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Abstract

Inspired by the works of Forman on discrete Morse theory, which is a combinatorial adaptation
to cell complexes of classical Morse theory on manifolds, we introduce a discrete analogue of
the stratified Morse theory of Goresky and MacPherson. We describe the basics of this theory
and prove fundamental theorems relating the topology of a general simplicial complex with the
critical simplices of a discrete stratified Morse function on the complex. We also provide an
algorithm that constructs a discrete stratified Morse function out of an arbitrary function defined
on a finite simplicial complex; this is different from simply constructing a discrete Morse function
on such a complex. We borrow Forman’s idea of a “user’s guide,” where we give simple examples
to convey the utility of our theory.
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1 Introduction

It is difficult to overstate the utility of classical Morse theory in the study of manifolds. A Morse
function f : M → R determines an enormous amount of information about the manifold M: a
handlebody decomposition, a realization of M as a CW-complex whose cells are determined by the
critical points of f , a chain complex for computing the integral homology of M, and much more.

With this as motivation, Forman developed discrete Morse theory on general cell complexes [13].
This is a combinatorial theory in which function values are assigned not to points in a space but
rather to entire cells. Such functions are not arbitrary; the defining conditions require that function
values generically increase with the dimensions of the cells in the complex. Given a cell complex
with set of cells K, a discrete Morse function f : K → R yields information about the cell complex
similar to what happens in the smooth case.

While the category of manifolds is rather expansive, it is not sufficient to describe all situations
of interest. Sometimes one is forced to deal with singularities, most notably in the study of algebraic
varieties. One approach to this is to expand the class of functions one allows, and this led to the
development of stratified Morse theory by Goresky and MacPherson [17]. The main objects of study
in this theory are Whitney stratified spaces, which decompose into pieces that are smooth manifolds.
Such spaces are triangulable.

The goal of this paper is to generalize stratified Morse theory to finite simplicial complexes,
much as Forman did in the classical smooth case. Given that stratified spaces admit simplicial
structures, and any simplicial complex admits interesting discrete Morse functions, this could be
the end of the story. However, we present examples in this paper illustrating that the class of
discrete stratified Morse functions defined here is much larger than that of discrete Morse functions.
Moreover, there exist discrete stratified Morse functions that are nontrivial and interesting from a
data analysis point of view. Our motivations are three-fold.

1. Generating discrete stratified Morse functions from point cloud data. Consider the
following scenario. Suppose K is a simplicial complex and that f is a function defined on the
0-skeleton of K. Such functions arise naturally in data analysis where one has a sample of
function values on a space. Algorithms exist to build discrete Morse functions on K extending
f (see, for example, [20]). Unfortunately, these are often of potentially high computational
complexity and might not behave as well as we would like. In our framework, we may take
this input and generate a discrete stratified Morse function which will not be a global discrete
Morse function in general, but which will allow us to obtain interesting information about the
underlying complex.

2. Filtration-preserving reductions of complexes in persistent homology and parallel
computation. As discrete Morse theory is useful for providing a filtration-preserving reduction
of complexes in the computation of both persistent homology [7, 24, 28] and multi-parameter
persistent homology [1], we believe that discrete stratified Morse theory could help to push
the computational boundary even further. First, given any real-valued function f : K → R,
defined on a simplicial complex, our algorithm generates a stratification of K such that the
restriction of f to each stratum is a discrete Morse function. Applying Morse pairing to
each stratum reduces K to a smaller complex of the same homotopy type. Second, if such
a reduction can be performed in a filtration-preserving way with respect to each stratum, it
would lead to a faster computation of persistent homology in the setting where the function is
not required to be Morse. Finally, since discrete Morse theory can be applied independently
to each stratum of K, we can design a parallel algorithm that computes persistent homology
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pairings by strata and uses the stratification (i.e. relations among strata) to combine the
results.

3. Applications in imaging and visualization. Discrete Morse theory can be used to
construct discrete Morse complexes in imaging (e.g. [6, 28]), as well as Morse-Smale com-
plexes [9, 10] in visualization (e.g. [18, 19]). In addition, it plays an essential role in the
visualization of scalar fields and vector fields (e.g. [26, 27]). Since discrete stratified Morse
theory leads naturally to stratification-induced domain partitioning where discrete Morse
theory becomes applicable, we envision our theory to have wide applicability for the analysis
and visualization of large complex data.

Contributions. Throughout the paper, we hope to convey via simple examples the usability
of our theory. It is important to note that our discrete stratified Morse theory is not a simple
reinterpretation of discrete Morse theory; it considers a larger class of functions defined on any finite
simplicial complex and has potentially many implications for data analysis. Our contributions are:

1. We describe the basics of a discrete stratified Morse theory and prove fundamental theorems
that relate the topology of a finite simplicial complex with the critical simplices of a discrete
stratified Morse function defined on the complex.

2. We provide an algorithm that constructs a discrete stratified Morse function on any finite
simplicial complex equipped with a real-valued function.

A simple example. We begin with an example from [15], where we demonstrate how a discrete
stratified Morse function can be constructed from a function that is not a discrete Morse function.
As illustrated in Figure 1, the function on the left is a discrete Morse function where the green
arrows can be viewed as its discrete gradient vector field; function f in the middle is not a discrete
Morse function, as the vertex f−1(5) and the edge f−1(0) both violate the defining conditions of a
discrete Morse function. However, we can equip f with a stratification s by treating such violators
as their own independent strata, therefore converting it into a discrete stratified Morse function.
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5
2 4

1 3

0

5
2 4

1 3

0

f (f, s)

Figure 1: The function on the left is a discrete Morse function. The function f in the middle is not
a discrete Morse function; however, it can be converted into a discrete stratified Morse function
when it is equipped with an appropriate stratification s.

