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Abstract. The need to scale next-generation industrial engineering
problems to the largest computational platforms presents unique chal-
lenges. This paper focuses on data management related problems faced
by the Uintah simulation framework at a production scale of 260K pro-
cesses. Uintah provides a highly scalable asynchronous many-task run-
time system, which in this work is used for the modeling of a 1000
megawatt electric (MWe) ultra-supercritical (USC) coal boiler. At 260K
processes, we faced both parallel I/O and visualization related challenges,
e.g., the default file-per-process I/O approach of Uintah did not scale
on Mira. In this paper we present a simple to implement, restructur-
ing based parallel I/O technique. We impose a restructuring step that
alters the distribution of data among processes. The goal is to distribute
the dataset such that each process holds a larger chunk of data, which is
then written to a file independently. This approach finds a middle ground
between two of the most common parallel I/O schemes–file per process
I/O and shared file I/O–in terms of both the total number of generated
files, and the extent of communication involved during the data aggrega-
tion phase. To address scalability issues when visualizing the simulation
data, we developed a lightweight renderer using OSPRay, which allows
scientists to visualize the data interactively at high quality and make
production movies. Finally, this work presents a highly efficient and scal-
able radiation model based on the sweeping method, which significantly
outperforms previous approaches in Uintah, like discrete ordinates. The
integrated approach allowed the USC boiler problem to run on 260K
CPU cores on Mira.

1 Introduction

The exponential growth in High performance computing (HPC) over the past
20 years has fueled a wave of scientific insights and discoveries, many of which
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would not be possible without the integration of HPC capabilities. This trend
is continuing, for example, the DOE Exascale Computing Project [18] lists 25
major application focus areas [20] in energy, science, and national security. The
primary challenge in moving codes to new architectures at exascale is that,
although present codes may have good scaling characteristics on some current
architectures, those codes may likely have components that are not suited to the
high level of parallelism on these new computer architectures, or to the com-
plexity of real-world applications at exascale. One of the major challenges faced
by modern scalable scientific codes is with regard to data management. As the
gap between computing power and available disk bandwidth continues to grow,
the cost of parallel I/O becomes an important concern, especially for simula-
tions at the largest scales. Large-scale simulation I/O can be roughly split into
two use cases: checkpoint restarts in which the entire state of a simulation must
be preserved exactly, and analysis dumps in which a subset of information is
saved. Both checkpointing and analysis dumps are important, yet due to poor
I/O scaling and little available disk bandwidth, the trend of large-scale simula-
tion runs is to save fewer and fewer results. This not only increases the cost of
faults, since checkpoints are saved less frequently, but ultimately may affect the
scientific integrity of the analysis, due to the reduced temporal sampling of the
simulation. This paper presents a simple to implement method to enable parallel
I/O, which we demonstrate to efficiently scale up to 260K processes.

Fig. 1. Time taken for execution of a
timestep for different patch sizes. Execu-
tion time starts to increase rapidly after a
patch size of 123.

For most applications, the layout of
data distributed across compute cores
does not translate to efficient network
and storage access pattern for I/O.
Consequently, performing naive I/O
leads to significant underutilization of
the system. For instance, the patch
or block size of simulations is typi-
cally on the order of 123 to 203 voxels
(cells), mainly because a scientist typi-
cally works under a restricted compute
budget, and smaller patch sizes lead to
faster execution of individual compu-
tational timesteps (see Fig. 1), which
is critical in completion of the entire
simulation. Small patch sizes do not
bode well for parallel I/O, with either
file-per-process I/O or shared file I/O.
We find a middle ground by introducing a restructuring-based parallel I/O tech-
nique. We virtually regrid the data by imposing a restructuring phase that alters
the distribution of data among processes in a way such that only a few processes
end up holding larger patches/blocks, which are then written to a file indepen-
dently. The efficacy and scalability of this approach is shown in Sect. 3.



Scalable Data Management of the Uintah Simulation Framework 221

In order to gain scientific insight from such large-scale simulations, the visu-
alization software used must also scale well to large core counts and datasets,
introducing additional challenges in performing scientific simulations at scale for
domain scientists. To address I/O challenges on the read side of the scientific
pipeline, we also use our scalable parallel I/O library in combination with the
ray tracing library OSPRay [24] to create a lightweight remote viewer and movie
rendering tool for visualization of such large-scale data (Sect. 4).

Finally, we introduce a new, efficient radiation solve method into Uintah
based on spatial transport sweeps [2,4]. The radiation calculation is central to the
commercial 1000 megawatt electric (MWe) ultra-supercritical (USC) coal boiler
being simulated in this work, as radiation is the dominant mode of heat transfer
within the boiler itself. To improve parallelism within these spatial sweeps, the
computation is split into multiple stages, which then expose spatial dependencies
to the Uintah task scheduler. Using the provided information about the stage’s
dependencies, the scheduler can efficiently distribute the computation, increasing
utilization. For the target boiler problem discussed in this paper, we find this
method up to 10× faster than previous reverse Monte Carlo ray tracing methods
(Sect. 5) due to this increased utilization.

