Eurographics Conference on Visualization (EuroVis) 2014
H. Carr, P. Rheingans, and H. Schumann
(Guest Editors)

Volume 33 (2014), Number 3

RBF Volume Ray Casting on Multicore and Manycore CPUs

Aaron Knoll! Ingo Wald? Paul Navratil! ~ Anne Bowen! Khairi Reda®> Michael E. Papka4 Kelly Gaither!

ITexas Advanced Computing Center, the University of Texas at Austin
2Intel Corporation
3Electronic Visualization Laboratory, University of Illinois at Chicago
4 Argonne National Laboratory

Abstract
Modern supercomputers enable increasingly large N-body simulations using unstructured point data. The struc-
tures implied by these points can be reconstructed implicitly. Direct volume rendering of radial basis function

(RBF) kernels in domain-space offers flexible classification and robust feature reconstruction, but achieving per-
formant RBF volume rendering remains a challenge for existing methods on both CPUs and accelerators. In this
paper, we present a fast CPU method for direct volume rendering of particle data with RBF kernels. We propose a
novel two-pass algorithm: first sampling the RBF field using coherent bounding hierarchy traversal, then subse-
quently integrating samples along ray segments. Our approach performs interactively for a range of data sets from
molecular dynamics and astrophysics up to 82 million particles. It does not rely on level of detail or subsampling,
and offers better reconstruction quality than structured volume rendering of the same data, exhibiting compara-
ble performance and requiring no additional preprocessing or memory footprint other than the BVH. Lastly, our
technique enables multi-field, multi-material classification of particle data, providing better insight and analysis.

Categories and Subject Descriptors (according to ACM CCS): 1.3.3 [Computer Graphics]: Picture/Image
Generation—Line and curve generation 1.3.7 [Computer Graphics]: Three-Dimensional Graphics and Realism—

Raytracing 1.3.2 [Computer Graphics]: Graphics Systems—Distributed/network graphics

1. Introduction

Direct volume rendering (DVR) is an increasingly popular
modality for visualizing 3D scalar fields in scientific data.
It reconstructs, classifies and shades any continuous scalar
field, enabling better insight than surface-based visualization
in many applications. Volume rendering of structured data is
now commonplace, and optimized methods have been devel-
oped for unstructured mesh and finite-element data. Gener-
ally, these methods have been implemented on GPUs, due to
their high computational throughput and built-in hardware
texture sampling features. However, volume rendering di-
rectly from unstructured point data remains a challenge.
N-body codes in particular produce large quantities of data.
For example, large molecular dynamics simulations can
generate megabytes-to-gigabytes per time step and tens-to-
hundreds of thousands of time steps; large astrophysics sim-
ulations can generate terabytes to petabytes per timestep.
At scale, post-processing and moving such data is pro-
hibitive. Resampling particle data into a structured volume
costs memory and computational time, as well as sacrific-
ing information and visual quality (e.g., Figure 1). Com-
puting isosurfaces is similarly costly, and prevents interac-
tive classification and analysis of the original scalar fields.
These factors motivate in transit and in situ visualization
on high performance computing (HPC) resources, minimal

(© 2014 The Author(s)
Computer Graphics Forum (©) 2014 The Eurographics Association and John
Wiley & Sons Ltd. Published by John Wiley & Sons Ltd.

post-processing, and efficient algorithms for direct volume
rendering of point data.

Existing methods for particle volume rendering vary.
Though efficient, splatting techniques that filter in screen-
space do not provide the same level of quality as volume ren-
dering with full domain-space reconstruction. The current
state-of-the-art GPU technique [FAW10] resamples data into
an image-space structured grid, which is sensitive to choice
of resolution and limits multi-field classification. Other GPU
approaches [RKN*13,JFSP10, OKK10] suggest RBF per-
formance significantly slower than that of structured DVR.
Moreover, for in situ and in transit visualization not all HPC
resources have GPUs. We desire the flexibility to efficiently
render on a wide variety of architectures with SIMD-capable
CPUs, and new CPU-like “many integrated core” (MIC)
hardware such as the Intel® Xeon Phi' coprocessor. MICs
are increasingly used in supercomputers, such as Tianhe-2
(currently #1 on the Top500 [TOP13]) and Stampede (cur-
rently #7). Efficient visualization on these architectures re-
quires a framework that takes advantage of SIMD vector in-
structions with varying width and arithmetic capabilities.
Our contribution is a novel method for efficient RBF vol-
ume rendering on CPU and MIC hardware. Our algorithm
uses coherent bounding volume hierarchy (BVH) traversal
to efficiently evaluate the RBF field, and performs DVR inte-

Knoll et al. / RBF Volume Ray Casting on Multicore and Manycore CPUs
AT T o 375 oy

N .

‘Jv"-“."“ ‘~‘.' - b.(,:*.‘;"-‘-:

Figure 1: 5 million atom molecular dynamics glass (SiO,) fracture data, rendered on a Intel® Xeon Phi'" SEIOP in Stampede.
Top: RBF volume rendering using two transfer functions to classify silicon and oxygen atoms as separate fields (11.7 fps at
2560 x 512, k =4,dt = .5,0 = 2). Bottom: From left to right: close-up of the the top view (4.7 fps at 1024 x 1024); the same
view reconstructed with narrower RBFs (3.1 fps, k. = 1,dt = 125,06 = 2.835); trilinear interpolation of two-field structured
data (2.1 fps, dt = .125), and tricubic B-spline interpolation of structured data (0.221 fps, dt = .125). The two-field structured
data (1 voxel per Angstrom, 32-bit float) occupies 800 MB on disk and took 80 seconds to precompute on a 16-core CPU. RBF
volume rendering incurs less memory overhead and exhibits better performance and quality for rendering atomistic data.

gration along rays in a subsequent step. Crucially, this elim-
inates the need for costly per-ray neighbor search, and re-
peat queries of the same basis functions at different samples.
We implement this method in bnsView [KWN*13] in the
IVL [LHW12] SPMD language, which generates optimized
vector instructions in C++ for multicore CPU or MIC back-
ends, enabling fast rendering. Our technique does not rely
on simplification or LOD, does not use a proxy to downsam-
ple ray samples, and achieves interactivity on both MIC and
CPU platforms. We show that our system performs compet-
itively with the best-available GPU approaches, and enables
a variety of different use cases in HPC-driven visualization.

