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The P-1 radiation model is spatially decomposed to solve the radiative transport equation on

parallel computers. Mathematical libraries developed by third parties are employed to solve

the linear systems that result during the solution procedure. Multigrid preconditioning

accelerated the convergence of iterative methods. The parallel performance did not depend

strongly on the radiative properties of the medium or the boundary conditions. Predictions

from coupling the weighted-sum-of-gray-gases model with the P-1 approximation are com-

pared against benchmarks for model problems. The P-1 approximation resulted in only a

moderate loss in accuracy while being significantly faster than the discrete ordinates

method.

INTRODUCTION

Radiation is often the dominant mode of heat transfer in hydrocarbon pool fires.
Performing realistic simulations of fires require the representation of the relevant
physical processes such as turbulent reacting flows, heat transfer, and chemistry that
occur over a wide range of continuum length scales and their corresponding time
scales. Large-eddy simulations (LES) attempt to capture the important features of
the fire physics by resolving the large length and time scales that are responsible
for controlling the dynamics of the fire. In order to spatially resolve the important
flow characteristics in a fire, grids containing 106 to 108 computational cells need
to be used at every time step associated with the calculation. Massively parallel com-
putations are required to perform this task. Performing radiation calculations at
these spatial and temporal scales is computationally prohibitive even with parallel
computers when the same grid is used for both fluid flow as well as radiation calcula-
tions. This is due to the dependence of the radiation calculations at each time step on
space, direction, as well as the energy of photons. This article describes the paralle-
lization of the P-1 approximation to the radiative transport equation (RTE) and the
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feasibility of employing it for performing nongray calculations in LES calculations
of pool fires. The P-1 approximation reduces the RTE to a relatively simple partial
differential equation which is conceptually simple to solve numerically at each non-
gray interval [1]. Morvan et al. [2, 3] have demonstrated numerical simulations of
pool fires by employing the P-1 radiation model to treat radiative transfer. Their
simulations showed the fraction of the total heat released that was radiated away
to compare favorably with experimental observations.

Obtaining solutions to the discretized transport equations consumes the
maximum time in most radiation algorithms. Therefore, the speed and paralleliza-
bility of an algorithm is often determined by the speed and parallelizability of the
solver employed in the solution procedure. Hence, it is extremely beneficial to inter-
face the radiation algorithm to libraries of robust, scalable, nonlinear and linear sol-
vers such as the Portable Extensible Toolkit for Scientific Computation (PETSc) [4]
and High Performance Preconditioners (HYPRE) [5]. This provides the developer
with easy access to a suite of direct and iterative solvers and preconditioners that
can be suitably selected depending on the problem being solved. We have previously
employed the solvers and preconditioners in PETSc to solve the system of linear
equations arising from a finite-volume discretization of the discrete ordinates
method [6]. The multigrid options in HYPRE are employed in this study to solve
the symmetric matrices that result from a finite-volume discretization of the P-1
transport equation. Multigrid methods are among the best available methods for
solving the elliptic transport equation [7].

Timing and scaling studies are first performed using the various multigrid
options available in HYPRE to determine the best solver=preconditioner combi-
nation for the intended application. As part of a validation methodology, the
weighted-sum-of-gray-gases model (WSGGM) [8] is coupled with the P-1 radiation
calculations and the computed radiative transfer variables are compared with the

NOMENCLATURE

a
e
, a

a
emissivity and absorptivity weighting

factors

A square coefficient matrix

B right-hand-side vector of the linear

matrix system

C2 constant in the Planck’s function

fv soot volume fraction

G incident radiation, W=m2

k absorption coefficient, mÿ1

L geometric distance, m

n real part of the complex index of

refraction

Np number of processors

q radiative heat flux vector, W=m2

r location vector

tg wall clock time

T temperature, K

V volume of a grid element, m3

x, y, z coordinate directions

Y mole fractions of the gaseous species

e total emissivity

gf incremental fixed problem size

efficiency

gs scaled problem size efficiency

j absorptive index

r Stefan-Boltzmann constant

rs scattering coefficient, mÿ1

Subscripts

b blackbody

i gray gas component

P node at which the incident radiation is

being solved

R index that runs over all neighboring

surface nodes

w wall
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benchmark results available in the open literature. All simulations reported in this
work were carried out on a distributed-memory Linux cluster at the University of
Utah that has 128 dual processor nodes.