This work demonstrates the efficacy of our approach by adapting the Uin-
tah computational framework [8], a highly scalable asynchronous many-task
(AMT) [7] runtime system, to use our I/O system and spatial transport sweeps
within a large-eddy simulation (LES). This work is aimed at predicting the per-
formance of a commercial 1000 MWe USC coal boiler, and has been considered
as an ideal exascale candidate given that the spatial and temporal resolution
requirements on physical grounds give rise to problems between 50 to 1000 times
larger than those we can solve today.

The principal contributions of this paper are:

1. A restructuring-based parallel I/O scheme.
2. A data parallel visualization system using OSPRay.
3. A faster approach to radiation using a spatial transport sweeps method.

2 Background

2.1 Uintah Simulation Framework

Uintah [22] is a software framework consisting of a set of parallel software compo-
nents and libraries that facilitate the solution of partial differential equations on
structured adaptive mesh refinement (AMR) grids. Uintah currently contains
four main simulation components: (1) the multi-material ICE code for both
low- and high-speed compressible flows; (2) the multi-material, particle-based
code MPM for structural mechanics; (3) the combined fluid-structure interac-
tion (FSI) algorithm MPM-ICE; and (4) the Arches turbulent reacting CFD
component that was designed for simulating turbulent reacting flows with par-
ticipating media radiation. Separate from these components is an AMT runtime,
considered as a possible leading alternative to mitigate exascale challenges at the
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runtime system-level, which shelters the application developer from the complex-
ities introduced by future architectures [7]. Uintah’s clear separation between the
application layer and the underlying runtime system both keeps the application
developer insulated from complexities of the underlying parallelism Uintah pro-
vides, and makes it possible to achieve great increases in scalability through
changes to the runtime system that executes the taskgraph, without requiring
changes to the applications themselves [17].

Uintah decomposes the computational domain into a structured grid of rect-
angular cuboid cells. The basic unit of a Uintah simulation’s Cartesian mesh
(composed of cells) is termed a patch, and simulation variables that reside in Uin-
tah’s patches are termed grid or particle variables. The Uintah runtime system
manages the complexity of inter-nodal data dependencies, node-level parallelism,
data movement between the CPU and GPU, and ultimately task scheduling and
execution that make up a computational algorithm [19], including I/O tasks. The
core idea is to use a directed acyclic graph (DAG) representation of the com-
putation to schedule work, as opposed to, say, a bulk synchronous approach in
which blocks of communication follow blocks of computation. This graph-based
approach allows tasks to execute in a manner that efficiently overlaps commu-
nication and computation, and includes out-of-order execution of tasks (with
respect to a topological sort) where possible. Using this task-based approach
also allows for improved load balancing, as only nodes need to be considered,
not individual cores [8].

2.2 Related Work

Many high-level I/O libraries have been developed to help structure the large vol-
umes of data produced by scientific simulations, such as HDF5 and PnetCDF.
The hierarchical data format (HDF5) [10] allows developers to express data
models organized hierarchically. PnetCDF [14] is a parallel implementation of
the network common data form (netCDF), which includes a format optimized
for dense, regular datasets. Both HDF5 and PnetCDF are implemented using
MPI and both leverage MPI-IO collective I/O operations for data aggregation.
In practice, shared file I/O often does not scale well because of the global com-
munication necessary to write to a single file. ADIOS [15] is another popular
library used to manage parallel I/O for scientific applications.

On the visualization front, VisIt [9] and ParaView [3] are popular distributed
visualization and analysis applications. They are typically executed in parallel,
coordinating visualization and analysis tasks for massive simulation data. The
data are typically loaded at full resolution, requiring large amounts of system
memory. Moreover, both can be used for remote visualization, where a remote
server (or servers) is responsible for rendering and operating on the data and
the user interacts remotely through a lightweight client. Our renderer works
similarly, allowing for remote visualization and offline movie rendering. Further-
more, our viewer supports running on any CPU architecture, via OSPRay [24],
which is now integrated in ParaView and being integrated into VisIt. However,
in contrast to these larger visualization packages, our viewer is tuned specifically
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for interactive visualization and movie rendering, allowing for better rendering
performance and enabling us to take better advantage of parallel I/O for fast
data loading.

The 1000 MWe USC coal boiler being modeled by Uintah in this work has
thermal radiation as a dominant heat transfer mode, and involves solving the
conservation of energy equation and radiative heat transfer equation (RTE)
simultaneously. This radiation calculation, in which the radiative-flux divergence
at each cell of the discretized domain is calculated, can take up to 50% of the over-
all CPU time per timestep [11] using the discrete ordinates method (DOM) [6],
one of the standard approaches to computing radiative heat transfer. Using a
reverse Monte Carlo ray tracing approach combined with a novel use of Uintah’s
adaptive mesh refinement infrastructure, this calculation has been made to scale
to 262K cores [11], and further adapted to run on up to 16K GPUs [12]. The
spatial transport sweeps method discussed in Sect. 5 shows great promise for
future large-scale simulations.