2. Related Work

Direct volume rendering, or DVR, [DCH88] is a process
of directly rendering a 3D scalar field by evaluating the
field at sample points, classifying samples into colors via a
transfer function, and integrating these classified color val-
ues to produce a final image. Smoothed particle hydrody-
namics [Mon92] is a mesh-free (Lagrangian) method for
simulating motion of fluids, employed in cosmology, as-
trophysics, materials science, and more generally applica-
tions of computational fluid dynamics. SPH volume render-
ing [JFSP10,FAW 10] refers to the process of volume render-
ing SPH data directly, using basis functions from the SPH
data for image reconstruction. The same method can in fact
be used for other particle data, for example atomistic data
from molecular dynamics. We refer to this class of tech-
niques as RBF volume rendering.

Volume rendering of point data. RBF volume rendering is
costly, and past interactive applications have generally been

pursued on GPUs. Jang et al. [JWH*04] were the first to use
a small number of RBF’s to approximate larger volume data,
reconstructed in a GPU fragment shader and rendered with
slice-based volume rendering. This approach was extended
to ellipsoidal basis functions [JBL*06] and density function-
als from quantum chemistry [JV09]. For rendering of larger
SPH data, Jang et al. [JESP10] employed a kd-tree to im-
prove bound tightness. Fraedrich et al. [FAW10] dynami-
cally resample from an octree hierarchy into perspective-
space uniform grids of predetermined size, and achieve
nearly interactive performance on an NVIDIA 280 GTX
for up to 42M particles (0.1 fps). This approach likely re-
mains state-of-the-art, and would be faster still on current
GPUs. However, it is difficult to fairly evaluate, as it uses
LOD to prune the particle octree, and filters pixels through
a (trilinearly interpolated) proxy grid volume. Orthomann et
al. [OKK10] describe a similar system traversing an octree,
using ray packets similar to the concept described in our pa-
per, but implemented differently on the GPU, and employed
as a form of proxy. Reda et al. [RKN*13] demonstrate in-
teractive performance for megascale molecular data using a
uniform grid as an acceleration structure, and volume ray
casting from RBF’s in a GPU shader.

Splatting, particle and glyph approaches. We differen-
tiate between volume rendering of point data and point-
based volume rendering (splatting). Splatting performs re-
construction in image space using different kernels entirely.
While less computationally costly, volume splatting tech-
niques [ZPvBGO1la, CRZP04] are insufficient for reproduc-
ing continuous surfaces, and techniques optimized for sur-

(© 2014 The Author(s)

Computer Graphics Forum (© 2014 The Eurographics Association and John Wiley & Sons Ltd.

Knoll et al. / RBF Volume Ray Casting on Multicore and Manycore CPUs

face reconstruction [ZPVBGO1b] are ill-suited for volume
rendering. In one of the first applications of volume render-
ing SPH data, Kéhler et al. [KAHO7] used an octree to si-
multaneously splat particle data (simplified using LOD) and
volume-render approximated data on a structured grid.
Absent image-space reconstruction, many techniques ex-
ist for fast rasterization or ray casting of large number of
points, glyphs or particle impostors. Gribble et al. [GIK*07]
employed coherent ray tracing algorithms on the CPU to
efficiently render millions of opaque sphere glyphs. Meg-
amol [GBM*12] uses a combination of GPU rasterization,
ray casting of sphere impostors, and image-space filter-
ing to efficiently render millions of atoms. Fraedrich et
al. [FSW09] demonstrated an extremely fast out-of-core
LOD particle renderer for real-time rendering of astro-
physics data. In contrast to their SPH volume rendering
work [FAW10], the particle approach is faster by 1-2 orders
of magnitude and excels at its specific application. How-
ever, to reconstruct smooth isosurfaces and classify mate-
rial boundaries, full volume rendering with postclassifica-
tion, thus RBF volume rendering, is necessary.

Offline and surface approaches. The astrophysics and
cosmology communities frequently employ offline parallel
batch tools [Pri07, DRGIO8, TSO*11] for rendering, plotting
and specialized analysis such as radiative transfer [ACPO8].
Generally, these do not take advantage of SIMD, have lim-
ited if any GPU acceleration, and are not suitable for interac-
tive rendering. Splotch [DRGIO8] assumes that particles do
not overlap and blends in potentially incorrect order, result-
ing in artifacts similar to those of rasterization-based particle
renderers. Turk et al. [TSO*11] converts data to structured
volumes and renderers in software.

A large body of existing work exists on extraction of im-
plicit surfaces from radial basis functions, as pioneered by
Wyvill et al. [WMWS86]. Relevant to our examples below,
Navratil et al. [NJBO7] use marching cubes to extract sin-
gle isosurfaces from multifield cosmological data. Stone
et al. [SHUS10] implement CUDA-accelerated isosurface
extraction from Gaussian RBF fields for fast computation
of molecular surfaces. Though efficient, these approaches
would sacrifice reconstruction quality and limit opportuni-
ties for dynamic classification.

3. Background

This section covers our method’s theoretical underpinnings.
Readers familiar with RBFs (Sections 3.1-3.3) and coherent
ray tracing (Section 3.4) may proceed directly to the presen-
tation of our algorithm in Section 4.

3.1. Radial Basis Functions

A radial basis function (RBF) is a continuous, real-valued
function ¢ whose value decays with respect to distance from
a particle. A RBF scalar field & is defined by summing the
kernels for all kernels i contributing to a point X in space:

di(x) = ||x — x| O(x) =} ¢ildi(x)) (1)

Common choices of ¢ are Gaussians or piecewise-smooth

(© 2014 The Author(s)

Computer Graphics Forum (©) 2014 The Eurographics Association and John Wiley & Sons Ltd.

polynomials with compact support. Compact support has
the advantage of having zero contribution outside of the
radius, whereas Gaussians have infinite support and decay
smoothly. It is equally possible to use RBFs that model the
physical properties of the particles, based on empirical or
semi-empirical data (e.g., radially averaged plots for DFT-
plotted molecular data [KCL*13]). In practice, truncating
Gaussians outside of a sufficiently wide radius of influence
(support) is effective, and allows the user control over de-
sired kernel width. Thus we use the Gaussian kernel

0i(x) = K ki e~ A0/ @)

where k; is the value of the kernel (e.g. density), r; is the
radius of the Gaussian (e.g. covalent radius for molecular
data), and x is a global density scale (defaulting to K = 1).
We truncate at a support radius of or; (defaulting to o =
2). Both ¢ and x can be changed by the user dynamically,
without modification of data structures.