P-1 APPROXIMATION

The transport equation for the P-1 approximation determines the distribution
of the incident radiation (G) throughout the domain. If k represents the absorption
coefficient, rs the scattering coefficient, C the linear-anisotropic phase function, and
T the temperature, then the differential equation governing the P-1 approximation
can be written as [9]

rðCrGÞ ÿ kG þ 4krT4 ¼ 0 ð1Þ

where

C ¼
1

3ðk þ rsÞ ÿ Crs

ð2Þ

If ew and Tw are the emissivities and temperature of the boundaries, then the bound-
ary condition associated with the above equation is

qw ¼ ÿ
ew

2ð2ÿ ewÞ
ð4rT4

w ÿ GÞ ð3Þ

If the absorption coefficient and temperature within the domain are specified or can
be obtained along with the boundary properties, then Eq. (1) can be solved itera-
tively for the irradiation (G) throughout the domain.

The radiative flux vector and the radiative flux divergence at a position vector r
inside the domain can be calculated as [9]

qðrÞ ¼ ÿCrG ð4Þ

r � qðrÞ ¼ kðrÞ½4rTðrÞ4 ÿ GðrÞ� ð5Þ

Multiplying both sides of Eq. (1) by dV ¼ dx dy dz and integrating over the volume
elements results in the following equation for the face-centered fluxes and the
cell-centered incident radiation:

C
qG

qx

� �

e

ÿ C
qG

qx

� �

w

� �

dy dzþ C
qG

qy

� �

n

ÿ C
qG

qy

� �

s

� �

dx dz

þ C
qG

qz

� �

t

ÿ C
@G

@z

� �

b

� �

dx dyÿ kPGP dV þ 4kPrT
4
P dV ¼ 0 ð6Þ

In Eq. (6), the lowercase subscripts represent face-centered values and the uppercase
subscripts represent cell-centered values. The subscript P corresponds to the node at
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which Eq. (1) is being approximated. The lowercase subscripts correspond to the
interfaces of the control volume under consideration with its neighboring cell to
the east (e), west (w), north (n), south (s), top (t), and bottom (b), respectively. A
central differencing scheme is employed to evaluate the fluxes (the derivatives).
The medium properties (C, k, and T) are all cell-centered variables. C at a control-
volume face is determined as a harmonic mean of the C of the cells adjoining that
face. Equation (6) can then be represented in the form [10]

APGP þ
X

R

ARGR ¼ BP ð7Þ

where the subscript P corresponds to the node at which Eq. (1) is being approxi-
mated, the index R runs over all the neighboring surface nodes in Eq. (6), AR corre-
sponds to the product of the geometric properties and medium properties, and BP

contains all the terms that are known. Equation (7) can be written in matrix form as

AG ¼ B ð8Þ

where, A corresponds to a square coefficient matrix which is sparse and symmetric.
If the control volume under consideration is adjacent to a boundary cell(s),

then the corresponding flux(s) in Eq. (6) must be replaced by the boundary con-
dition, Eq. (3).

The WSGGM is employed here as a nongray gas model with the P-1 approxi-
mation. The temperature-independent absorption coefficients (ki), the emissivity and
absorptivity polynomial coefficients (be, ca) for the temperature-dependent emiss-
ivity, and absorptivity weighting factors (ae, aa) for the ith nongray gas are obtained
from Smith et al. [8] for three gray gases and one ‘‘clear gas’’ (i ¼ 0). Equation (1) in
a nonscattering medium for the ith gray gas may be written as

r
1

3ki
rGi

� �

ÿ kiGi þ 4kiae;iðTÞrT4 ¼ 0 ð9Þ

with the boundary conditions

qw;i ¼ ÿ
ew

2ð2ÿ ewÞ
ð4aa;iðT ;TwÞrT

4
w ÿ GiÞ ð10Þ

The radiative fluxes and the radiative flux divergence for the WSGGM are evaluated
as

qðrÞ ¼
X

i

ÿ
1

3kiðrÞ
rGiðrÞ ð11Þ

r � qðrÞ ¼
X

i

kiðrÞf4ae;i½TðrÞ�rTðrÞ4 ÿ GiðrÞg ð12Þ
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ALGORITHM DESCRIPTION