2.3 System Configuration

The Mira supercomputer [1] at Argonne National Laboratory is an IBM Blue
Gene/Q system that enables high-performance computing with low power con-
sumption. The Mira system has 16 cores per node, 1024 nodes per rack, and 48
racks, providing a total of 768K cores. Each node has 16 GB of RAM and the
network topology is a 5D torus. There are two I/O nodes for every 128 compute
nodes, with one 2 GB/s bandwidth link per I/O node. Mira uses the GPFS file
system. Ranks are assigned with locality guarantees on the machine, which our
I/O system can also take advantage of. Initial results of weak and strong scaling
studies of the target problem on Mira are shown in Fig. 2.
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Fig. 2. Strong and weak scalability of the coal boiler simulation on Mira using the dis-
crete ordinates solver. In these initial studies, we found scaling issues with the I/O and
radiation solve components of Uintah that needed to be addressed for the production
runs. Note the radiation solve is not executed each timestep, and not included in the
total time for a timestep.



224 S. Kumar et al.

2.4 Target Boiler Problem

GE Power is currently building new coal-fired power plants throughout the world
and evaluating new designs for these boilers. Many of these units will potentially
be 1000 MWe, twin-fireball USC units (Fig. 3a). Historically, twin-fireball (or
8-corner) units became part of the GE Power product offering because of the
design uncertainty in scaling 4-corner units from a lower MWe rating to a much
higher MWe rating. In order to decrease risk, both from GE Power’s perspective
and the customer’s, two smaller units were joined together to form a larger unit
capable of producing up to 1090 MWe.

Simulation plays a key role in designing new boilers, allowing engineers
to build, test, and optimize new designs at very low cost. When viewed as a
large-scale computational problem, there are considerable challenges to simu-
lating the boiler at acceptable accuracy and resolution to gain scientific insight
about the design. The geometric complexity of the boiler is considerable, and
presented a significant challenge for the combustion modelers. The boiler mea-
sures 65 m × 35 m × 15 m and contains 430 separated over-fired air (SOFA) inlets
(Fig. 3b), which inject pulverized coal and oxygen into the combustion cham-
ber. Moreover, the boiler has division panels, plates, super-heaters and re-heater
tubing with about 210 miles of piping walls, and tubing made of 11 metals with
varying thickness. Both the 8-corner units and 4-corner units have different mix-
ing and wall absorption characteristics that must be fully understood in order
to have confidence in their respective designs. One key piece of the design that
must be understood is how the SOFA inlets should be positioned and oriented,
and what effect this has on the heat flux distribution throughout the boiler.

(a) Entire unit. (b) Primary wind-box and SOFA locations.

Fig. 3. CAD rendering of GE Power’s 1000 MWe USC two-cell pulverized coal boiler.

3 Restructured Parallel I/O

File-per process I/O and single shared file I/O are two of the most commonly
used parallel I/O techniques. However, both methods fail to scale at high core
counts. An I/O-centric view of the typical simulation pipeline is as follows: the
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simulation domain is first divided into cells/elements (usually pixels or voxels),
and then the elements are grouped into patches. Each patch is assigned a rank
or processor number. Rank assignment is done by the simulation software using
a deterministic indexing scheme (for example, row-order or Z-order). When
performing file-per-process I/O, each process creates a separate file and inde-
pendently writes its patch data to the file. This approach works well for rela-
tively small numbers of cores; however, at high core counts this approach per-
forms poorly, as the large number of files overwhelms the parallel file system.
When using single shared file I/O, performance also decreases as the core count
increases, as the time spent during data exchange involved in the aggregation
step becomes significant, impeding scalability [5]. In this work we tackle both the
communication bottleneck of the aggregation phase in single shared file I/O and
the bottleneck of creating a hierarchy of files in file-per-process I/O by proposing
a middleground approach through a restructuring-based parallel I/O technique.
The main idea is to regrid the simulation domain in a restructuring phase.

Fig. 4. Schematic diagram of restructuring-based parallel I/O. (A) The initial simu-
lation patch size is 4 × 4. (B) A new grid of patch size 8 × 8 is imposed. (C) The
restructuring phase is executed using MPI point-to-point communication. (D) Finally,
using the restructured grid, every patch is written to a separate file.

Starting from the original simulation grid (Fig. 4(A)), we begin restructuring
by imposing a new grid on the simulation domain (Fig. 4(B)). The patch size of
the imposed grid is larger than the initial patch size assigned by the simulation.
As mentioned in Fig. 1, the patch size assigned by the simulation is on the order
of 123 to 203, while the patch size of the new restructured grid is typically twice
that in each dimension. The simulation data is then restructured-based on the
new grid/patch configuration (Fig. 4(C)). During the restructuring, MPI point-
to-point communication is used to move data between processes [13]. Note that
the communication is distributed in nature and confined to small subsets of
processes, which is crucial for the scalability of the restructuring phase. At the
end of the restructuring phase, we end up with large-sized patches on a subset
of processes (Fig. 4(D)). Given that the new restructured patch size is always
bigger than the patch size assigned by the simulation (or equal in size at worst),
we end up with fewer patches held on a subset of the simulation processes.
Throughout the restructuring phase the data remains in the application layout.
Once the restructuring phases concludes, each processes holding the restructured
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patches create a file and writes its data to the file. This scheme of parallel I/O
finds a middle-ground between file-per-process-based parallel I/O and shared
file I/O, both in terms of the total number of files generated and the extent of
communication required during the data aggregation phase. With our approach,
the total number of files generated is given by the following formula:

number of files =
⌈
bounds x

nrst x

⌉
×

⌈
bounds y

nrst y

⌉
×

⌈
bounds z

nrst z

⌉

Based on the restructuring box size (nrst x×nrst y×nrst z), we can have
a range of total number of outputted files. The number of files will be equal
to the number of processes (i.e., file-per-process I/O) when the restructuring
patch size is equal to the simulation patch size. The number of files will be one
(i.e., shared-file I/O) when the restructuring patch size is equal to the entire
simulation domain (bounds x × bounds y × bounds z). For most practical sce-
narios, the latter situation is not feasible due to limitations on the available
memory on a single core. With file-per-process I/O, there is no communication
among processes, whereas with collective I/O associated with shared file I/O, the
communication is global in nature. With the restructuring approach, all commu-
nication is localized. The restructuring approach not only helps tune the total
number of outputted files, but also increases the file I/O burst size, which in
general is a requirement to obtain high I/O bandwidth. Our approach exhibits
good scaling characteristics, as shown in the following two sections.

Fig. 5. Three variations of restructuring-based parallel I/O. (A) No restructuring, each
patch is held by a process and is written out separately to a file. (B) Restructuring
phase with new patches containing 22 simulation patches, creating 4× fewer files. (C)
New patch size of 42 simulation patches, creating 16× fewer files (D) New patch size
of 82 simulation patches, creating 64× fewer files. Communication is limited to groups
of (B) 4, (C) 16, and (D) 64 processes.

3.1 Parameter Study

The tunable parameter in our proposed I/O framework that has the greatest
impact on performance is the patch size used for restructuring. The patch size
affects both the degree of network traffic and the total number of outputted
files. To understand the impact of the parameter, we wrote a micro-benchmark
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to write out a 3D volume. In our evaluations on the Mira supercomputer, we
kept the number of processes fixed at 32768. Each process wrote a 163 sub-
volume of double precision floating point data to generate a total volume of
1 gigabyte (5123). We used four restructuring box sizes – 323, 643, 1283 and
2563; the number of files generated, respectively, varied as 4096 (5123/323), 512
(5123/643), 64 (5123/1283), 8 (5123/2563). The number of processes involved
in communication during the restructuring phase increases with the box size.
For example, with a restructuring box of size 323, communication is limited to
groups of 8 processes (323/163), whereas with a restructuring box of size 2563,
communication takes place with a group of 4096 processes. See Fig. 5 for an
example. In order to provide a baseline for the results obtained, we also ran
IOR benchmarks. IOR is a general-purpose parallel I/O benchmark [23] that
we configured to perform both file-per-process as well as shared file I/O. For
shared file I/O, all the processes wrote to a single file using MPI collective
I/O. The results can be seen in Fig. 6. The file-per-process I/O performs the
worst and this is because the underlying GPFS [21] parallel file system of Mira
is not adept at handling large numbers of files. Although we did not run any
benchmarks of the Lustre PFS [16], it is more suited to handling large numbers
of files, especially at low core counts. This is mainly because GPFS is a block-
based distributed filesystems where the metadata server controls all the block
allocation, whereas the Lustre filesystem has a separate metadata server for
pathname and permission checks. Furthermore, the Lustre metadata server is
not involved in any file I/O operations, which avoids I/O scalability bottlenecks
on the metadata server. The constraint on the number of files makes our approach
highly suitable for GPFS file systems. Note that both file systems start to get
saturated with file per-process I/O at high core counts.

The performance of restructuring-based parallel I/O improves with larger box
sizes, reaching peak performance with a box size of 1283. At that patch size, the
restructuring approach achieves a 3.7× improvement over the IOR benchmark’s
shared file I/O approach (using MPI collective I/O) because our approach’s
aggregation phase is localized in nature, involving only small groups of processes,
as opposed to MPI collective I/O’s underlying global communication. However,
we observe performance degradation at a restructuring box size of 2563. The
reason for this degradation can be understood by looking at a time breakdown
between the restructuring (communication) phase and the file I/O phase (Fig. 6).
As can be seen, communication time (red) increases with larger restructuring
boxes. Although the file I/O time continues to decrease with increasing box
size, the restructuring time begins to dominate at 2563, and as a result overall
performance suffers. We believe our design is flexible enough to be tuned to
generate small numbers of large shared files or a large number of files, depending
on which is optimal for the target system.

3.2 Production Run Weak Scaling Results

With Uintah’s default I/O subsystem, every node writes data for all its cores into
a separate file. Therefore, on Mira there is one file for every 16 cores (16 cores
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Fig. 6. (Left) Performance of restructuring-based parallel I/O with varying box sizes.
(Right) Time breakdown between restructuring (communication) and file I/O for dif-
ferent box sizes. (Color figure online)

per node). This form of I/O is an extension to the file-per process style of I/O
commonly adopted by many simulations. An XML-based meta-data file is also
associated with every data file that stores type, extents, bounds, and other rele-
vant information for each of the different fields. For relatively small core counts
this I/O approach works well. However, I/O performance degrades significantly
for simulations with several hundreds of thousands of patches/processors. The
cost of both reads and writes for large numbers of small files becomes untenable.