3.2. Volume rendering integral

Volume rendering is a special case of the light transport
equation [Max95], in which (emissive) irradiance integrated
over ¢ along a ray segment [a,b], for the scalar field ®
and transfer function with color C and opacity 7, for a ray
r(t) = 0+ td where ®(r) = ®(r(t)), is given as:

b u
Ly p)(u) = / C(D(u)) e~ i 7@t g 3

If we assume C and 7 are constant on [a,b], we can ap-
proximate opacity discretely as o = 1 — exp(—TAt) where
At ~ [T(P(r))dt. This is integrated numerically via blend-
ing, as sketched in Listing 1, where Ar (abbreviated dt) is
the sampling step size in domain space.

Listing 1: DVR blending

void dvr_blend(float Phi, Ray ray, TransFunc tf) {
Color s = shade(tf.classify (Phi)
float alpha = 1 - exp(-s.a x dt)
ray.color.rgb += s.rgb * (1 - ray.color.a) =* alpha
ray.color.a += (1 - ray.color.a) alpha

}

The main challenge in RBF volume rendering is efficiently
evaluating ®. As blending is non-commutative, the order in
which samples are integrated in Equation 3 matters. This has
ramifications on the choice of volume rendering algorithm.
3.3. Reconstruction

To reconstruct the scalar field ® into discrete samples along
viewing rays, we have two options, as shown in Figure 2:

1. Direct method: for each sample, evaluate kernels for all
particles that overlap that sample;

2. Proxy method: for each particle, evaluate kernels for all
proxy samples that this particle overlaps, followed by
separate interpolation of the proxy samples.

These are also referred to as gathering and scatter-
ing, repsectively, in existing reconstruction literature (see,
e.g., [OKK10]).

Knoll et al. / RBF Volume Ray Casting on Multicore and Manycore CPUs

M ‘é\ 2
£ S
! \.‘\
" N b
§\ SR
o N

o\\q\\}? ===
» o
!
- =S

Figure 2: Options for RBF field reconstruction. (1) Direct
method: the field is evaluated directly at each sample along
the ray, which can prove expensive. (2) Proxy method: the
field is resampled into a grid, and then inexpensively recon-
structed from the proxy, at the cost of memory and/or quality.

In the direct approach the scalar field is evaluated per-
sample, which lends itself trivially to volume rendering.
Evaluating ®(x) requires determining all kernels whose sup-
port overlaps x. This problem is commonly referred to as
region-finding [Sam90], and costs O(P k N) to O(P log N)
depending on the chosen acceleration structure, for k de-
sired particles out of N total, and P pixels. While slicers
(e.g. [JWH*04, JESP10]) typically perform reconstruction
at all samples, methods employing ray casting with accel-
eration structures (e.g. [RKN*13]) can use the structure to
region-find, skip empty space, and exploit early ray termina-
tion. Though conceptually simple, the direct method requires
repeat evaluation of the same kernels (potentially far apart in
memory) inside a tight inner loop, making it costly.

In the proxy method, each particle is evaluated only once
for all samples that it overlaps. This approach is taken by
all methods precomputing a structured volume, and the dy-
namic grid method of Fraedrich et al. [FAW10]. The main
advantage is that proxy geometry can be lower resolution or
less expensive to render than the original RBF field using the
direct method. Equally important, iterating once over parti-
cles that are close together in memory, for multiple samples
in the proxy (also close together) fosters better access pat-
terns, hence performance gains. The major disadvantage of
this approach is the memory required to store the proxy (in
many cases larger than the original RBF data) and time re-
quired to compute it, as well as detail lost by the proxy itself.
3.4. Coherent ray tracing and bnsView

Coherent ray tracing [WSBWOL1] is a technique for bundling
rays together into packets that simultaneously perform
traversal, intersection, and shading routines in lockstep, in a
manner that encourages full use of vector instructions. Con-
sequently, both memory access and computational costs are
amortized over the number of rays in the packet. Coherent
ray tracing methods have enabled interactive ray tracing of
polygonal data on CPUs [BSP06], and efficient visualization
of structured and unstructured data [WFKHO7, KTW*11,
BPL*12]. Coherent BVH traversal [WBS07] is the most

popular acceleration method due to performance, simplic-
ity, availability of fast builders, and graceful degeneration to
single-ray performance for incoherent rays or large data. For
structured volume rendering, Knoll et al. [KTW*11] show
that coherent BVH traversal fosters similar performance for
small (2 MB) and large (8 GB) data of varying resolution,
given the same number of samples along the ray.

IVL SPMD Language. With SPMD languages such as
IVL [LHW12] and its open-source relative ISPC [PM12],
it is possible to write a coherent BVH ray tracers in a sin-
gle code path for multiple SIMD CPU backends, including
Intel®Xeon Phi' . IVL kernels are written in scalar form.
From these, the compiler emits C++ and intrinsics code with
data automatically laid out in structure-of-arrays (SOA) for-
mat for efficient use of SIMD instructions. As with ISPC,
the programmer defines variables as uniform or varying,
which determines whether they are scalar or vector quanti-
ties, respectively. Control flow within each thread is handled
automatically by the compiler. IVL offers several advantages
over ISPC (C++ classes and operator overloading), and both
offer certain advantages over GPU languages (support for
recursion, little penalty for large kernels or high in-kernel
memory usage). It would be straightforward to reproduce
this work in ISPC by leveraging Embree [WWB*14].
bnsView. Our application is built on top of
bnsView [KWN*13], a molecular visualization tool
written in IVL that achieves GPU levels of performance on
CPU and MIC architectures, for ray tracing and volume
rendering molecular models. Prior to this work, bnsView
employed coherent BVH traversal for ball-and-stick ren-
dering, and uniform grid traversal for structured volume
rendering of precomputed volume data. We experimented
with straightforward implementation of the direct approach
in bnsView and IVL, using the BVH for region-finding
but not ray traversal. While efficient for small data and
opaque transfer functions encouraging early termination, it
exhibited very slow performance for larger data (over 100K
atoms). In extending bnsView to RBF volume rendering, a
new approach was necessary.

4. RBF DVR with Coherent BVH Traversal

This section describes our algorithm, which applies fast
CPU ray tracing techniques to RBF volume rendering. In
particular, we use a novel technique combining coherent
BVH traversal (working on packets rather than rays) with
a buffered traveral method that amortizes cost over multiple
RBF samples along each ray.

We compute @ independently of DVR integration by main-
taining a sample buffer, and computing ¢ once for each par-
ticle for all samples in that buffer. When traversal completes,
the buffered samples are integrated per packet in the correct
order. This approach fosters more coherent memory access
by ensuring that each particle is traversed once in for the
whole packet of rays. In this way, we achieve the advantages
of both the direct and proxy methods, accessing memory in
a more coherent per-particle fashion like the proxy approach

(© 2014 The Author(s)

Computer Graphics Forum (© 2014 The Eurographics Association and John Wiley & Sons Ltd.

