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The discrete ordinates method is spatially decomposed to solve the radiative transport

equation on parallel computers. Mathematical libraries developed by third parties are used

to solve the matrices that result during the solution procedure. The radiation component is

verified by comparing computed values against a benchmark. Fixed and scaled problem size

efficiencies are examined. Contrary to most previous studies, the parallel efficiencies did not

depend strongly on the optical thickness of the medium for our model problem. Timing

studies show that GMRES, BiCGSTAB iterative methods with block Jacobi preconditioning

perform the best for solving these matrix systems.

INTRODUCTION

Radiation is often the dominant mode of heat transfer in hydrocarbon fires.

With the advent of parallel computers, performing realistic computations of parti-

cipating media radiative transfer is becoming increasingly tractable. Issues relating to

the use of high-performance computing in participating media heat transfer were

identified at a National Science Foundation workshop [1]. In order to spatially

resolve the important flow characteristics in a fire, grids containing 106–108 com-

putational cells need to be used at every time step associated with the calculation.

Performing radiation calculations at these scales is extremely expensive due to its

dependence on space, direction, as well as the energy of the photons. Consequently,

parallelism in radiation calculations may be achieved by decomposing the radiation

solution domain in spatial, angular, or the energy domains, respectively. We have

incorporated a finite-volume-based discrete ordinates radiation model decomposed
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in the spatial domain. The inputs to this model are the concentrations of the important

radiatively active species (CO2, H2O, soot) and temperature, which are calculated on

the spatially decomposed flow grid as well as at the boundaries. The adoption of a

spatial decomposition strategy for the radiation component allows for its easy inte-

gration with other combustion components. This radiation algorithm is then used with

the combustion code to perform transient simulations of fires with nongray properties.

First we summarize previous applications of spatial decomposition strategies

to finite-volume-based radiation models. Burns and Christon [2, 3] used massively

parallel supercomputers to examine the scaled and fixed problem efficiencies that

resulted from solving a 3-D benchmark radiation problem using the discrete ordi-

nates method. They observed that the global nature of radiative transport resulted in

a decrease in parallel efficiency but provided useful speedups for large computational

grids. Angular as well as spatial parallelization techniques were applied to the dis-

crete ordinates method by Gonçalves and Coelho [4] and to the finite-volume

method by Coelho and Gonçalves [5]. The influences of the angular and spatial

resolutions and absorption coefficient of the medium on the parallel efficiencies were

investigated in both these studies. Liu et al. [6] parallelized an unstructured finite-

volume method by decomposing the spatial domain along the longer geometric

dimension. More recently, Tal et al. [7] parallelized a discrete ordinates code with

pseudo-time-stepping to achieve high efficiencies employing the spatial decomposi-

tion technique. Table 1 summarizes these works along with other recent efforts in

parallelizing radiation calculations. Though the table might seem to suggest ray or

NOMENCLATURE

A surface area of the face of the volume

element normal to the x axis

B surface area of the face of the volume

element normal to the y axis

C surface area of the face of the volume

element normal to the z axis

G incident radiation

I radiative intensity

k absorption coefficient

Lm mean beam length

M preconditioning matrix

nn number of computational nodes

along each dimension

Np number of processors

P square coefficient matrix

q radiative heat flux vector

Q right-hand-side vector of the linear

matrix system

r residual

r location vector

R condition number of matrix

ŝ unit vector in the direction of

radiation intensity

tg wall clock time

T temperature

V volume of a grid element

w angular weights

x, y, z coordinate directions

e total emissivity

z direction cosine in the x direction

Z direction cosine in the z direction

Zf incremental fixed problem size

efficiency

Zs scaled problem size efficiency

m direction cosine in the y direction

s Stefan-Boltzmann constant

t optical thickness

O solid angle

Subscripts

b blackbody

i, j, k surface element indices

m discrete angular direction of

intensity

n order of the angular quadrature set

p node at which the directional

intensity is being solved

s index that runs over all neighboring

surface nodes

t iteration number
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angular decomposition to be more efficient than spatial decomposition, angular or

ray decomposition techniques have only been achieved with coarse grids because

they require the nondecomposed spatial domain to be stored in each processor in its

entirety.