2 Preliminaries on discrete Morse theory

We review the most relevant definitions and results on discrete Morse theory and refer the reader to
Appendix A for a review of classical Morse theory. Discrete Morse theory is a combinatorial version
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of Morse theory [13, 15]. It can be defined for any CW complex but in this paper we will restrict
our attention to finite simplicial complexes.

Discrete Morse functions. Let K be any finite simplicial complex, where K need not be a
triangulated manifold nor have any other special property [14]. When we write K we mean the set
of simplices of K; by |K| we mean the underlying topological space. Let α(p) ∈ K denote a simplex
of dimension p. Let α < β denote that simplex α is a face of simplex β. If f : K → R is a function
define U(α) = {β(p+1) > α | f(β) ≤ f(α)} and L(α) = {γ(p−1) < α | f(γ) ≥ f(α)}. In other words,
U(α) contains the immediate cofaces of α with lower (or equal) function values, while L(α) contains
the immediate faces of α with higher (or equal) function values. Let |U(α)| and |L(α)| be their sizes.

Definition 2.1. A function f : K → R is a discrete Morse function if for every α(p) ∈ K, (i)
|U(α)| ≤ 1 and (ii) |L(α)| ≤ 1.

Forman showed that conditions (i) and (ii) are exclusive – if one of the sets U(α) or L(α) is
nonempty then the other one must be empty ([13], Lemma 2.5). Therefore each simplex α ∈ K can
be paired with at most one exception simplex: either a face γ with larger function value, or a coface
β with smaller function value. Formally, this means that if K is a simplicial complex with a discrete
Morse function f , then for any simplex α, either (i) |U(α)| = 0 or (ii) |L(α)| = 0 ([15], Lemma 2.4).

Definition 2.2. A simplex α(p) is critical if (i) |U(α)| = 0 and (ii) |L(α)| = 0. A critical value of
f is its value at a critical simplex.

Definition 2.3. A simplex α(p) is noncritical if either of the following conditions holds: (i)
|U(α)| = 1; (ii) |L(α)| = 1; as noted above these conditions can not both be true ([13], Lemma 2.5).

Given c ∈ R, we have the level subcomplex Kc = ∪f(α)≤c ∪β≤α β. That is, Kc contains all
simplices α of K such that f(α) ≤ c along with all of their faces.

Results. We have the following two combinatorial versions of the main results of classical Morse
theory (see Appendix A).

Theorem 2.1 (DMT Part A, [14]). Suppose the interval (a, b] contains no critical value of f . Then
Kb is homotopy equivalent to Ka. In fact, Kb simplicially collapses onto Ka.

A key component in the proof of Theorem 2.1 is the following fact [13]: for a simplicial complex
equipped with an arbitrary discrete Morse function, when passing from one level subcomplex to the
next, the noncritical simplices are added in pairs, each of which consists of a simplex and a free face.

The next theorem explains how the topology of the sublevel complexes changes as one passes a
critical value of a discrete Morse function. In what follows, ė(p) denotes the boundary of a p-simplex
e(p). Adjunction spaces, such as the space appearing in this result, are defined in Section 3.1 below.

Theorem 2.2 (DMT Part B, [14]). Suppose σ(p) is a critical simplex with f(σ) ∈ (a, b], and there
are no other critical simplices with values in (a, b]. Then Kb is homotopy equivalent to attaching a
p-cell e(p) along its entire boundary in Ka; that is, Kb = Ka ∪ė(p) e(p).

The associated gradient vector field. Given a discrete Morse function f : K → R we may
associate a discrete gradient vector field as follows. Since any noncritical simplex α(p) has at most
one of the sets U(α) and L(α) nonempty, there is a unique face ν(p−1) < α with f(ν) ≥ f(α) or a
unique coface β(p+1) > α with f(β) ≤ f(α). Denote by V the collection of all such pairs {σ < τ}.
Then every simplex in K is in at most one pair in V and the simplices not in any pair are precisely
the critical cells of the function f . We call V the gradient vector field associated to f . We visualize
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V by drawing an arrow from α to β for every pair {α < β} ∈ V . Theorems 2.1 and 2.2 may then be
visualized in terms of V by collapsing the pairs in V using the arrows. Thus a discrete gradient (or
equivalently a discrete Morse function) provides a collapsing order for the complex K, simplifying it
to a complex L with potentially fewer cells but having the same homotopy type.

The collection V has the following property. By a V -path, we mean a sequence

α
(p)
0 < β

(p+1)
0 > α

(p)
1 < β

(p+1)
1 > · · · < β(p+1)

r > α
(p)
r+1

where each {αi < βi} is a pair in V . Such a path is nontrivial if r > 0 and closed if αr+1 = α0.
Forman proved the following result.

Theorem 2.3 ([13]). If V is a gradient vector field associated to a discrete Morse function f on
K, then V has no nontrivial closed V -paths.

In fact, if one defines a discrete vector field W to be a collection of pairs of simplices of K such
that each simplex is in at most one pair in W , then one can show that if W has no nontrivial closed
W -paths there is a discrete Morse function f on K whose associated gradient is precisely W .

3 A discrete stratified Morse theory

Our goal is to describe a combinatorial version of stratified Morse theory. To do so, we need to: (a)
define a discrete stratified Morse function; and (b) prove the combinatorial versions of the relevant
fundamental results. Our results are very general as they apply to any finite simplicial complex K
equipped with a real-valued function f : K → R. Our work is motivated by relevant concepts from
(classical) stratified Morse theory [17], whose details are found in Appendix B.