Knoll et al. / RBF Volume Ray Casting on Multicore and Manycore CPUs

(b)

Zdhﬁ(") (C)

/ Coagp e~ Jow ds gy

i
¥y B F ¥

J

e

Figure 3: Coherent RBF algorithm. (a) Iterate through samples along a packet, depositing into a fixed-size buffer. (b) Each
BVH leaf node (particle with support ©) adds its value to all samples it overlaps in the buffer. (c) When this buffer has finished
traversal, it is integrated front-to back using Equation 3, and we proceed to the next set of samples. In this manner, particles
can be added to the buffer in any order, allowing for traversal of each particle once per packet and improving memory access.

but maintaining only a small buffer of samples with little
overhead, yielding the exact same quality as the direct ray
casting method. This concept is illustrated in Figure 3.

While it shares some common features with the dynamic
image-space grid method of Fraedrich et al. [FAW10]
and [OKK10], our algorithm is fundamentally new in that:

e by computing samples per-packet as opposed to across the
entire image, and more specifically not subsampling, we
require less memory and can store and integrate all sam-
ples required for full ray casting with no loss in quality;

o with coherent BVH traversal, the nodes of the accelera-
tion structure (as well as particles within) are traversed
only once, improving efficiency;

e we use the same structure for both RBF volume rendering
and ray tracing of ball-and-stick geometry;

e by performing this integration in multiple passes, we are
able to further lower the memory requirements of our
buffer, and take advantage of early ray termination on a
per-packet basis.

Moreover, as discussed in Sections 5 and 6, this algorithm
can run efficiently on non-GPU platforms with larger mem-
ory, and enables analyses that would be difficult with proxy
methods (multi-field classification of different particles).

4.1. Coherent RBF volume rendering algorithm

Given a list of particles, a bounding volume hierarchy, a sam-
pling step size dt, transfer function and shading method, our
algorithm performs volume ray casting, e.g. it evaluates ®
for samples along each ray, and integrates Equation 3 using
the front-to-back algorithm shown in Listing 1.

To accomplish this efficiently, we group rays into packets,
(number of rays per packet N maps to chosen SIMD width;
see Section 5). For each packet, we then do the following:

1. Intersect the packet with the root bounds of the BVH (ex-
tended by o) to find tenter, texit;

2. Determine the total number of samples along any ray in
the packet, K = (texit - tenter) / dt;

3. Create a buffer Phi_buf with K samples for each ray

(© 2014 The Author(s)

Computer Graphics Forum (©) 2014 The Eurographics Association and John Wiley & Sons Ltd.

4. Traverse the BVH, with nodes extended by &, summing
¢ for every leaf at every sample (Equation 1) and storing
that in Phi_buf;

5. Integrate Phi_buf front-to-back along the rays, classify-
ing and shading as necessary (Equation 3).

This algorithm requires (and takes advantage of) methods to
compute phi () and dvr_integrate () for entire packets
as opposed to single rays. On GPUs this is handled inter-
nally; on CPU and MIC it entails SIMD vector instructions
or a SPMD language. IVL/ISPC pseudocode is given in List-
ing 2 in Section 5.

4.2. Multi-pass algorithm with early termination

On the CPU and MIC, dynamically allocating a single large
phi_buf for each packet works fine and delivers accept-
able performance. However, not surprisingly, we found that
even better performance was possible by allocating a smaller
buffer once and filling it in several separate BVH traversals.
This simply requires replacing Step 2 with K=32 samples
once and placing the method described in Section 4.1 in a
loop. IVL/ISPC pseudocode is sketched in Listing 3 in Sec-
tion 5. In particular, for larger data this has the advantage of
enabling early termination without traversing the full BVH:
when every ray in the packet has reached maximum opacity,
we do not need to proceed with further passes.

5. Implementation

In this section we describe the implementation of our method
on CPU and MIC. We chose these architectures for the rea-
sons outlined in the introduction (platform portability, larger
memory) but also because they are well-suited to tackle this
problem. Specifically, CPU and MIC offer:

e Large memory, both per core (for the buffer) and in total;

e SIMD vector units, and explicit mechanisms for control
flow both inside and outside of SIMD lanes (to ensure co-
herent traversal and better memory access);

e Encouragement of large, multi-function kernels designed
to operate independently across separate threads.

It would be possible to implement our method effectively
in a framework such as Manta [BSP06], using explicitly
defined ray packets and manually-coded SIMD intrinsics.

Knoll et al. / RBF Volume Ray Casting on Multicore and Manycore CPUs

However, for portability we desire a system that enables op-
eration on a wider variety of CPUs with different SIMD
“backend” architectures (various versions of SSE, 8-float
AVX, 16-float MIC). For this, we employ the IVL SPMD
compiler [LHW12] and the RIVL framework.

5.1. Preprocess

The preprocessing phase is performed when data is read
from disk, either statically or as part of in-transit visualiza-
tion. The BVH is constructed on the host and, if necessary,
data are then sent across the PCI bus to the MIC.

For BVH construction, we currently use the existing single-
threaded SAH builder implemented in RIVL and described
in [KWN*13]. We use 4 primitives (points) per leaf node;
this can be modified for faster construction at some cost in
rendering performance.

5.2. BnsView framework

BnsView and RIVL, including ball-and-stick and structured
volume rendering are covered in greater detail in [KWN*13].
RIVL generates camera rays, distributing work to all
CPU/MIC threads and calling the SPMD entry kernel. In,
bnsView, the trace () kernel called by the RIVL renderer
(either a ray tracer or ray caster) consists of two passes:

1. opaque geometry (e.g. ball-and-stick), using the BVH.
This stores a single hit position t_hit along the ray.

2. volume rendering (either structured data, or RBF DVR
using the new technique in this paper), which is then com-
puted for samples from t=0 to t=t_hit, and stores an
integrated color and opacity.

Calling this function recursively, we can achieve secondary
ray effects, such as shadows or ambient occlusion.