We employ HYPRE [5] to efficiently solve the system of linear equations in
Eq. (8). HYPRE provides a comprehensive suite of data structures for parallel matrix
and vector storage as well as unified interfaces to linear solvers and preconditioners for
achieving scalable parallel computation. The coefficients of the matrices and vectors are
first computed on a global mesh and then passed on to HYPRE. HYPRE then
computes and distributes the matrices and vectors among all the processors involved
in the simulation. Global indices are used for accessing the distributed data structures
also. HYPRE thus offers the benefits of being a general-purpose solver that can easily
be interfaced to anymodel component. For instance, Yee [11] has employedHYPRE to
solve the pressure equation in a computational fluid dynamics (CFD) code.

MULTIGRID

Numerical analysis shows that the convergence rates of all basic iterative
methods slow down due to the presence of low-frequency (smooth) components in
the error [12]. Multigrid methods restore and improve the performance of the basic
relaxation schemes by exploiting discretizations with different mesh sizes. The basic
idea of multigrid is that the components associated with the smooth modes of error
are mapped naturally into high-frequency modes on a coarser mesh. These high-
frequency components are then eliminated by the relaxation schemes. This process
is repeated recursively using a hierarchy of meshes [13].

The key components of a multigrid algorithm are the smoothing procedure, the
coarsening strategy, the coarse-grid operator, transfer operators, and the cycle type
[7, 14]. The smoothing property is the ability of relaxation methods such as Gauss-
Siedel and Jacobi-type iterative methods to reduce the high-frequency error compo-
nents. The coarsening strategy involves doubling the mesh size in each direction
(standard coarsening) or in only one or two directions (semicoarsening). Semicoar-
sening is particularly useful in anisotropic problems and has been employed in the
multigrid options for structured grids available in HYPRE [5]. The coarse-grid oper-
ator defines the problem on the coarse grid. The common choices are either to use
the direct analog of the fine-grid problem on the coarse grid or to use the Galerkin
coarse-grid operator [7, 14]. The transfer operators are vectors that map vectors
between the fine and coarse grids. Restriction operators map fine-grid functions to
coarse-grid functions, whereas the interpolation functions map coarse-grid functions
to fine-grid functions. A standard multigrid cycle consists of presmoothing, coarse-
grid correction step, and postsmoothing.

An important fact which underlies much of the power of the multigrid methods
is that the smoothing rate for the basic relaxation schemes is small and independent
of the grid spacing. Therefore, the number of iterations remains constant with
increased spatial resolution, making multigrid as well as its parallel implementation
scalable. However, due to various complications that occur in real-life problems such
as anisotropies, the high-frequency components of the error may still not be elimi-
nated by straightforward multigrid techniques. In such situations, multigrid may
be employed as a preconditioner in combination with Krylov subspace methods such
as the conjugate gradient (CG) method to provide more robustness and address a
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larger class of problems [14]. Employing multigrid as a preconditioner to Krylov iter-
ative methods is discussed in [7, 14]. In this work the semicoarsening multigrid
(SMG) and the PFMG algorithms in HYPRE are employed as a solver or as a pre-
conditioner to Krylov subspace methods [5].

DESCRIPTION OF CASES

Case 1 consists of a model radiation problem selected to compare the time to
converge to a given residual norm (10ÿ6) for various solver and preconditioner
options in HYPRE. This problem, which was first introduced by Hsu and Farmer
[15], consists of an isothermal unit cube with cold, black walls. The interior of the
cube consists of a gray, nonscattering, absorbing=emitting material. A more detailed
description of the problem can be found in [15]. Scaling and timing studies have pre-
viously been performed for this model problem using parallel implementations of the
discrete ordinates method [6, 16].