3.1 Background

Open simplices. To state our main results, we need to consider open simplices (as opposed to
the closed simplices of Section 2). Let {a0, a1, · · · , ak} be a geometrically independent set in RN , a
closed k-simplex [σ] is the set of all points x of RN such that x =

∑k
i=0 tiai, where

∑k
i=0 ti = 1 and

ti ≥ 0 for all i [25]. An open simplex (σ) is the interior of the closed simplex [σ].
A simplicial complex K is a finite set of open simplices such that: (a) If (σ) ∈ K then all open

faces of [σ] are in K; (b) If (σ1), (σ2) ∈ K and (σ1) ∩ (σ2) 6= ∅, then (σ1) = (σ2). For the remainder
of this paper, we always work with a finite open simplicial complex K.

Unless otherwise specified, we work with open simplices σ and define the boundary σ̇ to be the
boundary of its closure. We will often need to talk about a “half-open” or “half-closed” simplex,
consisting of the open simplex σ along with some of the open faces in its boundary σ̇. We denote
such objects ambiguously as [σ) or (σ], specifying particular pieces of the boundary as necessary.
Remarks. We include a few facts concerning open simplices [29]:

• A vertex is a 0-dimensional closed face; it is also an open face.

• An open simplex (σ) is an open set in the closed simplex [σ]; its closure is [σ].

• The closed simplex [σ] is the union of its open faces.

• Distinct open faces of a simplex are disjoint.

• The open simplex (σ) is the interior of the closed simplex [σ]; that is, it is the close simplex
minus its proper open faces.

• If [σ] is a closed simplex, the collection of its open faces is a simplicial complex.
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Stratified simplicial complexes. A simplicial complex K equipped with a stratification is
referred to as a stratified simplicial complex. 1 A stratification of a simplicial complex K is a finite
filtration

∅ = K0 ⊂ K1 ⊂ · · · ⊂ Km = K,

such that for each i, Ki − Ki−1 is a locally closed subset of K. 2 We say a subset L ⊂ K is
locally closed if it is the intersection of an open and a closed set in K. We will refer to a connected
component of the space Ki − Ki−1 as a stratum; and the collection of all strata is denoted by
S = {Sj}. We may consider a stratification as an assignment from K to the set S, denoted
s : K → S.

In our setting, each Sj is the union of finitely many open simplices (that may not form a
subcomplex of K); and each open simplex σ in K is assigned to a particular stratum s(σ) via the
mapping s.

Adjunction spaces. Let X and Y be topological spaces with A ⊆ X. Let f : A → Y be a
continuous map called the attaching map. The adjunction space X ∪f Y is obtained by taking the
disjoint union of X and Y by identifying x with f(x) for all x in A. That is, Y is glued onto X via
a quotient map, X ∪f Y = (X q Y )/{f(A) ∼ A}. We sometimes abuse the notion as X ∪A Y , when
f is clear from the context (e.g. an inclusion).

Gluing theorem for homotopy equivalences. In homotopy theory, a continuous mapping
i : A→ X is a cofibration if there is a retraction from X × I to (A× I) ∪ (X × {0}). In particular,
this holds if X is a cell complex and A is a subcomplex of X; it follows that the inclusion i : A→ X
a closed cofibration.

Theorem 3.1 (Gluing theorem for adjunction spaces ([5], Theorem 7.5.7)). Suppose we have the
following commutative diagram of topological spaces and continuous maps:

Y A X

Y ′ A′ X ′

f

ϕY

i

ϕA ϕX

f ′ i′

where ϕA, ϕX and ϕY are homotopy equivalences and inclusions i and i′ are closed cofibrations,
then the map φ : X ∪f Y → X ′ ∪f Y ′ induced by φA, φX ad φY is a homotopy equivalence.

In our setting, since we are not in general dealing with closed subcomplexes of simplicial
complexes, this theorem does not apply directly. However, the condition that the maps i, i′ be
closed cofibrations is not necessary (see [30], 5.3.2, 5.3.3), and in our setting it will be the case that
our various pairs (X,A) will satisfy the property that X × {0} ∪A× [0, 1] is a retract of X × [0, 1].

Stratum-preserving homotopies. If X and Y are two filtered spaces, we call a map f : X → Y
stratum-preserving if the image of each component of a stratum of X lies in a stratum of Y [16]. A
map f : X → Y is a stratum-preserving homotopy equivalence if there exists a stratum-preserving
map g : Y → X such that g ◦ f and f ◦ g are homotopic to the identity [16].

1Our notion of a stratified simplicial complex can be considered as a relaxed version of the notion in [3].
2Technically we should speak of the geometric realization |Ki −Ki−1| being a locally closed subspace of |K|; we

often confuse these notations as it should be clear from context.
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3.2 A primer

Discrete stratified Morse function. Let K be a simplicial complex equipped with a stratification
s and a discrete stratified Morse function f : K → R. We define

Us(α) = {β(p+1) > α | s(β) = s(α) and f(β) ≤ f(α)},
Ls(α) = {γ(p−1) < α | s(γ) = s(α) and f(γ) ≥ f(α)}.

Definition 3.1. Given a simplicial complex K equipped with a stratification s : K → S, a function
f : K → R (equipped with s) is a discrete stratified Morse function if for every α(p) ∈ K, (i)
|Us(α)| ≤ 1 and (ii) |Ls(α)| ≤ 1.

In other words, a discrete stratified Morse function is a pair (f, s) where f : K → R is a discrete
Morse function when restricted to each stratum Sj ∈ S. We omit the symbol s whenever it is clear
from the context.

Definition 3.2. A simplex α(p) is critical if (i) |Us(α)| = 0 and (ii) |Ls(α)| = 0. A critical value
of f is its value at a critical simplex.