5.3. Coherent RBF DVR in IVL
The IVL implementation of our method is sketched in pseu-
docode in Listing 2. In SPMD, a packet is simply a varying
Ray. The BVH, its stack and counters are all uniform. Dur-
ing traversal, if any ray intersects a node, the entire packet
descends the tree and the sample buffer (for all rays) is filled.
When phi is evaluated , the associated uniform RBF is
evaluated for all varying sample positions. Lastly, all sam-
ples for the packet are integrated, iterating using a uniform
t variable spanning minimum and maximum sample posi-
tions. Otherwise, differences between our algorithm and co-
herent BVH traversal [WBS07] (the IVL implementation of
which is described in [KWN*13]) are:

il s

Figure 4: Multi-material classification of RBF contribu-
tions of separate atoms as separate volumetric fields. From
left to right: silicon atoms only, oxygen atoms only, and both
silicon and oxygen in a zeolite structure.

e multiple traversal passes, sketched in Listing 3;

e dynamically expanding extents of every BVH node by o,
the truncation radius specified by the user;

e in a leaf, for each particle, we determine the uniform
minimum and maximum samples overlapping any ray,
then iterate over them adding to Phi_buf;

e when BVH traversal completes (and for each pass), DVR
integration is performed on these buffered samples.

[BN N O

Listing 2: RBF DVR with coherent BVH traversal

void rbf dvr(varying Ray ray, varying float tenter,
varying float texit)
while traversal stack not empty
pop node off traversal stack
if ray intersects extend(node,sigma) on
if node is a leaf
foreach varying t in {tenter..
Phi_buf[t]
else
push both children
foreach uniform t in {rmin(tenter)
dvr_blend (Phi_buf[t], ray, tf)
if (ray.color.a > .99) break

[tenter, texit]

texit}
+= phi(i,ray.org + ray.dir = t)

..rmax (texit)}//reduce

Listing 3: Multi-pass algorithm

void rbf dvr multipass(
foreach varying Ray ray
{first_t, last_t} = AABB_test (ray, bvh.bounds)
for (uniform t=first_t; t<last_t; t+=Phi_buf.size)

rbf dvr(ray, t, t + Phi_buf.size)

if all(ray.color.a >

5.4. Shading
For most RBFs, it is straightforward to compute partial
derivatives V@ analytically at the same time that ¢ is com-
puted. In the case of our Gaussian, this is particularly trivial:
Vo(x) = -2 9i(di(x)) (x — %) ©)
Computing analytical gradients for RBFs incurs little cost, in
contrast to the high expense of central differences gradients
for structured volume rendering in bnsView [KWN*13]. We
do, however, need to store the gradient in the sample buffer,
which requires quadrupling the size of our sample buffer (4
floats instead of one). On the CPU and MIC, this has rela-
tively low impact (2%) on performance. Performing diffuse
Phong illumination per sample incurs greater cost, but over-
all costs only about roughly 5-10% more than unlit DVR.

.99) break

5.5. Multi-material selection and classification

An advantage of direct RBF volume rendering is the ability
to construct multi-field volume data from a single source of
particles on the fly. From that, one can classify separate fields
with separate transfer functions. To accomplish this, we eval-
vate and classify two (or more) samples at each position,
and blend them sequentially. This enables us to understand
which basis functions are responsible for which regions of
one original scalar field, allowing for classification of dif-
ferent atoms and molecules (in computational chemistry) or
halos (astrophysics). A simple example is shown in Figure 4.
In a more complex example in Figure 5, we assigned a sep-
arate transfer functions to an entire molecule (tryptophan in

(© 2014 The Author(s)

Computer Graphics Forum (© 2014 The Eurographics Association and John Wiley & Sons Ltd.

Knoll et al. / RBF Volume Ray Casting on Multicore and Manycore CPUs

zeolite(3.5K) tryptophan(6.8K) nanobowl(21K) nanosphere(90K)

(dt=.125, 0=2) (dt=.25, 0=2) (dt=.125, 6=2) (dt=.125, 6=2)
MIC/CPUfps: 8.93/2.30 15.9/5.96 10.8/4.0 4.6/1.66

A

(dt=.0625, 6=3) (dt=.125, 6=3) (dt=.125, 6=2.87) (dt=.0625, 6=2)
MIC/CPUfps: 2.50/0.736 6.96/2.49 3.13/1.02 3.06/0.93
nanosphere(740K) Si0,(5M) ANP3(14M) CubeP3M(82M)

(dt=.125, 0=2) (dt=1, 0=3.1) (dt=1, 0=3.5) (dt=1, 0=1.8)
MIC/CPUfps: 5.38/2.22 9.61/3.86 2.80/0.97 1.11/0.202

- R <% eo's g Y
(dt=25, 6=2) (dt=.25, 6=2) (dt=.125, 6=3.1) (dt=5, 6=2.25
MIC/CPUfps: 6.50/2.74 4.85/1.67_%’ 2.18/0.70 ™ 0.420/0.109
Figure 5: Results on MIC (Intel®Xe0n Phi ~ SEIOP) and CPU (dual Intel® Xeon E5-2680) at 1 MP (10242).

Dataset zeolite trypt. nanobowl ns90k ns.740k SiO, ANP3 CubeP3M

num. particles 3494 6830 21K 92K 742K 48M 147M 82M

size/timestep (MB) 13 .33 0.8 3 40 160 950 2624

geometry size (MB) 25 49 0.7 6 52 130 504 3133

BVH size (MB) .16 339 0.5 4 34 160 430 2056

BVH build time* (s) 0256 .057 0.081 091 7.5 50 128 541

#fields 2 4 2 1 1 2 3 1

str.vol. size** (MB) 379 4.8 1.5 53 55 806 6036 -
str.vol. build time** (s) .031 .026 .6 1.1 4.1 80 205

Table 1: Data set statistics. (*)Single CPU thread (Xeon E5-2680). (¥*) 16 CPU threads. 32-bit float data, 1 voxel/z&ngstr()'m.

(© 2014 The Author(s)
Computer Graphics Forum (©) 2014 The Eurographics Association and John Wiley & Sons Ltd.

Knoll et al. / RBF Volume Ray Casting on Multicore and Manycore CPUs

A A A A A J

#partlcles 10K 100K 10M
fps-fix o 10.1 4.00 2.48 3.82 3.81 2.12
fps-varo | 2.62 | 2.10 240 | 2.25 222 2.12
(o 6.61 5.44 3.67 | 3.39 2.74 2.05

Figure 6: Performance with respect to data size, using sub-
sets of the 82 million particle CubeP3M astrophysics data
rendered with dt = 1 and varying o. The table shows per-
formance with both fixed and varying o, see Figure 7(left).

blue, carbon lipids in white). With structured volumes, this
requires more costly computation, storage and rendering of
separate volumetric fields. As shown in Figure 1, the cost of
computing and sampling multifield structured volume data
is high, giving our method performance and memory ad-
vantages even for two fields. To implement this, we must
store these additional samples in Phi_buf. Since our buffer
is maintained per-thread, the cost per separate field is not
prohibitive. A buffer with (64 / M) samples per ray for M
fields works well on both CPU and MIC.