A homogeneous medium model problem (case 2) was selected next to investi-
gate the effects of geometric anisotropy on the solve times of various solver and
preconditioner options in HYPRE. The problem consists of two cold (0K), black,
infinitely parallel plates that confine between them a 1-m-thick isothermal layer of
a hypothetical gas at 1,000K and at a pressure of 1 atm. The absorption coefficient
of the gas was set at 1mÿ1. This 1-D problem was modeled by employing a 3-D
domain taking the geometric length and breadth to be 50 times the height. The four
end walls were modeled as black surfaces at 0K. For the timing studies, cases 1 and 2
were run at a grid of resolution 753 and times to converge to a residual norm of 10ÿ6

were then compared for different solvers and preconditioner options.
Nongray radiation calculations were performed next with the P-1 radiation

model (cases 3 and 4). The Smith et al. [8] WSGGM was used in conjunction with
the P-1 radiation model and the computed results compared against numerical
benchmarks or predictions from more accurate radiation models. The geometry
for cases 3 and 4 is a rectangular enclosure of dimensions 2m� 2m� 4m with the
surrounding walls being black at 300K. For case 3, the medium within the enclosure
is assumed to be a mixture of 10 mole% CO2, 20 mole% H2O, and 70 mole% N2.
The gas temperature is nonuniform but symmetrical about the centerline of the
enclosure and is specified as

T ¼ ðTc ÿ TeÞf
r

R

� �

þ Te ½K�

Here, Tc is the gas temperature along the centerline of the enclosure, which increases
linearly from 400K at the inlet (z ¼ 0) to a maximum value of 1,800K at z ¼ 0.375m
and then decreases linearly to 800K at the exit (z ¼ 4m). Te is the exit temperature at
z ¼ 4m. Inside the enclosure a circular region or a cylinder around the centerline can
be imagined, where R ¼ 1m is the radius of the cylinder. The variation of gas
temperature inside the circular region of the cross-section enclosure is given by the
equation

f
r

R

� �

¼ 1ÿ 3
r

R

� �2

þ2
r

R

� �3
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where r is the distance from the centerline of the enclosure. The gas temperatures
outside the circular region, i.e., between the cylinder with radius R ¼ 1m and the
walls of the rectangular enclosure, were defined as uniform and equal to the exit
temperature, Te.

For this case, Liu [17] has reported highly accurate numerical solutions of non-
gray radiative heat transfer by solving the exact narrow-band averaged RTE using a
ray-tracing method. Case 4 consists of a newer calculation published recently by
Trivic [18], who employed the Smith et al. WSGGM [8] with the finite-volume radiation
model. The geometry and the temperature distribution for case 4 is the same as for
case 3. The gas mixture for case 4 consists of a uniform mixture of 10 mole% CO2,
10 mole% H2O, and 80 mole% N2. Cases 3 and 4 were both solved on a grid of resol-
ution 41� 41� 80. Cases 5 and 6 were aimed at investigating the importance of soot
loading in these calculations. Case 5 consists of an isothermal homogeneous mixture
of thickness 1m consisting of 20 mole% H2O, 10 mole% CO2, 3 mole% CO, and the
rest N2 along with a soot volume fraction of 10ÿ7 at a temperature of 1,000K
between cold (0K), black plates. The predicted radiative source term distributions
resulting from line-by-line (LBL) calculations for this model problem have been
reported by Solovjov and Webb [19]. Case 6 consists of a one-dimensional layer
of nonuniform gas=soot mixture with the following distributions of temperatures
and species:

TðxÞ ¼ 4;000xðLÿ xÞ þ 800 ½K�

YCO2
ðxÞ ¼ 0:4xðLÿ xÞ þ 0:06

YH2OðxÞ ¼ 2YCO2
ðxÞ

fvðxÞ ¼ ½40xðLÿ xÞ þ 6� � 10ÿ7

Here, T is the temperature, L is the distance between the plates, Y represents the
mole fractions of the components, and fv is the soot volume fraction. The medium
variations for this case are characteristic of nonpremixed diffusion flames produced
by an inner fuel core inflow, surrounded by an outer oxidant stream [20]. For cases
5 and 6 the soot absorption coefficient is defined as [1, 21]