Definition 3.3. A simplex α(p) is noncritical if exactly one of the following two conditions holds:
(i) |Us(α)| = 1 and |Ls(α)| = 0; or (ii) |Ls(α)| = 1 and |Us(α)| = 0.

The two conditions in Definition 3.3 mean that, within the same stratum as s(α): (i) ∃β(p+1) > α
with f(β) ≤ f(α) or (ii) ∃γ(p−1) < α with f(γ) ≥ f(α); conditions (i) and (ii) cannot both be true.

Note that a classical discrete Morse function f : K → R is a discrete stratified Morse function
with the trivial stratification S = {K}. We will present several examples in Section 4 illustrating
that the class of discrete stratified Morse functions is much larger.

Violators. The following definition is central to our algorithm in constructing a discrete stratified
Morse function from any real-valued function defined on a simplicial complex.

Definition 3.4. Given a simplicial complex K equipped with a real-valued function, f : K → R. A
simplex α(p) is a violator of the conditions associated with a discrete Morse function if one of these
conditions hold: (i) |U(α)| ≥ 2; (ii) |L(α)| ≥ 2; (iii) |U(α)| = 1 and |L(α)| = 1. These are referred
to as type I, II and III violators; the sets containing such violators are not necessarily mutually
exclusive.

3.3 Main results

To describe our main results, we work with the sublevel set of an open simplicial complex K, where
Kc = ∪f(α)≤cα, for any c ∈ R. That is, Kc contains all open simplices α of K such that f(α) ≤ c.
Note that Kc is not necessarily a subcomplex of K. Suppose that K is a simplicial complex equipped
with a stratification s and a discrete stratified Morse function f : K → R. We now state our two
main results which will be proved in Section 5.

Theorem 3.2 (DSMT Part A). Suppose the interval (a, b] contains no critical value of f . Then
Kb is stratum-preserving homotopy equivalent to Ka.

Theorem 3.3 (DSMT Part B). Suppose σ(p) is a critical simplex with f(σ) ∈ (a, b], and there are
no other critical simplices with values in (a, b]. Then Kb is homotopy equivalent to attaching a p-cell
e(p) along its boundary in Ka; that is, Kb = Ka ∪ ˙e(p)|Ka

e(p).
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Remarks. Kc as defined above falls under a nonclassical notion of a “simplicial complex” as defined
in [21]: K is a “simplicial complex” if it is the union of finitely many open simplices σ1, σ2, ...σt in
some RN such that the intersection of the closure of any two simplices σi and σj is either a common
face of them or empty. Thus the closure [K] = {[σi]}ti=1 of K is a classical finite simplicial complex;
and K is obtained from [K] by omitting some open faces.

3.4 Algorithm

We give an algorithm to construct a discrete stratified Morse function from any real-valued function
on a simplicial complex.

Given a simplicial complex K equipped with a real-valued function, f : K → R, define a
collection of strata S as follows. Each violator σ(p) is an element of the collection S. Let V denote
the set of violators and denote by Sj the connected components of K \V . Then we set S = V ∪{Sj}.
Denote by s : K → S the assignment of the simplices of K to their corresponding strata.

We realize this as a stratification of K by taking K1 =
⋃
j Sj and then adjoining the elements of

V one simplex at a time by increasing function values (we may assume that f is injective). This
filtration is unimportant for our purposes; rather, we shall focus on the strata themselves. We have
the following theorem whose proof is delayed to Section 5.

Theorem 3.4. The function f equipped with the stratification s produced by the algorithm above is
a discrete stratified Morse function.

The algorithm described above is rather lazy. An alternative approach would be to remove
violators one at a time by increasing dimension, and after each removal, check to see if what remains
is a discrete Morse function globally. This requires more computation at each stage, but note that
the extra work is entirely local–one need only check simplices adjacent to the removed violator.
Example 1 below illustrates how this more aggressive approach can lead to further simplification of
the complex.

4 Discrete stratified Morse theory by example

We apply the algorithm described in 3.4 to a collection of examples to demonstrate the utility of
our theory. For each example, given an f : K → R that is not necessarily a discrete Morse function,
we equip f with a particular stratification s, thereby converting it to a discrete stratified Morse
function (f, s). These examples help to illustrate that the class of discrete stratified Morse functions
is much larger than that of discrete Morse functions. Example 1: upside-down pentagon. As

illustrated in Figure 2 (left), f : K → R defined on the boundary of an upside-down pentagon is
not a discrete Morse function, as it contains a set of violators: V = {f−1(10), f−1(1), f−1(2)}, since
|U(f−1(10))| = 2 and |L(f−1(1))| = |L(f−1(2))| = 2, respectively.

We construct a stratification s by considering elements in V and connected components in K \ V
as their own strata, as shown in Figure 2 (top middle). The resulting discrete stratified Morse
function (f, s) is a discrete Morse function when restricted to each stratum.

Recall that a simplex is critical for (f, s) if it is neither the source nor the target of a discrete
gradient vector. The critical values of (f, s) are therefore 1, 2, 3, 4, 9 and 10. The vertex f−1(3) is
noncritical for f since |U(f−1(3))| = 1 and |L(f−1(3))| = 0; however it is critical for (f, s) since
|Us(f−1(3))| = Ls(f

−1(3))| = 0.
One of the primary uses of classical discrete Morse theory is simplification. In this example, we

can collapse a portion of each stratum following the discrete gradient field (illustrated by green
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arrows, see Section 2). Removing the Morse pairs (f−1(7), f−1(5)) and (f−1(8), f−1(6)) simplifies
the original complex as much as possible without changing its homotopy type, see Figure 2 (top
right).