6. Results

We conducted results on a visualization node of Stampede
with dual 8-core (16 cores total) 2.7 GHz Intel®Xeon' " ES-
2680 with 32 GB RAM, an Intel®Xeon Phi' SE10P with
61 cores at 1.1 GHz with 8 GB RAM, and an NVIDIA K20
(Kepler) GPU with 6 GB RAM. All computations were car-
ried out in single-precision floating point. On the CPU, we
used the 8-float AVX instruction set. Unless stated other-
wise, performance numbers are measured at 10242 (1 MP)
resolution using the Xeon Phi'" . Units for all molecular data
are Angstroms; CubeP3M uses an intrinsic unit cube corre-
sponding roughly to one particle.

Overall performance and quality. In Figure 5, we exam-
ine eight datasets ranging in memory footprint from 250K
to 2.6 GB. Statistics on these data and BVH are given in
Table 1. To explore the potential uses of our algorithm, and
in particular selection (Sec. 5.5) we benchmark scenes us-
ing multi-field transfer functions at sampling rates and ©
delivering a converged image, but not guaranteeing interac-
tive performance. Generally, performance falls in the 1-20
fps range on the MIC and 0.5-10 fps range on the CPU.
From a quality perspective, RBF volume rendering enables
reconstructions at least as smooth as cubic B-spline filtering
of structured data [SHOS] (Figure 1, lower right), but at far
lower cost, and with better preservation of features.

Data size and number of samples. Like BVH-accelerated
structured DVR [KTW*11], RBF DVR performance de-
pends more on the number (and cost) of volume samples
than on the total number of particles. In Figure 5, the small-
est (zeolite) and largest (CubeP3M) data sets are only a fac-
tor of 5 apart in close-up frame rate, despite 4 orders of
magnitude difference in number of particles. In Figure 6, we
consider subsets of the CubeP3M data. When using a fixed
o =2.05, performance fluctuates from 2 to 10 fps. However,
when we allow o to vary (increasing it until we achieve an

e yarying si
© varying sigma as
s (varying sigma)
s fixed sigma) f 2
P 15
S

0.9
91
92
0.93
0.9

095 |
0.96 |
0.9

0.9

79925
.9975
.9995

3 4 5 6 7 7912 > 222222222 g8
10g10 (#particles) Cxtinction coeff. (alpha% 22

Figure 7: Plots from Fig. 6. Left: Performance vs. number
of particles. Right: Impact of early termination.

artifact-free image), we notice that performance is almost
exactly constant: for a converged image, ¢ decreases lin-
early with the logarithm of data size (Figure 7, left).

To gauge the relationship between performance and number
of samples, in Figure 7 (right) we examine how early termi-
nation impacts frame rate using the 82M CubeP3M scene as
reference. As expected, performance drops significantly as
O,y approaches 1. Results at the default 0¢,y=0.97 are in-
distinguishable from larger values and yield nearly twice the
performance of Cte=1.

Effects of scale and truncation parameters. In Figure 8
we show the effects of modifying k. With this type of pre-
classification, the resulting filter remains smooth, giving the
user significant control over reconstruction behavior. Since
Kk has the effect of changing width as well as height of Gaus-
sians, it is an effective mechanism for modeling as well as
classification of structure.

Figure 9 illustrates varying truncation radius o. Larger o
increases the width of BVH bounds — this is factored in at
traversal time, and modifying ¢ does not require rebuild-
ing the data structure. Generally, higher ¢ results in worse
performance. For most atomistic data, a truncation radius of
c=2 Angstréms is sufficient to show features within the
van der Waals radius. Increasing k increases the width of
Gaussians, which requires an increase in ©.

Comparison with Nanovol on the GPU. In Table 2, we
benchmark our RBF method using the transfer functions
from [KWN*13], and compare performance of RBF DVR to
structured volume rendering in bnsView and both structured
and RBF DVR in Nanovol [RKN*13].

2 L Ny «
Kk =.8, 2.1fps k= 1.25, 3.7fps K =2.44, 4.5fps
Figure 8: Varying x increases both RBF value and width.

G—125, 58ips G =20 41lfps

L e
o =0.5, 6.4fps
Figure 9: o controls RBF truncation width, impacting per-
formance and reconstruction quality.

(© 2014 The Author(s)

Computer Graphics Forum (© 2014 The Eurographics Association and John Wiley & Sons Ltd.

Knoll et al. / RBF Volume Ray Casting on Multicore and Manycore CPUs

Dataset nanobow] ns.90k ns. 740k SiO; ANP3
structured* bnsView - MIC 36/22 12.4/14.8 9.98/14.1 20.3/10.7 1.18/14.1
bnsView - CPU | 6.15/4.02 242/297 1.57/2.46 4.51/2.02 357191
nanovol - GPU 41/32.5 19.5/26 6/10.7 19.6/20.9 250/17.3
RBF bnsView - MIC 9.7/6.9 8.8/10.2 6.25/7.66 6.44/5.30 2.85/3.91
bnsView - CPU | 3.65/2.53 3.8/4.0 2.93/3.58 2.27/2.03 1.06/1.07
nanovol - GPU | 2.42/3.10 0.71/.65 0.48/0.31 1.03/0.303 0.83/1.0
RBF / structured (MIC) | .27x/.31x T1x / .68x .62x / .54x 31x/.50x 2.4x/.28x
RBF /structured (CPU) | .60x/.63x 1.57x/1.34x 1.86x/1.45x Sx/1x 3x/.56x
bnsView (MIC) / nanovol (GPU) — RBF 4x/2.2x 12.4x/15.7x 13x / 24.7x 6.4x/17.5x 3.43x / 3.91x

Table 2: Frame rates (far/close) of reference scenes benchmarked in bnsView and Nanovol, using the reference transfer func-

tions from [KWN*13] and a fixed step size of dt=0.5. (*Structured numbers from [KWN*13]).

Nanovol is a GLSL-based raycaster employing a uniform
grid for acceleration and RBF evaluation. Though different
from our BVH method, it is similar in functionaliy and a
good candidate for comparison. Matching RBF parameters,
camera and transfer function as closely as possible, our al-
gorithm in bnsView outperforms Nanovol’s RBF method on
average by 10x. While Nanovol’s implementation could po-
tentially be improved, this suggests bnsView is competitive
with current GPU approaches.