ks ¼
3:72fvC0T

C2
½mÿ1� ð13Þ

where

C0 ¼
36pnj

ðn2 ÿ j2 þ 2Þ2 þ 4n2j2
C2 ¼ 1:4388 cmK; n ¼ 1:85; j ¼ 0:22

The soot absorption coefficient is added to the absorption coefficient of the
nongray gas. C2, n, and j are respectively a constant in the Planck’s function, real
part of the complex index of refraction, and the absorptive index. The predictions
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for the radiative source term distributions across this layer using different property
models are available [19, 20]. The one-dimensional cases 5 and 6 were both run on
grids of resolution 753. Cases 5 and 6 were modeled employing a 3-D domain, taking
the geometric length and breadth to be 50 times the height and modeling the four end
walls as black surfaces at 0K. The surrounding surfaces for all the cases mentioned
above are black. The walls are also cold (�300K) for all the cases except case 6.
Hence, emissivity weighting factors (ae) were employed in the boundary conditions
for the cold walls [cf. Eq. (10)] of cases 3–5. The errors associated with the use of
emissivity weighting factors in the boundary conditions for cold walls have been
previously shown to be small [22]. For case 6, however, two calculations were
performed, one employing the emissivity weighting factors and the other employing
absorptivity weighting factors (evaluated at a mean gas temperature of 1,467K) in
the boundary condition. For all the cases mentioned above, we also ensured that
an overall radiative energy balance was being obeyed over the entire domain as a
further verification step. According to this, the total radiative heat source in a radiat-
ing medium is always equal to the total radiative heat flux through its boundaries
[23]. For all the cases in this article, the residual norm was set at 10ÿ6 [5].

RESULTS AND DISCUSSION

The solver run times of various iterative methods and preconditioners or the
smoothing procedure (indicated within brackets) during the solution of cases 1
and 2 is shown in Figure 1. Two smoothing options were employed with the PFMG
solver, ‘‘w-Jacobi’’ (weighted Jacobi) and ‘‘RBGS’’ (red-black Gauss-Siedel). A set
of calculations were also performed for cases 1 and 2 employing the discrete ordi-
nates method (also interfaced to HYPRE libraries) with the SSD2a quadrature set

Figure 1. Comparison of solver run times for cases 1 and 2 run at a spatial resolution of 753.
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[24] for comparing the relative speeds of these methods. This requires the solution of
48 linear systems of equations compared to just one for the P-1 approximation [cf.
Eq. (1)]. In combustion applications, the discrete ordinates method is typically
employed to solve the RTE numerically in 24 to 48 directions for obtaining the best
combination of accuracy and numerical efficiency [25]. The finite-volume discretiza-
tion of the discrete ordinates method results in sparse, nonsymmetric matrices [6].
Hence, the generalized minimal residual method (GMRES) option in HYPRE was
employed to solve the nonsymmetric matrix systems. We notice that employing
PFMG (with weighted Jacobi smoothing) as a preconditioner to the conjugate gradi-
ent (CG) method emerges as the fastest solver=preconditioner combination for both
cases. Employing this combination with the P-1 radiation model is seen to be more
than two orders of magnitude faster than the discrete ordinates method and more
than two times faster than employing conjugate gradients alone to solve the P-1 radi-
ation model. Employing the parallel PFMG preconditioner to accelerate the conver-
gence of conjugate gradients was demonstrated by Ashby and Falgout [14] during
numerical simulations of groundwater flow through heterogeneous porous media.
Along the lines of the study by Ashby and Falgout [14], numerical experiments were
next performed to compare the number of iterations to converge to a given residual
norm for the conjugate gradient method without any preconditioning (CG), two-step
Jacobi preconditioning to the CG method (J2CG), PFMG (with weighted Jacobi
smoothing) preconditioning to the CG method (MGCG), and PFMG (with
weighted Jacobi smoothing) (referred to from hereon as simply ‘‘PFMG’’ ) for case 1.
Table 1 shows the variations in the number of iterations taken by the four methods
to converge to a residual norm of 10ÿ6 with increase in spatial resolution. We notice
that the number of iterations to achieve convergence is nearly independent of the
problem size in the case of MGCG and PFMG. This independence of the number
of iterations for convergence on the grid resolution is true for both standalone multi-
grid as well as multigrid preconditioned conjugate gradients. The convergence of
Krylov iterative methods such as conjugate gradients and preconditioned Krylov
iterative methods for solving systems arising from discretized partial differential
equations tends to slow down as the system gets larger [13]. This is reflected in Table 1
by the increase in number of iterations to convergence for the CG and J2CG iterative
methods.