The main features that distinguish this work from the ones described above are

that we solve the discretized radiative transport equation (RTE) by interfacing our

radiation component to robust, scalable, nonlinear, and linear solvers developed by

third parties. This provides us with easy access to a suite of direct and iterative

solvers and preconditioners that can be suitably selected depending on the problem

being solved. The comparative performances of different solvers and preconditioners

are reported in the Results and Discussion section of this study. Second, we report

the parallel performance of the radiation algorithm up to 960 processors during the

course of a multiphysics fire simulation. The authors are not aware of any other

work that has demonstrated the scaling of radiative heat transfer computations

carried out within the context of a combustion simulation with this many processors

(cf. Table 1). Finally, in contrast to most previous studies that employed domain

decomposition to solve the RTE, we did not notice a degradation of the parallel

efficiencies at low optical thickness for our model problem.

The fire simulations reported in this work were computed on a 68-node, 16-

processors-per-node, IBM SP system at the Lawrence Livermore National

Laboratory (‘‘Frost’’). All other calculations were carried out on a distributed

memory Linux cluster at the University of Utah that has 128 dual processor nodes.

THE DISCRETE ORDINATES METHOD

In this work the discrete ordinates method is used to solve the differential form

of the RTE. The discrete ordinates method is based on the numerical solution of the

RTE along specified directions. The total solid angle about a location is divided into

a number of ordinate directions, each assumed to have uniform intensities. Each

transport equation that is solved corresponds to an ordinate direction (selected from

an angular quadrature set that discretizes the unit sphere) and describes the variation

of directional intensity throughout the domain. If zm, mm, and Zm represent the

direction cosines associated with each ordinate direction, k represents the absorption

coefficient and Ib represents the blackbody emissive power, then the differential

equation governing the discrete ordinates method in the absence of scattering can be

written for each direction m as [12]

zm
qIm

qx
þ mm

qIm

qy
þ Zm

qIm

qz
¼ �kIm þ kIb ð1Þ

The boundary condition associated with the above equation, considering the

surrounding surfaces to be black, is

Im ¼ Ib ð2Þ

If the absorption coefficient and temperature within the domain as well as at the

boundaries are specified, then Eq. (1) can be solved iteratively for the directional

intensities (Im) throughout the domain. Equation (1) needs to be solved for each

direction associated with the discrete ordinates method.
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Table 1. Summary of previous efforts in parallelizing radiative heat transfer

Reference

Radiation model

(decomposition strategy)

Problem description

(maximum number of processor used),

(maximum grid size) Comments

Burns and Christon [2, 3] Discrete ordinates (spatial) 3-D benchmark radiation problem

(512), (30563056305)

Observed degradation in parallel efficiency

with increase in number of processors but

obtained useful speed-ups for large

computational grids.

Gonçalves and Coelho [4] Discrete ordinates

(spatial and angular)

3-D rectangular enclosures and 2-D

square enclosure (80),

(36612612, 80680)

Obtained higher efficiencies with the angular

decomposition strategy. Efficiencies

increased with increase in absorption

coefficient when spatial decomposition

strategy was used for prescribed medium

temperature problem.

Coelho and Gonçalves [5] Finite volume (spatial and angular) 3-D rectangular enclosures (80),

(36612612, 80680)

Obtained higher efficiencies with the angular

decomposition strategy. Efficiencies

increased with increase in absorption

coefficient and grid resolution when spatial

decomposition strategy was used for

prescribed medium temperature problem.

Liu et al. [6] Unstructured finite volume

(spatial decomposition along

longer geometric dimension)

2-D axisymmetric furnace and an

idealized 3-D furnace (18),

(8,140 triangular volume cells,

65,968 prism volume cells)

Found degradation in parallel performance

with increase in processor number with

increase in absorption coefficient for a

prescribed temperature problem. Parallel

performance improved with increase in

grid number.

2
2
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Tal et al. [7] Discrete ordinates with pseudo-time

stepping (spatial)

2-D and 3-D benchmark problems

(16), (1286128, 64664664)

Attribute high parallel efficiency to explicit

time-stepping scheme and high-bandwidth

shared memory

Novo et al. [8] Discrete transfer method

(spatial and ray)

2-D and 3-D enclosures

(16), (1286128, 64664664)

Obtained higher efficiencies with the ray

decomposition technique. Obtained higher

efficiencies with increase in optical thickness

when spatial decomposition was used.