RBF and structured DVR, on CPU and MIC. Table 2
also compares RBF volume rendering with the structured
volume rendering results of [KWN*13]. On MIC, RBF vol-
ume rendering is roughly 33% slower than structured DVR
(with lighting, for 1-voxel-per-Angstrém data). The perfor-
mance gap is less significant for far views of larger data
(ANP3). We note that on the CPU, RBF DVR is consistently
faster than structured DVR by 2x. This is likely due to the
lack of a hardware gather instruction on the CPU. Although
the MIC overall 2x — 5x faster than the 16-core SandyBridge
CPU (Table 2), bnsView is still highly usable on CPUs in
general; we were able to run all test scenes semi-interactively
at 5122 resolution on a 4-core IvyBridge laptop.

Memory consumption and preprocess time. As seen in
Table 1, lower memory consuption is a major advantage of
this technique. Precomputed structured volumes are costly;
even megascale particle data (SiO,, ANP3) can generate gi-
gascale volume data requiring minutes to generate. While
the BVH incurs overhead (comparable to the original data
size), it is possible to use a coarser BVH at some cost in per-
formance. Moreover, construction could likely be achieved
in real-time for gigascale datasets using the BVH builders in
Embree [WWB*14].

Fgure 10: Reference scenes from K WN*13], rendered with
a fixed dt of 0.5, using a standard 1D heatmap transfer func-
tion, lighting enabled. Refer to frame rates in Table 2.

(© 2014 The Author(s)

Computer Graphics Forum (©) 2014 The Eurographics Association and John Wiley & Sons Ltd.

7. Conclusion

We have presented a new algorithm for efficient RBF vol-
ume rendering on CPU and MIC architectures. It performs
competitively with the best-known GPU approaches, enables
better image quality at lower memory and preprocessing
costs, and is not significantly slower (and sometimes faster)
than structured volume rendering. We achieve interactive
or close performance for volume rendering our largest data
sets without relying on LOD or subsampling. Multi-material
classification, enabled by this technique, brings new capabil-
ities to volume visualization.

In future work, we wish to accelerate our currently non-
parallel BVH build by leveraging Embree [WWB*14]. To
better evaluate IVL and ISPC as programming models, we
wish to compare performance with OpenMP implementa-
tions of both SOA and non-SOA (non-packetized, single ray)
methods. Lastly, we wish to extend this technique to large
distributed data in parallel, and explore in situ and in transit
visualization.

Acknowledgments

This work was funded in part by National Science Foundation grants
OCI-1134872 and ACI-1339863, and under the Office of Science of the
U.S. Department of Energy under contract DE-AC02-06CH11357. We
thank Lei Cheng, Maria Chan and Kah Chun Lau of Argonne National
Laboratory for the zeolite, nanobowl and nanosphere data; Alfredo Car-
denas and Ron Elber at University of Texas at Austin for the tryptophan;
Ken-ichi Nomura and Priya Vashishta of Univeristy of Southern Califor-
nia for the SiO, and ANP3 data; and Anson d’Aloisio and Paul Shaprio
of the University of Texas at Austin for the CubeP3M SPH. Additional
thanks go to Mike Packard at TACC and Brian Dietrich at Intel.

References

[ACPO8] ALTAY G., CROFT R. A., PELUPESSY I.: SPHRAY: a
smoothed particle hydrodynamics ray tracer for radiative trans-
fer. Monthly Notices of the Royal Astronomical Society 386, 4
(2008), 1931-1946. 3

[BPL*12] BROWNLEE C., PATCHETT J., LO L.-T., DEMARLE
D., MITCHELL C., AHRENS J., HANSEN C. D.: A study of ray
tracing large-scale scientific data in two widely used parallel vi-
sualization applications. In Eurographics Symposium on Parallel
Graphics and Visualization (2012), The Eurographics Associa-
tion, pp. 51-60. 4

[BSPO6] BIGLER J., STEPHENS A., PARKER S. G.: Design for
parallel interactive ray tracing systems. In Interactive Ray Trac-
ing 2006 (2006), pp. 187-196. 4, 5

[CRZP04] CHEN W., REN L., ZWICKER M., PFISTER H.:
Hardware-accelerated adaptive EWA volume splatting. In Pro-
ceedings of the conference on Visualization’04 (2004), IEEE
Computer Society, pp. 67-74. 2

Knoll et al. / RBF Volume Ray Casting on Multicore and Manycore CPUs

[DCH88] DREBIN R. A., CARPENTER L., HANRAHAN P.: Vol-
ume rendering. In ACM Siggraph Computer Graphics (1988),
vol. 22, ACM, pp. 65-74. 2

[DRGIO8] DOLAG K., REINECKE M., GHELLER C., IMBODEN
S.: Splotch: visualizing cosmological simulations. New Journal
of Physics 10, 12 (2008), 125006. 3

[FAW10] FRAEDRICH R., AUER S., WESTERMANN R.: Effi-
cient high-quality volume rendering of SPH data. Visualization
and Computer Graphics, IEEE Transactions on 16, 6 (2010),
1533-1540. 1, 2,3,4,5

[FSW09] FRAEDRICH R., SCHNEIDER J., WESTERMANN R.:
Exploring the millennium run: scalable rendering of large-scale
cosmological datasets. Visualization and Computer Graphics,
IEEE Transactions on 15, 6 (2009), 1251-1258. 3

[GBM*12] GROTTEL S., BECK P., MULLER C., REINA G.,
RoTH J., TREBIN H.-R., ERTL T.: Visualization of electrostatic
dipoles in molecular dynamics of metal oxides. IEEE TVCG 18,
12 (2012), 2061-2068. 3

[GIK*07] GRIBBLE C. P., IzE T., KENSLER A., WALD 1.,
PARKER S. G.: A coherent grid traversal approach to visualiz-
ing particle-based simulation data. Visualization and Computer
Graphics, IEEE Transactions on 13,4 (2007), 758-768. 3

[JBL*06] JANG Y., BOTCHEN R. P., LAUSER A., EBERT D. S.,
GAITHER K. P., ERTL T.: Enhancing the interactive visualiza-
tion of procedurally encoded multifield data with ellipsoidal basis
functions. In Computer Graphics Forum (2006), vol. 25, Wiley
Online Library, pp. 587-596. 2

[JESP10] JANG Y., FucHs R., SCHINDLER B., PEIKERT R.:
Volumetric evaluation of meshless data from smoothed particle
hydrodynamics simulations. In Proceedings of the 8th IEEE/EG
international conference on Volume Graphics (2010), Eurograph-
ics Association, pp. 45-52. 1,2, 4