The parallel performance of these methods was investigated next by examining
the scaled problem size efficiencies. Here, the size of the local on-processor grid
remains constant and therefore the size of the distributed global grid increases with
increase in processor number. Theoretically, in scaled problem size problems, as each

Table 1. Number of iterations to converge to a residual norm of 10ÿ6

norm for case 1 run at different spatial resolutions

No. of iterations CG J2CG MGCG PFMG

153 53 21 11 28

353 142 51 10 21

553 235 80 12 27

753 329 111 11 22
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processor has the same amount of work to do, the solve time should remain constant
as the number of processors increases. Thus, the scaled problem size efficiency is
defined as

gs ¼
tgð1Þ

tgðNpÞ
ð14Þ

where tg(Np) is the wall clock time taken to perform the entire calculation except the
problem specification (specifying boundary conditions) using Np processors. The
problem specifications take only a small fraction of the total solve time and hence
have a negligible effect on the reported timing results. The wall clock time, however,
includes calculating and assembling the elements of the matrix as well as solving the
matrix systems. The scaled problem size efficiencies of the four solvers (CG, J2CG,
MGCG, and PFMG) for the solution of case 1 have been tabulated in Table 2.
Scaled problem sizes of 503 and 753 are considered. First, we notice degradations
in the scaled problem efficiencies for all solvers. The multigrid options (MGCG,
PFMG), however, perform better than the other solver options. The degradation
in the parallel efficiencies of the Krylov methods (CG, J2CG) as well as the multigrid
methods may be attributed to the communication between the processors. Though
the number of iterations in multigrid algorithms remains nearly constant with
increase in problem size (cf. Table 1), the number of communication calls in the semi-
coarsening strategy employed in the multigrid algorithms increase as the size of the
problem increases [14]. Ashby and Falgout [14] mention the increased communi-
cation overhead to be the only impediment to the perfect scalability of the multigrid
algorithm. Second, the scaled problem efficiencies increase with increase in problem
size. The efficiencies increase with increase in problem size as the size of the local
on-processor matrix size is large enough to be solved efficiently in parallel. However,
it is important to notice that for a scaled problem size of 753, an efficiency of 12–14%
at 64 processors corresponds to only 7 to 8 times increase in the solve time compared
to a single processor case [cf. Eq. (14)] for solving a problem which is 64 times larger.
This corresponds to very useful speed-ups in massively parallel simulations that
employ large computational grids.

In accordance with Burns and Christon [16], we also define incremental fixed
problem size efficiency as

gf ¼
2tgð2Þ

NptgðNpÞ
ð15Þ

Table 2. Scaled problem size efficiencies for case 1 for two different problem sizes

per processor

Np

Problem size (503) Problem size (753)

MGCG PFMG J2CG CG MGCG PFMG J2CG CG

1 100 100 100 100 100 100 100 100

8 27 32 21 17 35 32 22 22

27 11 19 4 4 23 24 8 9

64 6 10 2 2 12 14 5 4
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The incremental fixed problem size efficiencies of the MGCG solver were exam-
ined next as a function of the medium properties. The domain geometry and tempera-
ture distribution within the medium and at the boundaries selected for this study were
assumed to be the same as in cases 3 and 4. The spatial resolution was set at
81� 81� 160. The absorption coefficient (k), scattering coefficient (rs), and the wall
emissivity (e) were then varied. The corresponding times to solution and incremental
fixed problem size efficiencies are reported in Table 3. We notice that the parallel per-
formance is not severely affected by the radiative properties or the boundary con-
ditions of the problem. This is in contrast to previous studies [26–28]. The use of a
global solver such as CG with a robust preconditioner such as PFMG does not
severely affect solver performance when the radiative properties of the medium
change. This is a critical requirement in fire simulations, where the medium properties
vary significantly across the domain. However, there is degradation in the parallel
performance due to increased communication between processors for large processor
numbers. This is particularly noticeable for Np > 8, when the size of the local on-pro-
cessor matrix size becomes too small to be solved efficiently in parallel.