Cumber and Beeri [9] Discrete transfer radiation model (ray) 3-D test problem, methane jet fire in

cross-flow (14) (46656)

Describe a semi-empirical model for the

parallel run time, calibrated using the

timing data on IBM SP2 architecture.

Yan [10] Discrete transfer method (angular) 2-D turbulent buoyant diffusion flame,

3-D complex compartment fire

(8), (46650, 400,000þ gas-phase and

solid-phase nodes)

Applied spatial decomposition to the

computation of nonradiative turbulent

reacting flow and solid-fuel pyrolysis.

Angular decomposition applied to radiation

computation. Obtained good parallel

performance.

Marakis et al. [11] Monte Carlo 3-D idealized furnance (9), (22622642) Obtained extremely high efficiencies for the

cases examined.2
3
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The variables of interest in most radiative transfer analysis are the distributions

of radiative heat flux vectors [q(r)] and the radiative source terms [7,�q(r)]. The
radiative source term describes the conservation of radiative energy within a control

volume and goes into the total energy equation, thereby coupling radiation with the

other physical processes that occur in a multiphysics application. Both of these are

direction-integrated quantities and are readily determined once the distributions of

directional intensities (Im) within the domain are known. In the discrete ordinates

method, any integral over the solid angle is replaced by a quadrature of order n and

an appropriate angular weight (wm) associated with each direction m. The number of

equations to be solved depends on the order of approximation n used. The radiative

heat fluxes within the domain or at a surface and the radiative flux divergence are

determined as [13]

qðrÞ ¼

Z
4p

Iðr; ŝsÞŝs dO �
X
m

wmImðrÞ̂ssm ð3Þ

H � qðrÞ ¼ kðrÞ½4pIbðrÞ � GðrÞ� ð4Þ

G, the incident radiation, is calculated as

GðrÞ ¼

Z
4p

Iðr; ŝsÞ dO �
X
m

wmImðrÞ ð5Þ

Multiplying both sides of Eq. (1) by dV ¼ dx dy dz and integrating over the volume

elements, the intensity Im at the center of each control volume in a uniform, struc-

tured grid is related to the face-centered values of the intensities as

zmAðIm;iþ1 � Im;iÞ þ mmBðIm;jþ1 � Im;jÞ þ ZmCðIm;kþ1 � Im;kÞ ¼ �kImVþ kIbV ð6Þ

where A, B, and C represent the surface areas of the faces of the volume element that

are normal to the x, y, and z axes, respectively, and i, j, and k represent the surface

element indices along the x, y, and z axes, respectively.

We employ the upwind differencing scheme to relate the face-centered values to

the cell-centered values. For directions with positive direction cosines, this results in

Im;iþ1 ¼ Im; jþ1 ¼ Im;kþ1 ¼ Im ð7Þ

A similar analysis can be carried out for other combinations of direction cosines as

well. The upwind scheme is less accurate than higher-order schemes but guarantees

non-negative intensities. Substituting Eq. (7) in Eq. (6), we get

ðzmAþ mmBþ ZmCþ kVÞIm ¼ zmAIm;i þ mmBIm; j þ ZmCIm;k þ kIbV ð8Þ

Thus, Eq. (8) corresponds to a discretized set of linear algebraic equations of the

form

PpIm; p þ
X
s

PsIm;s ¼ Qp ð9Þ

where the subscript p corresponds to the node at which Eq. (1) is being approxi-

mated, the index s runs over all the neighboring surface nodes in Eq. (8), Ps corre-

sponds to the product of the direction cosines with the geometric properties (surface

24 G. KRISHNAMOORTHY ET AL.
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areas), and Qp contains all the terms that are known. Equation (9) can be written is

matrix form as

PIm ¼ Q ð10Þ

where P corresponds to a square coefficient matrix. If Im;i; Im; j; or Im;k corresponds

to intensity from a boundary, they must be suitably replaced by Ib according to the

boundary condition, Eq. (2). They must then be multiplied by Ps and added to Qp on

the right-hand side of Eq. (9). Equation (10) corresponds to a linear system of

equations for each direction in which the RTE is being solved. For the problems

considered in this article, the square coefficient matrix (P) is a sparse nonsymmetric

matrix with three other bands running parallel to the diagonal. The number of bands

on the upper or lower triangular part of the matrix depend on the direction in which

the RTE is being solved. A detailed derivation of the discretized form of Eq. (1) that

includes the effect of scattering can be found in Siegel and Howell [14].