We extended the Uintah simulation framework to use the restructuring-based
I/O scheme, and evaluated the weak scaling performance of the I/O system when
writing data for a representative Uintah simulation on Mira. In each run, Uin-
tah wrote out 20 timesteps consisting of 72 fields (grid variables). The patch
size for the simulation was 123. The number of cores was varied from 7,920 to
262,890. Looking at the performance results in Fig. 7, our I/O system scales well
for all core counts and performs better than the original Uintah UDA I/O sys-
tem. The restructuring-based I/O system demonstrates almost linear scaling up to
262,890 cores whereas the performance of file-per-node I/O starts to decline after

Fig. 7. Weak scaling results of restructuring-based parallel I/O compared to Uintah’s
file per node I/O approach. Our I/O system outperforms Uintah’s default I/O at all
core counts, attaining 10× performance improvement at 260K cores.
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16,200 cores. At 262,890 cores, our I/O system achieves an approximate speed-up
of 10× over Uintah’s default file-per-node I/O.

The restructuring-based I/O system was then used in production boiler sim-
ulations, carried out at 260K cores on Mira. Due to the improved performance
of the I/O system, scientists were able to save data at a much higher temporal
frequency. In terms of outputs, close to 200 terabytes of data was written which,
using our new restructuring I/O strategy, required only 2% of the entire simula-
tion time. If the simulation were run using the Uintah’s default file-per-process
node output format, nearly 50% of the time of the computation would be spent
on I/O, reducing the number of timesteps that could be saved, or increasing the
total computation time significantly.

4 Scalable Visualization with OSPRay

When trying to visualize the data produced on Mira using the Cooley visualiza-
tion cluster at ANL, VisIt rendered at interactive framerates for smaller datasets;
however, when trying to visualize the recent large simulations using all the cores
on each node would consume too much memory, resulting in crashes or signifi-
cantly reduced performance due to swapping. To address these issues and allow
for quick, interactive visualization and high-quality offline movie rendering, we
wrote a lightweight renderer using OSPRay [24] which uses the restructuring-
based parallel I/O to read the data. OSPRay is a CPU-based open-source ray
tracing library for scientific visualization, and includes high-quality and high-
performance volume rendering, along with support for rendering distributed data
with MPI.

OSPRay includes support for two modes of MPI-parallel rendering: an offload
mode, where data is replicated across nodes, and subregions of the image are
distributed; and a distributed mode, where different ranks make OSPRay API
calls independently to setup their local data, and then work collectively to render

Fig. 8. Frames from the movie showing the O2 field over time. Using restructuring-
based parallel I/O backend and OSPRay we were able to render an animation of the
full 1030 timesteps in two hours using 128 KNL nodes on Theta.
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the distributed data using sort-last compositing [24]. To leverage the benefits of
the restructuring-based parallel I/O in the viewer, we implemented our renderer
using the distributed mode of OSPRay, with each rank responsible for loading
and rendering a subregion of the dataset. To properly composite the distributed
data OSPRay requires the application to specify a set of regions on each rank,
which bound the data owned by that rank. In our case this is trivially the bounds
of the single subregion owned by the rank. The renderer supports two usage
modes, allowing for interactive remote visualization and offline movie rendering
for creating production animations of the evolution of the boiler state.

Fig. 9. Strong scaling of movie rendering
on Theta.

The interactive viewer runs a set of
render worker processes on the com-
pute nodes, with one per node as
OSPRay uses threads for on-node par-
allelism. The user then connects over
the network with a remote client and
receives back rendered JPG images,
while sending back over the network
camera and transfer function changes
to interact with the dataset. To decou-
ple the interface from network latency
effects and the rendering framerate, we
send and receive to the render workers
asynchronously, and always take the
latest frame and send the latest appli-
cation state. With this application, users can explore the different timesteps of
the simulation and different fields of data interactively on their laptop, with the
rendering itself performed on Theta or Cooley. When rendering on 16 nodes of
Theta with a 1080 × 1920 framebuffer (oriented to match the vertical layout of
the boiler), the viewer was able to render at 11 FPS, allowing for interactive
exploration.

The offline movie renderer is run as a batch application and will render the
data using a preset camera path. The movies produced allow for viewing the
evolution of the boiler state smoothly over time, as the timesteps can be played
through at a constant rate, instead of waiting for new timesteps or fields to load.
A subset of frames from this animation is shown in Fig. 8, which was rendered
using 128 nodes on Theta. The majority of the time spent in the movie rendering
is in loading the data, which scales well with the presented I/O scheme (Fig. 9).
The animation is rendered at 1080 × 1920 with a high number of samples per
pixel to improve image quality.

While our lightweight viewer is valuable for visual exploration, it is missing
the large range of additional analysis tools provided by production visualiza-
tion and analysis packages like VisIt. To this end, we are working on integrating
OSPRay into VisIt as a rendering backend, enabling scalable interactive visual-
ization for end users.
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5 Radiation Modeling: Spatial Transport Sweeps

The heat transfer problem arising from the clean coal boilers being modeled
by the Uintah framework has thermal radiation as a dominant heat transfer
mode and involves solving the conservation of energy equation and radiative heat
transfer equation (RTE) simultaneously [11]. Scalable modeling of radiation is
currently one of the most challenging problems in large-scale simulations, due
to the global, all-to-all nature of radiation [17], potentially affecting all regions
of the domain simultaneously at a single instance in time. To simulate thermal
transport, two fundamental approaches exist: random walk simulations and finite
element/finite volume simulations, e.g., discrete ordinates method (DOM) [6],
which involves solving many large systems of equations. Additionally, the algo-
rithms used for radiation can be used recursively with different spatial orienta-
tions and different spectral properties, requiring hundreds to thousands of global,
sparse linear solves. Consequently, the speed, accuracy, and limitations of the
method must be appropriate for a given application.