Figures 2a and 2b show the distributions of the computed radiative source
terms and heat flux vectors, respectively, for case 3 along different lines in the enclos-
ure. Also shown are the benchmark results of Liu [17] employing the statistical
narrow-band (SNB) model and discrete ordinates (D.O) calculations previously
carried out in [29] for this model problem employing the coefficients from the Smith
et al. [8] WSGGM. First, we notice that both D.O as well as the P-1 radiation models
qualitatively capture the trends in the source term and heat flux vectors. However,
the errors associated with the predictions are greater with the P-1 radiation model.
Figures 3a and 3b show the distributions of the source terms and heat flux vectors
for case 4 along different lines in the enclosure. Also shown are the corresponding
D.O calculations from [29] and finite-volume (F.V) calculations from Trivic [18].
The F.V calculations, however, were performed with five gray gases as opposed to
four gray gases employed in this study, thereby not enabling a direct comparison
among the F.V, D.O, and P-1 approximations. Due to the similarities between the
D.O and the F.V methods, the results from these two methods are close to each
other. The distributions of the radiative source terms in the gas–soot mixtures of
case 5 and case 6 are shown in Figures 4a and 4b, respectively. Also shown in

Table 3. Solve times and incremental fixed problem size efficiencies for MGCG for different medium

properties and boundary conditions

K (mÿ1) 0.1 10.0 0.5 0.5 0.1 10.0 0.5 0.5

r (mÿ1) 0 0 0.5 0.5 0 0 0.5 0.5

e 1.0 1.0 1.0 0.7 1.0 1.0 1.0 0.7

Np Solve time (s) Efficiencies

2 12.7 10.8 13.3 15.4 100 100 100 100

4 9.4 9.2 10.7 9.4 68 59 62 82

8 5.0 4.9 5.8 6.0 63 55 57 64

27 7.7 7.1 8.7 7.6 12 11 11 15

64 10.7 9.8 15.3 14.8 4 3 3 3
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Figures 4a and 4b are predictions previously made [29] employing the discrete ordi-
nates radiationmodel employing the coefficients from the Smith et al. [8]WSGGM.For
case 5, both the P-1 radiation model and the discrete ordinates method with the
WSGGM come very close to predicting the source term distribution at the center of
the medium against the line-by-line (LBL) calculations of Solovjov and Webb [19].
For case 6 (which closely represents the conditions in a nonpremixed diffusion flame)

Figure 2. Predictions of: (a) source term distributions along the centerline of the enclosure for case 3;

(b) wall heat flux distributions along (2m, 1m, z) for case 3.
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we notice that employing the WSGGMwith the P-1 radiation model and discrete ordi-
nates method adequately captures the trends in the radiative source term distributions.
The results, however, deviate from the ‘‘benchmark’’ statistical narrow-band model
(SNB) predictions of Bressloff [20], which were generated using RADCAL and the

Figure 3. Predictions of: (a) source term distributions along the centerline of the enclosure for case 4;

(b) wall heat flux distributions along (2m, 1m, z) for case 4.
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spectral-line weighted-sum-of-gray gases (SLW) model predictions of Solovjov and
Webb [19]. An additional calculation was performed for case 6 using the WSGGM
but this time employing the absorptivity weighting factors in the boundary conditions
evaluated at an average medium temperature of 1,467K. However, the computed
values (not shown in Figure 4b) did not differ significantly from the corresponding