ALGORITHM DESCRIPTION

In order to efficiently solve the set of linear equations that result from each

direction, we make use of the Portable Extensible Toolkit for Scientific Computation

(PETSc) [15]. PETSc provides a comprehensive suite of data structures for parallel

matrix and vector storage as well as unified interfaces to linear solvers and precondi-

tioners for achieving scalable parallel computation. The matrices are computed and

distributed among all the processors involved in the simulation. PETSc enables us to

work only with global indices, even though, internally, local indices are used for

accessing the distributed data structures. Once the mapping between the global and local

indices is done, global matrices associated with every direction can readily be con-

structed. This eliminates the need to redo the mapping of indices, as encountered with

solver strategies where the order of visiting the control volumes is appropriately selected

according to the ordinate direction under consideration. PETSc provides various sparse

matrix storage formats, all of which have a uniform interface to the matrix operations.

PETSc thus offers the benefits of being a general-purpose solver, with many of its

solvers appropriate for problems that are discretized using unstructured grids as well.

A preconditioned, iterative method results in the splitting of the matrix P in

Eq. (10) of the form

P ¼ M�N ð11Þ

where M is the preconditioning matrix (usually containing the diagonal or a trian-

gular part of P) and N contains the negative of the remaining elements of P. The

matrix equations to be solved then reduce to the form

MIm;tþ1 ¼ ðM� PÞIm;t þQ ð12Þ

where t is the iteration number. It is best that the preconditioner M be convenient,

sparse, invertible, and as close an approximation to P as possible.

Convergence is determined by the condition number or the ratio of the largest

to smallest eigenvalues of the matrix given by [16]

R ¼ M�1ðM� PÞ ð13Þ

PARALLEL COMPUTATIONS OF RADIATIVE HEAT TRANSFER 25
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The preconditioner approximates the solution on each subdomain with little or no

communication between the partitions of the other domains. The outer solver then

performs iterations and tries to resolve for the residual error over the global mesh

and not just for the individual subdomains as might be encountered during the

parallelization of direct methods. The criterion for convergence is the I2 norm of the

preconditioned residual [15]. The preconditioned residual is defined as

rm � M�1Q�M�1PIm ð14Þ

Convergence is detected at iteration t if

krtk2< maxðrtol � kr0k2; atolÞ ð15Þ

where rtol gives the relative decrease in the residual norm, and the absolute size

of the residual norm is given by atol. The values of rtol for all the cases run in

this article was set at 1076. A schematic of the sequential radiation algorithm

is shown in Figure 1. As can be seen, the algorithm is designed in such a way that it

can easily be extended to perform nongray analysis when absorption coefficients as a

function of wavelength become available.

DESCRIPTION OF CASES

The first objective of this work was to carry out verification of the algorithm by

comparing against benchmarks. The nonhomogeneous medium benchmark (case 1)

that was studied for verification was first introduced by Hsu and Farmer [17]. The

problem consists of an isothermal unit cube with cold, black walls. The interior of

the cube consists of a gray nonscattering, absorbing=emitting material with an

optical thickness (t¼ absorption coefficient times the side length) distribution given

by

tðx; y; zÞ ¼ 0:9 1�
jx j

0:5

� �

1�
jy j

0:5

� �

1�
jz j

0:5

� �

þ 0:1 ð16Þ

A uniform blackbody emissive power of unity within the domain defines the

distribution of temperature. Since the radiative property, temperature, and the

boundary conditions for this problem are now known, the RTE can be solved to

determine the distributions of the radiative fluxes and the radiative flux divergence. If

we assume that the cube is centered on the origin and oriented so that the sides of

the cube are orthogonal to the principal Cartesian axes, the benchmark values for the

radiative heat flux along the line [q (x, 0.5, 0)] and the flux divergence along the line

½5 � qðx; 0; 0Þ� for this problem have been tabulated by Burns and Christon [2, 3]. A

root-mean-square (RMS) error norm, also known as L2 error norm, was evaluated

as defined by Burns and Christon [2, 3] in order to express the overall solution

accuracy of the numerical method in a compact form. First, the relative error at each

node is calculated as

ej;p ¼ 100
ðjSn � jb:mÞp

kjb:mkmax

ð17Þ

26 G. KRISHNAMOORTHY ET AL.
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where e is the relative error, j refers to the radiative flux or flux divergence calculated

at each nodal location (p), and Sn and b.m refer to discrete-ordinates solution values

and benchmark values, respectively. kjb:mkmax refers to the maximum benchmark

value along the line.