Uintah currently supports two fundamentally different approaches to solv-
ing the radiation transport equation (RTE) to predict heat flux and its diver-
gence (operator) in these domains. We provide an overview of these supported
approaches within Uintah and introduce a third approach, illustrating its per-
formance and scaling with results up to 128K CPU cores on Mira for a radiation
benchmark problem.

5.1 Solving the Radiation Transport Equation

The heat flux divergence can be computed using:

∇Q = 4 ∗ π ∗ S −
∫
4π

IΩdΩ, (1)

where S is the local source term for radiative intensity, and IΩ is computed using
the RTE for grey non-scattering media requiring a global solve via:

dIΩ

ds
= k ∗ (S − IΩ) (2)

Here, s is the 1-D spatial coordinate oriented in the direction in which inten-
sity IΩ is being followed, and k is the absorption or attenuation coefficient. The
lack of time in the RTE implies instantaneous transport of the intensity, appro-
priate for most applications. The methods for solving the RTE discussed here
aim to solve for IΩ using Eq. 2, which can then be integrated to compute the
radiative flux and divergence.

5.2 Discrete Ordinates

The discrete ordinates method [6], used in our Mira simulations, solves the RTE
by discretizing the left-hand side of Eq. 2, which results in a 4 or a 7-point stencil,
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depending on the order of the first derivative. Instabilities arise when using the
higher order method, so often the 7-point stencil is avoided, or a combination of
the two stencils is used. The 4-point stencil results in numerical diffusion that
impacts the fidelity of the solve, but for low ordinate counts can improve solution
accuracy. As shown by Fig. 2, this method has been demonstrated to scale, but
it is computationally expensive, due to the numerous global sparse linear solves.
In the case shown, as many as 30–40 backsolves were required per radiation
step, with up to an order of magnitude more solves required in other cases. It
should be noted that, due to their computational cost, the radiation solves are
computed roughly once every 10 timesteps, as the radiation solution does not
change quickly enough to warrant a more frequent radiation calculation.

5.3 Reverse Monte Carlo Ray Tracing

Reverse Monte Carlo Ray Tracing (RMCRT) [11] has been implemented on both
CPUs and GPUs [11,12], and is a method for solving Eq. 2 by tracing radiation
rays from one cell to the next, as described in detail in [11,12]. Reverse Monte
Carlo (as opposed to forward) is desirable because rays are then independent of
all other ray tracing processes, and are trivially parallel. RMCRT exhibits high
accuracy with sufficient ray sampling and is can easily simulate various scat-
tering effects. However, RMCRT can have a very large memory footprint when
geometry is replicated on each node to facilitate local ray tracing. To reduce
this memory footprint and the required communication, RMCRT leverages the
AMR support within Uintah to use a fine mesh locally and a coarse mesh dis-
tally. RMCRT uses Monte Carlo processes to model scattering physics and is
a direct method, outperforming discrete-ordinates with significant scattering.
Numerical diffusion is non-existent for RMCRT. When computation resources
are abundant and the solid-angle [11] can be well resolved, RMCRT is preferred
to discrete-ordinates, where numerical diffusion hurts accuracy. This method
has been made to scale up to 256K CPU cores and up to 16K GPUs within the
Uintah framework [11,12,19], and is used for the large-scale, GPU-based boiler
simulations, as detailed in [19].

5.4 Spatial Transport Sweeps Method

The Uintah infrastructure allows for solving for the intensities with a 4-point
stencil known as spatial transport sweeps, a sweeping method [2,4], or simply
sweeps. It is this method that we cover in detail in this work.

Sweeps is a lightweight spatially serial algorithm in which spatial dependen-
cies dictate the speed of the algorithm. These dependencies impose serialized
inter-nodal communication requirements, and account for the bulk of the algo-
rithm’s cost. While the sweeping method is inherently serial, it can be paral-
lelized over many ordinate directions and spectral frequencies. The radiation
sweeping mechanism uses the older A-matrix construction from the linear solve,
and performs recursive back substitution on the A-matrix to solve for the inten-
sities. This process is done in stages for each intensity and phase, both of which
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are defined below. Although this staging process is serialized by the reliance
of corner-to-corner dependencies, it can show good performance when sweep-
ing a large quantity of independent solves. For a non-scattering medium, the
angular and spectral intensities are all independent of each other, allowing for
parallelization of the solve.

On large, distributed memory systems, the intensities are stored on multiple
compute nodes, making communication between them expensive and inefficient.
To address this problem, one processor (or node) needs to operate only on intensi-
ties that have satisfied their spatial dependency. The method shown here is based
on the algorithm for a simple rectangular domain; however, it further supports
identification of these dependencies for complex domains with non-rectangular
shapes. To most easily convey the methodology used, we start by describing the
algorithm on a rectangular domain.