Figure 4. Predicted source term distributions for: (a) case 5; (b) case 6.
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profile obtained with the emissivity weighting factors in the boundary conditions of
the WSGGM which is shown in Figure 4b. Emission and absorption in case 6 are
dominated by the soot continuum. However, the model for the soot properties
employed by us with the WSGGM [cf. Eq. (13)] is different from the ones employed
by Bressloff [20] and by Solovjov and Webb [19]. Second, the inaccurate represen-
tation of gas absorptivities by the WSGGM may be the reason for the differences
in the predictions of the radiative source term, especially near the colder regions of
the domain (near the walls). This has also been observed in previous studies [22].
Hence, the discrepancies in the predictions of the various studies may be attributed
to differences in the solution methods for the RTE, different spectral databases
employed in generating the various model parameters, and=or inaccuracies in the
models itself. From cases 3–6 we see that employing the WSGGM with the P-1 radi-
ation model results in only a moderate loss of accuracy in the predictions of radiative
heat fluxes and the source terms when compared to using the discrete ordinates
method with the WSGGM. This is likely due to the near-isotropic intensity distribu-
tions in themedium for cases 3–6. The P-1 radiationmodel is usually accurate inmedia
with near-isotropic intensity distributions [1]. The directional intensity at any given
point inside the medium is due to radiation originating from the boundaries and radi-
ation emanating from the medium (due to emission and in-scattering). Intensity from
within a nonscattering medium generally shows a very slow directional dependence, as
emission results in an isotropic intensity source [1]. Cases 3–5 had boundaries at a uni-
form surface temperature much lower than that of the emitting medium. Hence the
boundary conditions are not expected to significantly affect the intensity distributions
or contribute to anisotropic intensities within the medium. Although the boundaries
of case 6 were at a uniform temperature of 800K, the medium was also optically thick,
so the boundaries are not expected to cause any anisotropy in the intensity distribu-
tions about a location in the medium. Cases 3–6 were also run employing the discrete
ordinates method at different angular resolutions (not shown in Figures 2–4). There
was very little difference in the results, which further suggested a near-isotropic inten-
sity distribution about a location in the media. The radiation component developed
here is intended for use in numerical simulations of open pool fires where radiation
within the medium is dominated by emission, and scattering is neglected. For the radi-
ation boundary conditions in this application we assume that the enclosure wall is a
black surface at ambient temperature. Hence, the boundaries are not expected to
contribute to any anisotropy in the intensities and near-isotropic distributions of
intensities are expected to prevail within the fire. However, the P-1 approximation
is known to be inaccurate when an optically thin medium (for instance, air) acts as
a radiation barrier between a hot emitting medium (fire) and a cold boundary (wall)
[1]. This may be due to the fact that the intensity about a location is no longer isotropic
as we move away from the flame, due to the presence of a strong emitting source on
one side and a cold medium on the other. Hence, the P-1 approximation may lose its
accuracy in predicting the radiative heat fluxes to distant objects away from the fire.
However, it is important to note that if solid=liquid interface energy balances are not
being performed, it is only through the distributions of the radiative source terms
[ÿ

4

� q(r)] that radiation is coupled to other physical processes associated with the fire
(through the source term of the fluid energy balance equation). As seen from cases 3–6,
the P-1 approximation is expected to predict the distributions of the radiative source
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terms within the fire accurately, thereby providing adequate coupling between
radiation and the hydrodynamics. Hence, the computational savings associated with
the use of P-1 radiation model will prove to be particularly valuable in transient
simulations of pool fires that are performed employing very fine grids to validate
the hydrodynamic models.

CONCLUSIONS

A domain decomposition paradigm was applied to a radiation component that
solves the transport equation of the P-1 radiation model. Robust, parallel solver
components developed by third parties were employed to solve the sparse, symmetric
matrices that result during the solution procedure. This provided us with a wide
range of solver and preconditioner options. By a proper choice of solver and multi-
grid preconditioner, the P-1 radiation model was seen to be more than two orders of
magnitude faster than the discrete ordinates method. Parallel multigrid solvers and
preconditioners were found to scale well, as the number of iterations to convergence
is nearly independent of the problem size. The parallel performance did not depend
strongly on the radiative properties of the medium or the boundary conditions. The
communications overhead between the processors caused degradations in the paral-
lel efficiencies, but useful speed-ups can be obtained in massively parallel combustion
simulations that employ large computational grids.

Nongray calculations for model problems performed by employing the
WSGGM to the discrete ordinates method and the P-1 radiation model seem to indi-
cate that the P-1 radiation model may provide large savings in computational time in
fire simulations, with only moderate losses in accuracies.
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