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Abstract

In this paper we propose a supervised 3D segmentation algorithm to locate the esophagus in
thoracic CT scans using a variational framework. To address challenges due to low contrast,
several priors are learned from a training set of segmented images. Our algorithm first estimates
the centerline based on a spatial model learned at a few manually marked anatomical reference
points. Then an implicit shape model is learned by subtracting the centerline and applying PCA to
these shapes. To allow local variations in the shapes, we propose to use nonlinear smooth local
deformations. Finally, the esophageal wall is located within a 3D level set framework by
optimizing a cost function including terms for appearance, the shape model, smoothness
constraints and an air/contrast model.
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[. Introduction

Contouring anatomic structures at risk in thoracic CT images is critical for radiotherapy
treatment planing. Since manual contouring is labor intensive, considerable attention has
been devoted to automating the process. Locating the esophageal wall is particularly
challenging. Inherent difficulties in segmentation of the esophagus include the lack of
consistent intensity contrast and variable appearance in regions which contain air bubbles or
remains of oral contrast agent. Thus, a simple appearance model of esophagus tissue density
which ignores this variability in appearance will not suffice. In addition, the segmentation
algorithm needs a good model for the 3D esophagus shape, which is complex and variable.

Only a few studies have been reported on esophagus segmentation. Rousson et al. [1]
located the esophageal wall in a limited range of the cranio-caudal axis (where the Left
Atrium (LA) was present) by fitting a 2D ellipse shape model to each slice using an
appearance based cost function with a regularization term for slice-to-slice smoothness.
More recent work by Feulner et al. [2] used a fast algorithm based on probabilistic
classification to find candidate 2D ellipses in each slice and combined them using a Hidden
Markov Model. This method requires considerable labeled training data for correct
classification of the esophagus, in part due its variable appearance in the presence of air
bubbles, contrast agent, or both.
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In previous work [3], we proposed a 3D esophagus segmentation technique for the entire
thoracic range using a 3D level set framework. Unlike the previous approaches that used a
collection of 2D ellipse models, no slice-to-slice smoothing was needed. We tried to
incorporate as much prior information as possible from a small set of training data. In this
paper, we follow a similar learning based approach. We improve the accuracy of our earlier
work by proposing a new shape model, which includes a nonlinear local transformation
component. Furthermore, we include a simple shape prior learned from the eigenmode
weight distributions of training shapes to further constrain the shape space.

Level set methods have been used widely in medical image segmentation. Various energy
functions, based on a variety of features, have been proposed to drive the deformable curve/
surface to the desired location in the image. However, existing energy terms are insufficient
for segmentation of certain structures in medical images where there is a lack of both
consistent intensity contrast between the object and the background and of clear
discriminative features. To overcome these difficulties, shape models capturing the
geometry of the structure of interest have been incorporated into the level set framework as a
shape energy term [4]. This term drives the evolving contour to be similar to a shape model
learned from the training samples, using parametric/non-parametric density estimation or
PCA [5]. When a limited amount of training data is available, PCA is preferred over density
estimation. However, as noted in [6], PCA models only global variation of the samples
within the training set.

In this paper, we propose a new shape model and a shape matching term. In order to
circumvent the limitations of PCA based shape models, we separate the shape model into
global and local components. We use PCA modes to represent the global component and we
incorporate a nonlinear local transformation component to our shape model to account for
local deformations. In order to limit the variability in the training data set, we center the
training data at each slice around the estimated center location through the new spatial
model that we introduce. We then incorporate the smooth local deformations and the shape
model into the energy functional that the level set evolves accordingly. The main
contributions of this work are two-fold: The introduction of nonlinear local transformations
to the PCA-based shape model to account for local deformations and the efficient utilization
of prior information within a 3D variational framework to address the very challenging task
of esophagus segmentation.

Il. Proposed Method
A. Shape Model

Global shape registration—For our shape model, we used a set of manually annotated
training data sets. We first apply a global registration step to register each training shape
with respect to a reference shape. The standard approach used for shape registration before
constructing a shape model is matching the shapes using an affine transformation. However,
for deformable structures such as esophagus, a more complex model might be necessary.
Thus, we use a global registration method consisting of two steps: 1) First we apply a
normalization in the cranio-caudal (z) axis on all the training data sets by matching 7
anatomical landmark locations and interpolating slices in between the landmarks. 2) Then,
we subtract the centerline from the data sets, i.e. shifting each slice such that the shape
center lies at the origin (See Fig 1(a)).