Note that if we follow the more aggressive algorithm described at the end of Section 3 above, we
would first remove the violator f−1(10) and check to see if what remains is a discrete Morse function.
In this case, we see that this is indeed the case: we have the additional Morse pairs (f−1(3), f−1(1))
and (f−1(4), f−1(2)). The resulting simplification yields a complex with one vertex and one edge,
see Figure 2 (bottom right).
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9 87

65
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'
(f, s)

9 87

65
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10

'
(f, s)

10

9

Figure 2: Example 1: upside-down pentagon. Left: f is not a discrete Morse function. Top middle:
(f, s) is a discrete stratified Morse function where violators are in red. Top right: the simplified
simplicial complex following the discrete gradient vector field (green arrows). Bottom middle and
bottom right: the results following a more aggressive algorithm in Section 3.

Example 2: pentagon. For our second pentagon example, f can be made into a discrete stratified
Morse function (f, s) by making f−1(0) (a type II violator) and f−1(9) (a type I violator) their own
strata (Figure 3). The critical values of (f, s) are 0, 1, 3, 7, 8 and 9. The simplicial complex can be
reduced to one with fewer cells by canceling the Morse pairs, as shown in Figure 3 (right).
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Figure 3: Example 2: pentagon. Middle: there are four strata pieces associated with the discrete
stratified Morse function (f, s).
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Example 3: split octagon. The split octagon example (Figure 4) begins with a function f defined
on a triangulation of a stratified space that consists of two 0-dimensional and three 1-dimensional
strata. The violators are f−1(0), f−1(10), f−1(24), f−1(30) and f−1(31). The result of canceling
Morse pairs yields the simpler complex shown on the right.
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f (f, s)

Figure 4: Example 3: split octagon. f is defined on the triangulation of a stratified space.

Example 4: tetrahedron. In Figure 5, the values of the function f defined on the simplices of a
tetrahedron are specified for each dimension. For each simplex α ∈ K, we list the elements of its

2 4

11 12

8
7

6 9

5

13 

f

1

3
10

14

10

14

11 12
8

7
6

(f, s)

Figure 5: Example 4: tetrahedron. Left: f is defined on the simplices of increasing dimensions.
Right: violators are highlighted in red; not all simplicies are shown for (f, s).

corresponding U(α) and L(α) in Table 1. We also classify each simplex in terms of its criticality in
the setting of classical discrete Morse theory. According to Table 1, violators with function values

1 2 3 4 5 6 7 8 9 10 11 12 13 14
U(α) ∅ ∅ {2} ∅ ∅ ∅ {15} {6} ∅ {4, 7} {6} {9} ∅ {8, 11, 12}
L(α) ∅ {3} ∅ {10} {7} {8, 11} {10} {14} {12} ∅ {14} {14} ∅ ∅
Type C R R R R II III III R I III III C I

Table 1: Example 4: tetrahedron. For simplicity, a simplex α is represented by its function value
f(α) (as f is 1-to-1). In terms of criticality for each simplex: C means critical; R means regular; I,
II and III correspond to type I, II and III violators.

of 10, 14 (type I), 6 (type II), 7, 8, 11, 12 (type III) form their individual strata in (f, s). Given such
a stratification s, every simplex is critical except for f−1(2) and f−1(3). Observing that the space
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is homeomorphic to S2 and collapsing the single Morse pair (f−1(2), f−1(3)) yields a space of the
same homotopy type.

Example 5: split solid square. As illustrated in Figure 6, the function f defined on a split solid
square is not a discrete Morse function; there are three type I violators f−1(9), f−1(10), and f−1(11).
Making these violators their own strata helps to convert f into a discrete stratified Morse function
(f, s). In this example, all simplices are considered critical for (f, s). For instance, consider the open
2-simplex f−1(4), we have L(f−1(4)) = {f−1(11)} and U(f−1(4)) = ∅; with the stratification s in
Figure 6 (right), Ls(f

−1(4)) = ∅ and so 4 is not a critical value for f but it is a critical value for
(f, s). Since every simplex is critical for (f, s), there is no simplification to be done.
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23
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67

8
910

4

1

23

5
67

8
91011 11

f (f, s)

Figure 6: Example 5: split solid square. Every simplex is critical for (f, s).

5 Proofs of main results

We now provide the proofs of our main results, Theorem 3.2, Theorem 3.3, and Theorem 3.4. To
better illustrate our ideas, we construct “filtrations” by sublevel sets based upon the upside-down
pentagon example (Figure 7) and the split solid square example (Figure 8).
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Figure 7: Example 1: upside-down pentagon. We show Kc as c increases from 1 to 10.
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Figure 8: Example 4: split solid square. We show Kc as c increases from 1 to 11.

5.1 Proof of Theorem 3.2

Proof. For simplicity, we suppose K is connected and f is 1-to-1; otherwise, based on the principle
of simulation of simplicity [11], we may perturb f slightly without changing which cells are critical
in Ka or Kb so that f : K → R is 1-to-1. By partitioning (a, b] into smaller intervals if necessary,
we may assume there is a single noncritical cell σ with f(σ) ∈ (a, b]. Since σ is noncritical, either
(a) |Ls(σ)| = 1 and |Us(σ)| = 0 or (b) |Us(σ)| = 1 and |Ls(σ)| = 0.