Consider a domain with 3 × 3 sub-units. Within Uintah, these sub-units
are referred to as patches. A diagram showing how these patches are divided is
shown in Fig. 10. The number labeling each patch (Fig. 10a) designates the phase
in which a sweep is relevant for a single intensity, from the x + y + z + octant,
with a single wave number. Note that these phases are defined as:

P = xi + yi + zi (3)

where xi, yi, and zi are the patch indices in the x, y, and z directions. The patch
indices are defined as the number of patches away from the origin patch. Hence,
the total number of phases required to complete a single complete full-domain
sweep is:

Pmax = xmax + ymax + zmax (4)

where xmax, ymax, zmax are the maximum. Numbers designate the designated
phase indices of the patches within the domain. We determine the patch indices
using the sub-domain with the patch ID provided by Uintah.

Uintah numbers its patches in the order of z, y, x (Fig. 10b). From this we
can determine the point in space in which the sweep is currently located using
modulo operators, the patch dimensions, and the patch ID. The patch index is
then converted to the patch indices xi, yi, zi for each patch. Using the Uintah

Fig. 10. A rectangular domain divided into 27 sub-domains, labeled by the designated
phase (a) and Uintah patch ID (b).



234 S. Kumar et al.

task scheduler, we can indicate to a task what this phase is. This process is more
complicated when conducting sweeps with multiple intensity directions. First,
consider additional intensities that are in the x+, y+, z+ directions. To keep as
many processors busy as possible in the computation, we create stages.

A stage S is defined as S = I + P , where I is the intensity index relevant
to a single octant. We know the maximum number of stages via the equation
Smax = Imax + Pmax. Now we have an algorithm that describes the sweeping
in a single direction, for intensities of the same octant: next, we will discuss
how to extend this to all octants. The phase equation for the x−, y−, z− octant
results in:

P = xmax − xi + ymax − yi + zmax − zi (5)

Hence, a total of eight phase equations are possible, depending on the com-
bination of directions. We discuss two equations in detail in this paper. The task
designates the stage and intensity, and then computes a function mapping its
patch ID to its spatial patch index using a series of modulos. If the patch and
intensity are relevant to the local processor, then it executes, otherwise it exits
the task.

Spatial Scheduling-Supporting Sweeps Within Uintah. In order to spa-
tially schedule the sweeping tasks, a Uintah patch subset must be identified
during the Uintah task-scheduling phase. It is convenient to use Eq. 5 to accom-
plish this. Iterating over the phase P and two patch indices yi and zi allows us to
collect the relevant patches to a sweeping phase P , which results in Pmax patch
subsets per octant. These patch subsets can be reused for each intensity solve.
The patch subsets are used in the Uintah task-requires call to the infrastructure
that manages ghost cells, which greatly reduces communication costs. The sweep
is propagated across the domain by having one independent task per stage. To
propagate information from patch to patch within Uintah, a requires modifies
dependency chain is created, where the requires is conditioned on a patch subset
only relevant to the patches on which the sweep is occurring. The patch subset
is defined as all patches with the same phase number P , as shown in Fig. 10a.

5.5 Sweeps: Scaling and Performance Results

Table 1 illustrates the performance and weak scaling within Uintah of the sweep-
ing method for radiation transport on a benchmark radiation problem, run on
Mira up to 128K CPU cores. Note this method is experimental and although
DOM was used for the radiation solve in the full-scale Mira boiler simulations,
the sweeping method introduced in this work shows great promise for radiation
calculations within future boiler simulations.

For the target boiler problems in question, the use of sweeps reduces radiation
solve times by a factor of 10 relative to RMCRT and linear solve methods. The
differences in the solution times between the linear solve (DOM) in Table 1 and
Fig. 2 are attributed to differences between the benchmark calculation and the
target boiler simulation. Within the target boiler (CFD) simulation, the previous
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Table 1. Weak scaling results on the model radiation problem.

Cores 16 256 4056 65536 131072 262144

Time DO 91 189 399 959 1200 1462

DO iter. 90 180 400 900 1300 1500

Sweeps time 1.9 3.4 4.4 9.09 13.9

solve can also be used as an initial guess, thus accelerating convergence and
making it possible for DOM to use as few as 30–40 iterations as compared to
the much larger number of backsolves shown in Table 1. In contrast to a static
problem, no initial guess is available, and significantly more iterations are used
with DOM than is the case in a full boiler simulation (as shown in Table 1),
in which as many as 1500 iterations are used. However, we note that for this
problem each DOM iteration takes about a second. Hence, the best that DOM
could achieve would be about 40 s, even if a good initial guess is available. In
this way sweeps outperforms both the actual observed cost and the optimistic
estimated cost of DOM with its linear solve using 40 iterations by a factor of
between 4 and 10. However, the sweeping algorithm has not currently scaled
beyond 128K cores due to its large memory footprint and, additionally, it can
be slower than the linear solver for systems with very high attenuation. This
is because the sparse linear solvers are iterative, but they converge quickly for
systems with large attenuation, as the impact of radiation can be isolated to a
subset of the domain for these systems.

For systems with scattering, DOM typically lags the scattering term and
then resolves until the intensities converge to within a certain tolerance. The
convergence can be costly for systems where the scattering coefficients are sig-
nificantly larger than the absorption coefficients. Given these very encouraging
results, applying sweeps to the full problem and improving its memory use are
clearly the next steps.