Figure 1. Logic flow diagram of the radiation algorithm.
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The RMS error norm can then be calculated as

kekRMS ¼

P

nn

i¼1 ej;i
2

nn

� �1=2

ð18Þ

where nn is the number of computational nodes along each dimension.

Burns and Christon [2, 3] reported the overall solution accuracies from their

algorithm and code for this problem employing a quadrature set proposed by

Lathrop and Carlson (LC) [18]. They also rotated this quadrature set by 45� to

evaluate the effect of the structure of the quadrature set on the solution accuracy.

They found that rotating the quadrature set decreased the RMS error of the flux

divergence significantly compared to the unrotated set. However, they did not notice

any significant improvement in the error norms of the heat flux for the rotated over

the unrotated quardrature set. We employed the spherical surface symmetrical equal

dividing angular quadrature scheme (SSD) [19] to calculate the numerical solution

accuracies for this problem. The SSD quadrature scheme has been previously shown

to compete well with other traditional quadrature sets and provide good accuracies

in black-walled rectangular enclosures, which are the type of configurations adopted

in this study [19]. Moreover, the number of equations that need to be solved with the

SSD1a, SSD2a, and SSD3b schemes are exactly the same as those of the rotated LC4,

LC6, and LC8 quadrature sets, respectively. Consequently, the solve times for the

two schemes for the corresponding ordered pairs are also nearly the same. This

enables us to directly compare the solution accuracies of the two schemes when the

same number of equations is being solved.

Case 2 was designed to study the variation of the parallel performance with the

absorption coefficient of the medium. The problem consists of a 1-m-thick iso-

thermal layer of a hypothetical gas at a temperature of 1,000K and at a pressure of 1

atm, confined between two cold, black, parallel plates. The absorption coefficient (k)

of the medium was then varied spanning four orders of magnitude from 0.01 to

10m71. The heat loss from the gas for this particular problem can be easily com-

pared with the results obtained using a mean-beam-length approach. For this case

after employing a mean beam length (Lm) of 1.76m, the heat loss (q) to the plates is

seen to be

q ¼ 4seT4
W=m2 ð19Þ

where T is the gas temperature and the emissivity e is calculated as

e ¼ 1� e
�kLm ð20Þ

The 1-D problem of case 2 was modeled using a 3-D domain taking the geo-

metric length and breadth to be 50 times the height (1m). The four end walls were

modeled as black surfaces at 0K. This approach of employing a 3-D grid to

approximate and solve a 1-D problem is similar to the one employed by Fiveland

and Jamaluddin [20], who employed a grid whose geometric length and breadth was

24 times the height, to study radiative heat transfer between two infinitely parallel

plates with a nongray medium between them. We therefore felt that our 3-D

approximation to the 1-D problem was accurate enough that the center of the

parallel plates was not only receiving its due share of the radiation but was also free

28 G. KRISHNAMOORTHY ET AL.
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from the edge=boundary effects that result from modeling a 1-D problem on a 3-D

domain. We employed a grid resolution of 1213 and the SSD3b angular quadrature

scheme to solve this problem. The computed values of the heat fluxes at the center of

the parallel plates were than compared to the exact results obtained from Eq. (19) as

a verification step.

