detection algorithm for fair skin 
types resulted in epidermis/dermis misclassification rates smaller than 10% and average distance from the expert 
labeled boundaries around 6.4 μm.  
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