Since case (a) requires that p ≥ 1, we assume for now that is the case. There exists a single
ν(p−1) < σ with f(ν) > f(σ); such a ν /∈ Kb. Meanwhile, any other (p− 1)-face ν̃(p−1) < σ satisfies
f(ν̃) < f(σ), implying ν̃ ∈ Ka. The set {ν̃} of such ν̃ corresponds to the portion of the boundary
of σ that lies in Ka, that is, Kb = Ka ∪{ν̃} [σ), where ν̃ are open faces of σ. Note that we use the
half-closed simplex [σ) to emphasize its boundary ν̃ in Ka. We now apply Theorem 3.1 by setting
A = A′ = Y = {ν̃}, X = X ′ = Ka, Y

′ = [σ); i, i′, ϕY and f ′ the corresponding inclusions, and all
other maps the identity. Since the diagram commutes and the pairs (Ka, {ν̃}) and (σ, {ν̃}) both
satisfy the homotopy extension property, the maps i = i′ and ϕY are cofibrations. It follows that
Ka = Ka ∪{ν̃} {ν̃} and Kb = Ka ∪{ν̃} [σ) are homotopy equivalent.

For case (b), σ has a single coface τ (p+1) > σ with f(τ) < f(σ). Thus τ ∈ Ka and any other
coface τ̃ > σ must have a larger function value; that is, τ̃ 6∈ Kb. Denote by K ′a the set Ka \ τ . Let
{ω} denote the boundary of τ in K ′a. Then Ka = K ′a ∪{ω} [τ), and Kb = K ′a ∪{ω} ([τ) ∪ σ) and
σ is a free face of τ . We apply Theorem 3.1 by setting A = A′ = {ω}, X = X ′ = K ′a, Y = [τ),
Y ′ = [τ) ∪ σ. The maps i, i′, ϕY and f ′ are inclusions and also cofibrations, while all other maps
are the identity. Attaching σ to τ is clearly a homotopy equivalence and so we see that Ka and Kb

are homotopy equivalent in this case as well.
Finally, it is clear that the above homotopy equivalence is stratum-preserving; in particular, the

retracts associated with the inclusion/cofibration ϕY : {ν̃} → [σ) in case (a), and ϕY : [τ)→ [τ)∪ σ
in case (b) are both completely contained within their own strata. Therefore, Ka and Kb are
stratum-preserving homotopy equivalent.
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Figure 9: Using upside-down pentagon to illustrate the proof of Theorem 3.2.

Examples of attaching regular simplices. Let’s examine how this works in our upside-down
pentagon example (Figure 7). Applying Theorem 3.2 going from K4 to K5, we attach the open
simplex f−1(5) to its boundary in K4, which consists of the single vertex f−1(4). The simplex
f−1(5) is a regular simplex and so K4 ' K5. This is precisely case (a) in the proof of Theorem 3.2,
see also Figure 9 (left). Similarly, K6 ' K7, as f−1(6) is a regular simplex in its stratum, and this
corresponds to case (b) in the proof of Theorem 3.2, , see Figure 9 (right).

5.2 Proof of Theorem 3.3

Proof. Again, we may assume that f is 1-to-1. We may further assume that σ is the only simplex
with a value between (a, b] and prove that Kb is homotopy equivalent to Ka ∪σ̇|Ka

σ. Based on the
definition of Kc, since f(σ) > a, we know that σ ∩Ka = ∅. We now consider several cases. Let σ
and (σ) denote open simplices and [σ] denote the closure.

Case (a), suppose σ is not on the boundary of a stratum. Since σ is critical in its own stratum
s(σ) , then for every ν(p−1) < σ in the same stratum as σ (i.e. s(ν) = s(σ)), we have f(ν) < f(σ),
so that f(ν) < a, which implies ν ∈ Ka. In addition any such ν is not on the boundary of a stratum
(otherwise σ would be part of the boundary). This means that all (p− 1)-dimensional open faces
of σ lying in s(σ) are in Ka; this is precisely the boundary of σ in Ka, denoted σ̇|Ka . Therefore
Kb = Ka ∪σ̇|Ka

σ.
Case (b), suppose σ is on the boundary of a stratum. There are two subcases: (i) σ is a violator

in the sense of Definition 3.4 and therefore forms its own stratum; or (ii) σ is not a violator.
Case (b)(i), suppose σ is a type I violator; that is, globally |U(σ)| ≥ 2. Then for any τ (p+1) > σ

in U(σ) we have f(τ) ≤ f(σ). If follows that f(τ) < a, implying τ ∈ Ka. Denote the set of such
τ as {τ}. Meanwhile, if |L(σ)| = 0, then for all ν(p−1) < σ we have f(ν) < f(σ); that is, all the
(p− 1)-dimensional faces of σ are in Ka. Denote the set of such ν as {ν}. The set {ν} is precisely
σ̇|Ka . Therefore, Kb = Ka ∪σ̇|Ka

σ, where we are attaching σ along its whole boundary (which lies
in Ka) and realizing it as a portion of τ̇ for each τ ∈ {τ}. On the other hand, if |L(σ)| 6= 0, let
µ(p−1) < σ denote any face of σ not in L(σ). Again denote the set of such µ as {µ}. The remaining
(p− 1) faces ν < σ all lie in Ka; denote these by {ν}. Note that {ν} = σ̇|Ka . Then σ̇ = {ν} ∪ {µ}
and Kb = Ka ∪σ̇|Ka

σ.

Now suppose σ is a type II violator, thus globally |L(σ)| ≥ 2. The simplices ν(p−1) < σ not
in L(σ) satisfy f(ν) < f(σ), thus such ν ∈ Ka form the (possibly empty) set {ν}. The simplices
τ (p+1) > σ in U(σ) satisfy f(τ) < f(σ) thus such τ ∈ Ka form the (possibly empty) set {τ}. The set
{ν} is precisely σ̇|Ka and we again have Kb = Ka ∪σ̇|Ka

σ. Finally, suppose σ is a type III violator,
the proof in this case is similar (and therefore omitted).