Computational experiments were performed to compare the relative speeds of

preconditioned iterative techniques for solving the sparse, unsymmetric matrices in

Eq. (10) that result during the solution of case 1. This effort is similar to the one by

Brussino and Sonnad [21] where direct and preconditioned iterative techniques for

the solution of nonsymmetric sparse systems of linear equations that arise from

finite-element (FE) simulation of semiconductor devices were compared. The itera-

tive techniques considered for comparison in their study were the bi-conjugate

gradient method (BCG), the conjugate gradient squared method (CGS), the gen-

eralized minimal residual method (GMRES), the generalized conjugate residual

method (GCR), and the method of orthogonal minimization (ORTHOMIN). They

tested each of these methods using similar point-preconditioning (incomplete LU

factorization) methods on a set of large sparse matrices. They also employed a direct

method that used LU factorization to solve these problems. The results from their

numerical experiments showed that preconditioned iterative methods offered sig-

nificant savings in storage and CPU time. For the matrices considered in their study,

they concluded that the CGS method performed best. However, the GMRES per-

formed significantly better than the CGS on some ill-conditioned test problems. In

this article we compare the performance of GMRES [15] and bi-conjugate gradient

stabilized (BiCGSTAB) [15] iterative methods by employing the same preconditioner

(block Jacobi) on both. In an analogous effort, we also investigate the effect of

employing two different preconditioning techniques (point Jacobi and block Jacobi)

on the GMRES iterative method. We also investigate the distribution of radiation

solve times in solving the two cases described above and from this suggest possible

ways of speeding up the algorithm.

RESULTS AND DISCUSSION

The RMS error norms of the radiative flux divergence and the heat flux term

for case 1 are shown in Figure 2. The results obtained with the SSD quadrature

scheme are shown as a function of angular and spatial resolution. The results

obtained by Burns and Christon [2, 3] using the rotated LC quadrature scheme are

also shown with open symbols. In general, we notice that the two schemes perform

equally well and there is a decrease in error norms with increased spatial and angular

resolutions. The reason for the significant increase in the numerical error of the

radiative flux divergence with spatial resolution with the SSD1a quadrature scheme is

as follows. A high-degree polynomial fit was made to the available benchmark

results of heat flux and the flux divergence to get distribution functions of the

benchmark values along the lines under consideration. Then the relative error of the

computed radiative flux and the flux divergence were computed at each grid point of

the spatial domain according to Eq. (17). Now, the maximum value of the radiative

flux divergence occurs at the center of the domain [2, 3]. The maximum errors

associated with the flux divergence also sharply peak toward the center of the
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domain [3]. With increased spatial resolution there are more grid points that fall in

regions near the center, hence the contribution to the resulting relative error norm

grows. This effect is more pronounced only at low angular resolutions because case 1

has been formulated in such a manner that the distribution of optical thickness in the

Figure 2. Spatial and angular dependence of the numerical accuracies in case 1: (a) predicted radiative flux

divergence along (x, 0, 0); (b) radiative heat flux along (x, 0.5, 0).
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medium [cf. Eq. (16)] can under certain conditions increase the ‘‘ray effects’’ [22],

which can reduce the accuracy of the discrete ordinates solution procedure, parti-

cularly at low angular resolutions.

As mentioned previously, this algorithm has been designed to perform nongray

calculations also. Nongray calculations with this gray benchmark were also carried

out for further verification of the algorithm. The spectral region of interest was

divided into intervals and equal fractions of the blackbody function were allocated to

each interval while ensuring that the sum of the fractions was unity. The error norms

from the nongray calculations (not shown in the figure) fell right on top of the gray-

calculation error norms for this problem, as they should. However, for actual

engineering calculations, a series summation such as the one proposed by Chang and

Rhee [23] can be used to determine the fractions of the blackbody functions corre-

sponding to each spectral interval.

In accordance with Burns and Christon [2, 3], we define an incremental fixed

problem size efficiency as

Zf ¼
2tgð2Þ

NptgðNpÞ
ð21Þ

where tgðNpÞ is the wall clock time taken to perform the entire calculation except the

problem specification (generating table of quadrature sets and specifying boundary

conditions) using Np processors. The problem specifications take only a small frac-

tion of the total solve time and hence has a negligible effect on the reported timing

results. The wall clock time, however, includes calculating and assembling the ele-

ments of the matrix as well as solving the matrix systems. Equation (21) enables us to

obtain incremental fixed problem size efficiencies for all the spatial resolutions

considered in this article. The run time results for case 1 for three different problem

sizes (indicated in brackets) are plotted in Figure 3a against the number of pro-

cessors. Also shown are straight lines that correspond to 100% fixed problem size

efficiencies (linear scaling). For the problem with 1213 grid points we notice near-