6 Mira Production Cases – Results

In making use of the improvements to scalability of the entire code, two produc-
tion cases were considered using the geometry, inlet parameters and operating
parameters of a GE Power 8 Corner Unit. The first case represented the opera-
tion of the commercial unit that is currently in production, whereas the second
case represented alterations to the inlet parameters to investigate a more uniform
energy distribution. Each case was run for approximately 20 s of physical time,
which is considered sufficient for the boiler to achieve a steady state distribution.

Table 2 shows the computational aspects of the 2 cases that were run on Mira,
simulating the 8-corner unit. Each production case was run at 260K cores with
455 M grid cells at a resolution of 4.25 cm with 16 MPI ranks per node using
a timestep of 8e−5 and about 400 MB of memory per rank. Table 2 shows that
between the first and second cases additional speed-ups were achieved in the
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Table 2. Computational aspects of 8-corner boiler simulations

Item Original inlets Modified inlets

Number of cells 455 M 455 M

Cell resolution 4.25 cm 4.25 cm

MPI ranks 260,712 260,712

MPI ranks/node 16 16

Memory/rank 412 MB 372 MB

dt 8e−5 8e−5

Time/timestep 4.5 s 3.0 s

Pressure solve 1.9 s 1.0 s

Radiation solve 101 s 79.3 s

Data to disk 5.5 min 33.2 s

Data dumps 77 1030

Data size 9.9 TB 180 TB

# Timesteps 236,500 220,979

Simulated time 19.38 s 17.92 s

CPU hours 97 M 110 M

pressure solve due to work being done in Uintah/Arches. The most significant
performance improvement was the switch of the I/O library, with the presented
restructuring-based I/O, which resulted in 33 s write times, compared to the
5.5 min required on the Original Inlets case which used the legacy Uintah I/O
system. Ultimately, the Modified Inlets case wrote 1030 datasets allowing for the
creation of 3D rendered movies of the simulation.

Though validation of the simulation data against experimental data was per-
formed, the proprietary nature of both the simulation and experimental data
makes publication of these comparisons problematic. However, working closely
with the GE Power engineers made it possible to validate the results of these
simulations against their previous results. Figure 11 depicts the heat absorption
profile (x-axis) as a function of the elevation in the boiler (y-axis), and shows the
average absorption profile predicted in the unmodfied inlet configuration (Orig-
inal Inlets) is different from the tentative estimates due to the higher fidelity
modeling performed with Arches, but it is in relatively good agreement with the
actual absorption profile based on discussions with GE Power engineers and the
existing proprietary data provided. The second case was run with changes to
the inlet geometry parameters to optimize gas-side energy imbalance (GSEI) by
changing the flow pattern in the wind-box as well as the SOFA inlets.

The key result from this work is the confidence that has been established with
GE Power to demonstrate that high resolution LES simulations are a useful tool
for exploring a range of operating conditions, with the potential to be used for
future designs. This is the first time that computational design at this scale has
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Fig. 11. Heat absorption profile as a function of the elevation. The solid green line
shows GE Power’s wall-averaged absorption profile tentative estimates for the expected
operating conditions in the unit. The blue dots show the average absorption profile
computed from unmodified inlet case. (Color figure online)

been used for such a complex combustion problem with petascale simulations.
Future studies of the unit will investigate design and operation adjustments to
achieve incremental improvements in gas-side energy imbalance. GE will consider
testing the new conditions in the existing unit when significant improvements
are discovered.

7 Conclusions

This work has introduced an excellent exascale candidate problem through the
successful simulation of a commercial, 1000 megawatt electric (MWe) ultra-
supercritical (USC) boiler, the largest currently in production worldwide, using
Large-Eddy Simulation (LES) predictions, requiring 280 Million CPU hours on
Mira. The overall objective of this work was in understanding how we can solve
such a problem through the use of an AMT runtime to efficiently schedule and
execute computational tasks, including I/O, and to leverage scalability improve-
ments in the runtime itself, linear solvers, I/O, and computational algorithms.
To achieve the results shown in this work for production-level petascale com-
putations significant code and algorithmic innovations were required, including
novel adaptations of I/O system that achieved a nearly order of magnitude
improvement in I/O performance.

Through this work, we have exposed areas even within an advanced, scalable
runtime system that need careful design consideration for post-petascale and
eventually exascale platforms, particularly when globally coupled problems such
as radiation are considered. For example, while existing radiation methods used
in Uintah scale, it is clear from the results presented that the use of the sweeps
method for problems of this scale and size needs to be investigated further,
to see if it is possible to reduce the overall simulation time significantly. A key
lesson this work conveys is that the success of large, production-scale simulations
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depends upon scalability at every level of the code. If any single component
within the simulation pipeline does not scale, the problem cannot be solved. It
is through the integration of these scalable components and subsystems that
the next generation of problems may be solved on exascale systems. Finally, our
results have demonstrated the potential role that LES simulations can have on
analysis and design of an operational commercial boiler and that simulations can
be used as a design tool for future systems, and that choosing fast scalable and
hardware appropriate algorithms, for key areas such as radiation is important
in achieving scalable results.
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