[JV09] JANG Y., VARETTO U.: Interactive volume rendering of
functional representations in quantum chemistry. Visualization
and Computer Graphics, IEEE Transactions on 15, 6 (2009),
1579-5186. 2

[JWH*04] JANG Y., WEILER M., HOPF M., HUANG J., EBERT
D., GAITHER K., ERTL T.: Interactively visualizing procedu-
rally encoded scalar fields. In VisSym (2004), pp. 35-44. 2, 4

[KAHO7] KAHLER R., ABEL T., HEGE H.-C.: Simultaneous
GPU-assisted raycasting of unstructured point sets and volumet-
ric grid data. In Proceedings of the Sixth Eurographics/leee
VGTC conference on Volume Graphics (2007), Eurographics As-
sociation, pp. 49-56. 3

[KCL*13] KNOLL A., CHAN M., LAU K., LUI B., GREELEY
J., CURTISS L., HERELD M., PAPKA M.: Uncertainty classi-
fication and visualization of molecular interfaces. International
Journal of Uncertainty Quantification 3, 2 (2013), 157-169. 3

[KTW*11] KNOLL A., THELEN S., WALD I., HANSEN C. D.,
HAGEN H., PAPKA M. E.: Full-resolution interactive CPU vol-
ume rendering with coherent BVH traversal. In Pacific Visual-
ization Symposium (PacificVis) (2011), pp. 3-10. 4, 8

[KWN*13] KNOLL A., WALD I., NAVRATIL P. A., PAPKA
M. E., GAITHER K. P.: Ray tracing and volume rendering large
molecular data on multi-core and many-core architectures. In
Proceedings of the 8th International Workshop on Ultrascale Vi-
sualization (2013). 2,4, 6, 8,9

[LHW12] LEISSA R., HACK S., WALD I.: Extending a C-like
language for portable SIMD programming. In Proceedings of
the 17th ACM SIGPLAN symposium on Principles and Practice
of Parallel Programming (2012), ACM, pp. 65-74. 2,4, 6

[Max95] MAX N.: Optical models for direct volume rendering.
Visualization and Computer Graphics, IEEE Transactions on 1,
2 (1995), 99-108. 3

[Mon92] MONAGHAN J. J.: Smoothed particle hydrodynamics.
Ann R Astronomy and Astrophysics 30 (1992), 543-574. 2

[NJBO7] NAVRATIL P. A., JOHNSON J. L., BROMM V.: Visual-
ization of cosmological particle-based datasets. IEEE TVCG 13,
6(2007), 1712-1718. 3

[OKK10] ORTHMANN J., KELLER M., KOLB A.: Topology-
caching for dynamic particle volume raycasting. In Proceedings
of Vision, Modeling and Visualization 2010, Siegen, Germany
(2010), Eurographics, pp. 147-154. 1,2,3,5

[PM12] PHARR M., MARK W.: ISPC: a SPMD compiler for
high-performance CPU programming. Proceedings of Innova-
tive Parallel Computing (InPar) (2012). 4

[Pri07] PRICE D. J.: Splash: An interactive visualisation tool for
smoothed particle hydrodynamics simulations. Publications of
the Astronomical Society of Australia 24, 3 (2007), 159-173. 3

[RKN*13] REDA K., KNOLL A., NOMURA K., PAPKA M.,
JOHNSON A., LEIGH J.: Visualizing large-scale atomistic simu-
lations in ultra-resolution immersive environments. In IEEE Sym-
posium on Large Scale Data Analysis and Visualization (LDAV)
(2013), pp. 59-65. 1,2, 4,8

[Sam90] SAMET H.: The design and analysis of spatial data
structures, vol. 199. Addison-Wesley Reading, MA, 1990. 4

[SHO5] SIGG C., HADWIGER M.: Fast third-order texture filter-
ing. GPU gems 2 (2005), 313-329. 8

[SHUS10] STONE J., HARDY D., UFIMTSEV I., SCHULTEN K.:
GPU-accelerated molecular modeling coming of age. Journal of
Molecular Graphics and Modeling 29, 2 (2010), 116-125. 3

[TOP13] TOP500.0RG: Architecture Share, November 2013. 1

[TSO*11] TURK M. J., SMITH B. D., O1sHI J. S., SKORY S.,
SKILLMAN S. W., ABEL T., NORMAN M. L.: yt: A multi-code
analysis toolkit for astrophysical simulation data. The Astrophys-
ical Journal Supplement Series 192, 1 (2011),9. 3

[WBS07] WALD I., BouLoS S., SHIRLEY P.: Ray tracing de-
formable scenes using dynamic bounding volume hierarchies.
ACM Transactions on Graphics (TOG) 26, 1 (2007), 6. 4, 6

[WFKHO07] WALD 1., FRIEDRICH H., KNOLL A., HANSEN
C. D.: Interactive isosurface ray tracing of time-varying tetra-
hedral volumes. Visualization and Computer Graphics, IEEE
Transactions on 13, 6 (2007), 1727-1734. 4

[WMWS86] WYVILL G., MCPHEETERS C., WYVILL B.: Data
structure for soft objects. The Visual Computer 2,4 (1986), 227—
234. 3

[WSBWO1] WALD 1., SLUSALLEK P., BENTHIN C., WAGNER
M.: Interactive Rendering with Coherent Ray Tracing. Com-
puter Graphics Forum (Proceedings of EUROGRAPHICS) 20, 3
(2001), 153-164. 4

[WWB*14] WALD 1., WoOP S., BENTHIN C., JOHNSON G. S.,
ERNST M.: Embree—A Ray Tracing Kernel Framework for Ef-
ficient CPU Ray Tracing. ACM Transactions on Graphics (Pro-
ceedings of ACM SIGGRAPH) (2014). (to appear). 4, 9

[ZPvBGOla] ZWICKER M., PFISTER H., VAN BAAR J., GROSS
M.: EWA volume splatting. In Visualization, 2001. VIS’01. Pro-
ceedings (2001), IEEE, pp. 29-538. 2

[ZPVBGO1b] ZWICKER M., PFISTER H., VAN BAAR J., GROSS
M.: Surface splatting. In Proceedings of the 28th annual con-
ference on Computer graphics and interactive techniques (2001),
ACM, pp. 371-378. 3

(© 2014 The Author(s)

Computer Graphics Forum (© 2014 The Eurographics Association and John Wiley & Sons Ltd.