linear scaling performance. This is due to the robust, scalable, linear solvers provided

by PETSc. However, for problem sizes with 373 and 613 grid points, the efficiencies

start to deviate from the linear behavior at high processor number as the local on-

processor matrix size becomes too small to be solved efficiently in parallel. A similar

plot of run time results versus the number of processors is shown in Figure 3b for

case 2. Case 2 was run with specified absorption coefficient of 0.01 and 10m71,

respectively, employing a grid resolution of 1213 and the SSD3b angular quadrature

scheme. The compute time does decrease with increase in absorption coefficient, but

comparing the results with the straight lines that correspond to linear scaling reveals

that the parallel efficiencies for this model problem do not depend strongly on the

absorption coefficient. This independence of the parallel performance with the

optical thickness is in contrast to previous studies [4, 5, 8]. The use of a global solver

with a robust preconditioner such as block Jocobi does not severely affect solver

performance when the radiative properties of the medium change. This is a critical

requirement in fire simulations, where the medium properties vary significantly

across the domain. The incremental fixed size efficiencies for cases 1 and 2 have been

tabulated in Table 2. The numbers of iterations are directly proportional to the

solve times and have therefore not been reported. From Figures 3a and 3b we also
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notice that for the same spatial and angular resolution, case 2 takes less time to solve

than case 1. This aspect of the radiation solve time will be discussed later in this

section.

Another important measure of the parallel efficiency is the scaled problem size,

where the size of the local on-processor grid remains constant and therefore the size

Figure 3. Variations in the run time with the number of processors for (a) case 1 run with the SSD3b

scheme; (b) case 2 run with the SSD3b scheme and 1213 spatial resolution.
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of the distributed global grid increases with increase in processor number. Theore-

tically, in scaled problem size problems, as each processor has the same amount of

work to do, the solve time should remain constant as the number of processors

increases. Thus, the scaled problem size efficiency is defined as

Zs ¼
tgð1Þ

tgðNpÞ
ð22Þ

Figure 4 shows a plot of the solve time and the number of processors for case 1,

represented by open symbols run with scaled problem sizes of 253 and 503 and the

SSD3b angular quadrature scheme. Also shown in Figure 4 are scaled problem size

(253), radiation solve time results during a transient 10-m heptane pool fire simu-

lation with all the solve times computed at exactly the same stage of fire simulation.

First, we notice from Figure 4 that the solve time for all three sets of data points

show similar trends (increase in a similar manner). Second, for the fire simulation the

Table 2. Incremental fixed problem size efficiencies for cases 1 and 2

Case 1 Case 2

Np 373 613 1213 K¼ 0.01 K¼ 10.0

2 100 100 100 100 100

4 100 94 96 98 96

8 71 74 91 89 86

27 28 57 80 77 73

64 12 31 73 62 57

125 4 18 67 47 44

Figure 4. Variation in the run time with the number of processors for scaled problem sizes indicated within

brackets of the legend.
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solve time increases by about 20 times as the number of processors (and conse-

quently the global problem size) increases 960 times. This corresponds to very useful

speed-ups in massively parallel simulations that employ large computational grids.

However, we continue to explore ways to improve the scaled problem size effi-

ciencies. The scaled problem size efficiencies for case 1 and the fire simulation have

been tabulated in Table 3. We believe that we can extend this algorithm to handle

problems with reflecting boundaries as well as scattering media without serious

degradation in the parallel efficiencies.

The performance of the GMRES and BiCGSTAB iterative methods [15]

during the solution of case 1 employing a block Jacobi preconditioner [where the

inverse of the matrix M in Eq. (11) contains the diagonal elements of matrix P] on

both is shown in Figure 5a. A grid resolution of 613 and the SSD3b angular quad-

rature scheme was used to generate this figure. The BiCGSTAB method is faster for

this problem at low processor number, but there appears to be little difference in the

relative speeds of the two iterative methods at higher processor numbers. In a similar

vein, block Jacobi and point Jacobi preconditioning [where the matrix M in Eq. (11)

contains the diagonal elements of matrix P] to the GMRES method are compared in

Figure 5b. The spatial and angular resolutions are the same as those in Figure 5a.