Case (b)(ii): σ is not a violator. Since σ is critical for a discrete stratified Morse function, it is
either critical globally (i.e. |U(σ)| = |L(σ)| = 0) or locally (i.e. |Us(σ)| = |Ls(σ)| = 0). Suppose σ is
critical locally but not globally, meaning that either |U(σ)| = 1, |L(σ)| = 0, or |U(σ)| = 0, |L(σ)| = 1.
If |U(σ)| = 1 and |L(σ)| = 0 globally, then |Us(σ)| becomes 0. If τ (p+1) > σ is the unique element in
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U(σ), then f(τ) < f(σ) and τ is in Ka. All cells ν(p−1) < σ satisfy f(ν) < f(σ) and therefore are
in Ka. The set {ν} again is precisely σ̇|Ka and we have Kb = Ka ∪σ̇|Ka

σ, where we are attaching
σ as a free face of τ . The cases when |U(σ)| = 0, |L(σ)| = 1, or |U(σ)| = 0, |L(σ)| = 0 are proved
similarly.

In summary, when passing through a single, unique critical cell σ(p) with a function value in
(a, b], Kb = Ka ∪σ̇|Ka

σ. Since σ is homeomorphic to e(p), Kb = Ka ∪ ˙e(p)|Ka
e(p).

Examples of attaching critical simplices. Returning to the upside-down pentagon (Figure 7),
we have a few critical cells, namely those with critical values 1, 2, 3, 4, 9, and 10. Attaching f−1(2)
to K1, for example, changes the homotopy type, yielding a space with two connected components.
Note that the boundary of this cell, restricted to K1 is empty. When we attach f−1(9), we do so
along its entire boundary (which lies in K8), joining the two components together. Finally, attaching
the vertex f−1(10) to K9 changes the homotopy type yet again, yielding a circle.

In Example 4 (Figure 8, the split solid square), all the cells are critical in their strata. Attaching
some of them does not change the homotopy type of the sublevel sets (e.g., f−1(3), f−1(8)) while
the addition of others can change the homotopy type (e.g. f−1(1), f−1(5), f−1(9), f−1(10), and
f−1(11)). Observe that the difference between these two types is that the latter consists of violators
and global critical simplices, while the former consists of non-violators.

5.3 Proof of Theorem 3.4

Proof. We assume K is connected. If f itself is a discrete Morse function, then there are no violators
in K. The algorithm produces the trivial stratification S = {K} and since f is a discrete Morse
function on the entire complex, the pair (f, s) trivially satisfies Definition 3.1.

If f is not a discrete Morse function, let S = V ∪ {Sj} denote the stratification produced by the
algorithm. Since each violator α forms its own stratum s(α), the restriction of f to s(α) is trivially
a discrete Morse function in which α is a critical simplex. It remains to show that the restriction of
f to each Sj is a discrete Morse function.

If σ is a simplex in Sj , that is, s(σ) = Sj , consider the sets Us(σ) and Ls(σ). Since σ is not
a violator, the global sets U(σ) and L(σ) already satisfy the conditions required of an ordinary
discrete Morse function. Restricting attention to the stratum s(σ) can only reduce their size; that is,
|Us(σ)| ≤ |U(σ)| and |Ls(σ)| ≤ |L(σ)|. It follows that the restriction of f to Sj is a discrete Morse
function.

Remark. When we restrict the function f : K → R to one of the strata Sj , a non-violator σ that is
regular globally (that is, σ forms a gradient pair with a unique simplex τ) may become a critical
simplex for the restriction of f to Sj , e.g. f−1(3) in Figure 2 (top middle). The edge f−1(3) in
Example 4 also has such a property.

6 Discussion

In this paper we have identified a reasonable definition of a discrete stratified Morse function and
demonstrated some of its fundamental properties. Many questions remain to be answered; we plan
to address these in future work.

Relation to classical stratified Morse theory. An obvious question to ask is how our theory
relates to the smooth case. Suppose X is a Whitney stratified space and F : X → R is a stratified
Morse function. One might ask the following: is there a triangulation K of X and a discrete
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stratified Morse function (f, s) on K that mirrors the behavior of F? That is, can we define a
discrete stratified Morse function so that its critical simplices contain the critical points of the
function F? This question has a positive answer in the setting of discrete Morse theory [4], so we
expect the same to be true here as well.

Morse inequalities. Forman proved the discrete version of the Morse inequalities in [13]. Does
our theory produce similar inequalities?

Discrete dynamics. Forman developed a more general theory of discrete vector fields [12] in which
closed V -paths are allowed (analogous to recurrent dynamics). This yields a decomposition of a cell
complex into pieces and an associated Lyapunov function (constant on the recurrent sets). This is
not the same as a stratification, but it would be interesting to uncover any connections between our
theory and this general theory. In particular, one might ask if there is some way to glue together
the discrete Morse functions on each piece of a stratification into a global discrete vector field.
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[11] Herbert Edelsbrunner and Ernst Peter Mücke. Simulation of simplicity: A technique to cope
with degenerate cases in geometric algorithms. ACM Transactions on Graphics, 9(1):66–104,
1990.

[12] Robin Forman. Combinatorial vector fields and dynamical systems. Mathematische Zeitschrift,
228(4):629–681, 1998.

[13] Robin Forman. Morse theory for cell complexes. Advances in Mathematics, 134:90–145, 1998.

[14] Robin Forman. Combinatorial differential topology and geometry. New Perspectives in
Geometric Combinatorics, 38:177–206, 1999.

[15] Robin Forman. A user’s guide to discrete Morse theory. Séminaire Lotharingien de Combinatoire,
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A Classical Morse Theory

Let X be a compact, smooth d-manifold and f a real valued function on X, f : X → R. For a given
value a ∈ R, let Xa = f−1(−∞, a] = {x ∈ X | f(x) ≤ a} be the sublevel set. The classical Morse
theory studies the topological change of Xa as a varies.