The global registration method applied to the training data sets will also be applied to a test
set given the locations of anatomical landmark points in z axis and the estimated centerline
location. For centerline estimation we proposed an algorithm in our previous work [3]. We
built a spatial model of esophagus center location with respect to neighboring anatomical
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structures and an appearance model of the esophagus from annotated training sets. Based on
these models, we estimated the center location for anatomical landmark slices and to
estimate the centerline for the rest of the slices we used our centerline model. Once we had
the estimated centerline for a test set, we applied our global shape registration method to
bring the test data into a common reference framework with the framework of our shape
model.

Shape prior in the level set space—For our shape model, we first normalized training
data sets by applying our global shape registration method. Then, we calculated the signed
distance functions of the training data. We subtracted the mean shape from each data set and
applied PCA to obtain the k most important modes of variation (U;) of the shape. The
esophagus shape without the centerline was represented by this shape model:

k
w:l//m'i’ZWiUi
P (1)

We also introduced a prior on weights of the modes (w;). We calculated the histogram of
each w; over the training set of shapes. The ranges of w;s are calculated from these
histograms and we assumed a uniform density within these ranges

B. Level set formulation of surface evolution

We use a 3D level set algorithm to find the esophagus surface by optimizing an energy
function. However, due to variability in appearance and inconsistent contrast, classical
appearance and edge based energy functions did not perform well. Thus, prior information
from the training datasets was incorporated into the energy function. We propose a shape
model from manually annotated esophagus data sets and constrain the segmented esophagus
to stay close to this model by including a shape term in the energy function. This energy
function (E) has an appearance term, air/contrast terms, a neighboring structures term, a
shape fitting term, a level set regularization and a smoothing (curvature) term:

E:Eapp+Eair+Enb+E5h(1p(’+E7‘(’g +Esm (2)

Each term in E is explained next.

We learned an appearance model from the training data as two intensity probability density
functions (pdf), one inside (p;) and one outside (p,) the esophagus, calculated using kernel
density estimation. The main challenge in estimating the intensity distribution is that the
esophagus appearance varies in the presence of air bubbles (very dark compared to the
esophagus) or oral contrast agent (very bright) or both. Hence, we first detect those regions
using thresholding and a region growing algorithm inside a window of size 40x40 pixels
around a preliminary esophagus center estimate. This preliminary estimation is based on
only our spatial model. We discard detected air/contrast regions when calculating the
esophagus pdf. At the time of center estimation, we substitute the intensities of these regions
with the most likely esophagus intensity value. The energy term for appearance including
these pdfs is:

Eupp(pis po)=— [ o[ He(@og(pi1)dQ — [ (1 = He(p))log(po(1)1dQ 3)

where H, is the heaviside function of the level set ¢.
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We make use of the presence of air and contrast regions by incorporating them into our level
set framework with an additional air/contrast energy term:

Evir(pair)= = [l He(@)1og(pair(D)dQ = [ (1 = He(@))log(pair(1))1dQ )

where pgjr probability function that indicates the probability of a voxel being esophagus.
This function is close to 1 if the pixel is air/contrast and 0.5 otherwise.

We use a similar energy term (E,,, same form as Eqgn 4) to exclude neighboring structures
from the segmented esophagus. We create a probability function that takes low values for
the neighboring structure voxels and 0.5 otherwise. The neighboring structure mark-ups are
given for landmark locations. Contours for intermediate slices are calculated by shape
interpolation.

We also include a shape term in our energy function. Our assumption is that the object to be
segmented belongs to the family of shapes that are represented by our shape model up to a
global affine transformation. We handle this global shape matching using our global
registration method described earlier. However since we are looking for a nonrigid structure,
in addition to global registration, we need local deformations. Due to high data variability in
x-y direction and rough center estimation in our global registration step, we include into our
shape model a local transformation function that acts on x and y directions. The local
deformations allow the algorithm to correct for the inaccuracies in center estimation (See
Fig 1(b)) and better capture local variabilities that cannot be represented by the global PCA-
based shape model. We follow the locally affine transformation model in [7]. We choose N
uniformly sampled action points z, through the centerline. We allow a local transformation,
in the form of a translation in x-y plane, to be applied to each z,. This translation affects the
neighboring slices and this effect smoothly dies off as one moves away from the action
points in z-direction. Such a local deformation A can be formally defined as follows:

T Bl

where /l(r):e—ﬁ, axand by (k€ 1, ..., N) are x and y translations at action pointk and o is a
scale parameter. Next, we define the shape energy:

N Az —z1)
+Zk=1 0

ap+
0

N = =

N e =

Eshape(0, W)= [ ,6:(0) (0 — 4(A))*dQ ©

that drives the level set function ¢ to be similar to our shape model w(A). J, is the dirac
function. After including a level set regularization term Eeg from Li et al. [8] and a
smoothness term Egr,, from [6], the overall energy functional in Eqn 2 is obtained.

Next, we apply the 3D level-set method described to locate the esophagus wall in the 3D CT
stack. We initialize the shape prior as the mean shape. The initial level set function
representing the esophagus boundary and the shape prior level set function are updated at
each step t by minimizing E. The equation of evolution for ¢ is given by calculus of its
variations; the optimization of E with respect to mode weights w; can be obtained by solving
a linear system [6]. Adding the weight priors results in a constrained least square
minimization that is solved by convex optimization [9]. Finally, the minimization of E with
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respect to local deformation parameters ay, by is carried out using calculus of variations and
following time evolution equation is obtained:

Lax=2 [ 5e(p)(p — Y(A))(VU(A) - A)dQ
= =2 [ ,0e (@) = (AN WAz = 2))dQ @

The equation for by is similar.

lll. Experimental Results

We report experiments on 8 thoracic CT scans from different subjects using a leave-one-out
scheme. The inputs to the algorithm are the anatomical landmark points and segmentation of
the neighboring structures for only 7 slices at these landmarks. Everything else is obtained
automatically. We use 6 action points separated by 10 slices. Energy function terms are
weighted and the weights are chosen experimentally. We first show results of the global
registration algorithm that centers the data to the estimated centerline. The complete center
estimation algorithm applied to all slices achieved less than 1.9 mm average error in the x-
direction but was less accurate in the y-direction, with a 4.1 mm average error. To improve
the accuracy of our global registration algorithm we applied a local registration algorithm
during the level set surface evolution and shape matching step. As a result, the centerline
estimation error reduce to 1.1 mm average error in the x-direction and 2.7 in the y-direction.

We use a point-wise distance metric to evaluate the results of the outer boundary surface
segmentation algorithm. For each slice we find the point correspondence between the expert
labeled contour and the contour computed by the algorithm by comparing the points on both
contours at the same angle from the x axis to obtain a point-wise distance metric. Fig. 2
shows point-wise mean and max distance errors of each data set. We obtained a point-wise
mean error of 2.6 + 2.1 mm and maximum error of 17.6 mm over all data sets, which
indicates an improvement in accuracy in comparison to our previous work [3], where we
applied a heuristic approach to correct for the errors in global registration and obtained a
point-wise mean error of 3.3 £ 2.8 mm and maximum error of 19.2 mm over all data sets.

The results for various axial slices are shown and compared with ground truth in Fig 3. The
resultant esophagus surface rendered in 3D in comparison to the ground-truth is shown in
Fig. 4 for 2 different data sets.

V. Conclusions and Future Work

We propose a supervised 3D segmentation algorithm to locate the esophagus in thoracic CT
scans using a variational framework. We improved our results compared to previous work
by introducing nonlinear smooth transformations to the shape model to correct for the
inaccuracies of global transformation. In addition we added more constraints on the shape
model through our shape prior. We plan to test our algorithm on a larger database. We
eventually expect to be able to additionally decrease the required user input by automating
the landmark selection and neighboring structure identification processes.
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Figure 1.
(a) Global registration (centerline subtraction) (b) Initial center estimate (blue star) and final
center after local registration (pink plus).
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Mean = std of error (top figure) and maximum error of each data set (bottom figure)
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Figure 3.
Three axial slices showing the result of the algorithm (green) and expert (red)
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Figure 4.

Resultant esophagi in 3D (blue-ground truth, yellow-algorithm). Left and right boxes show
two representative views for data set 8 and 2 respectively. z-direction is scaled by 0.5 for
better visualization. Example orthogonal CT slices (from original input data) is
superimposed in the leftmost result.
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