Clearly, the point Jacobi preconditioning results in nearly an order-of-magnitude

increases in the compute time when compared to block Jacobi preconditioning. The

condition number of the matrix M71P [cf. Eq. (13)] is known to be smaller for block

preconditioning than for point preconditioning when the matrix P results from the

discretization of the Poisson equation [24]. Smaller condition numbers correspond to

faster convergence. We apply the same reasoning to the matrices that arise during the

solution of case 1, to explain the differences in compute times between these two

preconditioners. Figure 6a shows the amount of time spent by the linear solver in

each octant of the discrete ordinates method for case 1 solved on a 1213 domain and

the SSD3b angular quadrature scheme with 1 processor as well as 125 processors

(indicated in brackets). The direction cosines are all positive and all negative in the

first and eighth octants, respectively. Consequently, the sparse nonsymmetric

matrices that result during the solution procedure involving these direction cosines

have all the three bands that run parallel to the diagonal either completely on the

upper triangular portion (for the directions representative of the first octant) or the

lower triangular portion (for the directions that are in the eighth octant) [cf. Eqs. (8)

Table 3. Scaled problem size efficiencies for case 1 and the fire simulation

Case 1 Fire simulation

Np 253 503 253

1 100 100 100

8 31 37 51

27 19 21 22

64 12 14 15

125 10

250 8

960 5
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and (9)]. The distributions of the radiation solve times for case 1 clearly show that

the iterative method takes much less time in solving upper and lower triangular

systems than those with bands on both sides of the diagonal. Figure 6b shows similar

run-time distributions between different octants for case 2 run with specified

absorption coefficients of 0.01 and 10, solved on a 1213 domain, SSD3b angular

resolution, with 1 processor and 125 processors, respectively. In comparison to

Figure 5. Comparison of solver run times for case 1 run with a spatial resolution 613 and the SSD3b

scheme: (a) GMRES and Bi-CGSTAB linear solvers with block Jacobi preconditioning on both; (b)

GMRES linear solver with block Jacobi and point Jacobi preconditioning.
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Figure 6a, we still notice that the first and eighth octant solve times are less than

those of the other octants, but the difference is not as marked as it is in Figure 6a. It

is important to realize that case 2 is solved on a much larger domain

(50m650m61m) than case 1 (1m61m61m). And since all the geometric

Figure 6. Distribution of time taken to solve the RTE in all the directions corresponding to each octant of

the discretized sphere for problem size 1213 and the SSD3b scheme: (a) case 1; (b) case 2 with the corre-

sponding absorption coefficient indicated in the figure.
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information goes into the diagonal [cf. Eqs. (8) and (9)], the diagonal elements in

case 2 are larger and hence more ‘‘dominant’’ than they are in case 1. When the

matrix is diagonally dominant the matrix becomes easier to solve and hence there is

little difference in the solve time among the various octants. With increasing

absorption coefficient the matrix becomes even more diagonally dominant [cf. Eqs.

(8) and (9)], and consequently this explains why the solve time decreases with

increase in absorption coefficient as observed in Figure 3b, as well as the lesser

difference observed in Figure 6b for the solve time among various octants. This is

also the reason behind the difference in the solve times of case 1 and case 2 observed

in Figures 3a and 3b for the same angular and spatial resolution. Effort is currently

underway to implement a parallel algebraic multigrid preconditioner. We anticipate

the successful implementation of the preconditioner to further reduce radiation solve

times and improve parallel performance.

CONCLUSIONS

A domain decomposition paradigm was applied to the radiation component

that solves the differential form of the RTE using the discrete ordinates method.

Robust, parallel linear solver components developed by third parties were used to

solve the sparse, nonsymmetric matrices that result during the solution procedure.

The global nature of radiative transfer does cause degradations in the parallel effi-

ciencies with increase in the number of processors, as observed in previous studies

that employed spatial decomposition. However, it also provides useful speed-ups in

massively parallel combustion simulations that employ large computational grids.

For our model problem the parallel efficiencies of our algorithm did not depend

strongly on the optical thickness, which contradicts the observations of many pre-

vious studies. Numerical experiments have been performed to compare the perfor-

mances of different iterative techniques and preconditioners for solving the matrix

systems that result from these problems. The experiments also helped identify

regions of the solution procedure that consumed the most computational time.
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