Morse function. Let f be a smooth function on X, f : X → R. A point x ∈ X is critical if the
derivative at x equals zero. The value of f at a critical point is a critical value. All other points are
regular points and all other values are regular values of f . A critical point x is non-degenerate if the
Hessian, that is, the matrix of second partial derivatives at the point, is invertible. The Morse index
of the non-degenerate critical point x is the number of negative eigenvalues in the Hessian matrix,
denoted as λ(x). f is a Morse function if all critical points are non-degenerate and its values at the
critical points are distinct.

Results. We now review two fundamental results of classical Morse theory (CMT).

Theorem A.1 (CMT Part A). ([17], page 4; [8], page 129) Let f : X → R be a differentiable
function on a compact smooth manifold X. Let a < b be real values such that f−1[a, b] is compact
and contains no critical points of f . Then Xa is diffeomorphic to Xb.

On the other hand, let f be a Morse function on X. We consider two regular values a < b such
that f−1[a, b] is compact but contains one critical point u of f , with index λ. Then Xb has the
homotopy type of Xa with a λ-cell (or λ-handle, the smooth analogue of a λ-cell) attached along its
boundary ([17], page 5; [8], page 129). We define Morse data for f at a critical point u in X to be a
pair of topological spaces (A,B) where B ⊂ A with the property that as a real value c increases
from a to b (by crossing the critical value f(u)), the change in Xc can be described by gluing in A
along B [17] (page 4). Morse data measures the topological change in Xc as c crosses critical value
f(u). We have the second fundamental result of classical Morse theory,

Theorem A.2 (CMT Part B). ([17], page 5; [22], page 77) Let f be a Morse function on X.
Consider two regular values a < b such that f−1[a, b] is compact but contains one critical point u of
f , with index λ. Then Xb is homotopy equivalent (diffeomorphic) to the space Xa ∪B A, that is, by
attaching A along B, where the Morse data (A,B) = (Dλ ×Dd−λ, (∂Dλ)×Dd−λ), where d is the
dimension of X and λ is the Morse index of u, Dk denotes the closed k-dimensional disk and ∂Dk

is its boundary.

B Stratified Morse Theory

Morse theory can be generalized to certain singular spaces, in particular to Whitney stratified
spaces [17, 23].

Stratified Morse function. Let X be a compact d-dimensional Whitney stratified space embedded
in some smooth manifold M. A function on X is smooth if it is the restriction to X of a smooth
function on M. Let f̄ : M→ R be a smooth function. The restriction f of f̄ to X is critical at a
point x ∈ X iff it is critical when restricted to the particular manifold piece which contains x [2]. A
critical value of f is its value at a critical point. f is a stratified Morse function iff ([2], [17] page
13):

1. All critical values of f are distinct.

2. At each critical point u of f , the restriction of f to the stratum S containing u is non-degenerate.
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3. The differential of f at a critical point u ∈ S does not annihilate (destroy) any limit of tangent
spaces to any stratum S′ other than the stratum S containing u.

Condition 1 and 2 imply that f is a Morse function when restricted to each stratum in the classical
sense. Condition 2 is a non-degeneracy requirement in the tangential directions to S. Condition 3 is
a non-degeneracy requirement in the directions normal to S [17] (page 13).

Results. Now we state the two fundamental results of stratified Morse theory.

Theorem B.1 (SMT Part A). ([17], page 6) Let X be a Whitney stratified space and f : X → R a
stratified Morse function. Suppose the interval [a, b] contains no critical values of f . Then Xa is
diffeomorphic to Xb.

Theorem B.2 (SMT Part B). ([17], page 8 and page 64) Let f be a stratified Morse function on a
compact Whitney stratified space X. Consider two regular values a < b such that f−1[a, b] is compact
but contains one critical point u of f . Then Xb is diffeomorphic to the space Xa ∪B A, that is, by
attaching A along B, where the Morse data (A,B) is the product of the normal Morse data at u
and the tangential Morse data at u.

To define tangential and normal Morse data, we have the following setup. Let X be a Whitney
stratified subset of some smooth manifold M. Let f : X → R be a stratified Morse function with a
critical point u. Let S denote the stratum of X which contains the critical point u. Let N be a
normal slice at u, that is, N = X ∩N ′∩BM

δ (u), where N ′ is a sub-manifold of M which is traverse to
each stratum of X, intersects the stratum S in a single point u, and satisfies dimS+dimN ′ = dimM.
BM
δ (u) is a closed ball of radius δ in M based on a Riemannian metric on M. By Whitney’s condition,

if δ is sufficiently small then ∂BM
δ (u) will be transverse to each stratum of X, and to each stratum

in X ∩N ′, fix such a δ > 0 [17] (page 40).
The tangential Morse data for f at u is homotopy equivalent to the pair

(P,Q) = (Dλ ×Ds−λ, (∂Dλ)×Ds−λ),

where λ is the (classical) Morse index of f restricted to S, f |S, at u, and s is the dimensional of
stratum S [17] (page 65).

The normal Morse data is the pair

(J,K) = (N ∩ f−1[v − ε, v + ε], N ∩ f−1(v − ε)),

where f(u) = v and ε > 0 is chosen such that f |N has no critical values other than v in the interval
[v − ε, v + ε] [17] (page 65).

The Morse data is homotopy equivalent to the topological product of tangential and normal
Morse Data, where the notion of product of pairs is defined as (A,B) = (P,Q) × (J,K) =
(P × J, P ×K ∪Q× J).
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