
Ray Tracing and Volume Rendering Large Molecular Data
on Multi-Core and Many-Core Architectures

Aaron Knoll
Texas Advanced Computing Center

knolla@tacc.utexas.edu

Ingo Wald
Intel Corporation

ingo.wald@intel.com

Paul A. Navrátil
Texas Advanced Computing Center

pnav@tacc.utexas.edu

Michael E. Papka
Argonne National Laboratory

papka@anl.gov

Kelly P. Gaither
Texas Advanced Computing Center

kelly@tacc.utexas.edu

ABSTRACT
Visualizing large molecular data requires efficient means of ren-
dering millions of data elements that combine glyphs, geometry
and volumetric techniques. The geometric and volumetric loads
challenge traditional rasterization-based vis methods. Ray cast-
ing presents a scalable and memory- efficient alternative, but mod-
ern techniques typically rely on GPU-based acceleration to achieve
interactive rendering rates. In this paper, we present bnsView, a
molecular visualization ray tracing framework that delivers fast vol-
ume rendering and ball-and-stick ray casting on both multi-core
CPUs and many-core Intel R©Xeon Phi

TM
co-processors, implemented

in a SPMD language that generates efficient SIMD vector code
for multiple platforms without source modification. We show that
our approach running on co- processors is competitive with simi-
lar techniques running on GPU accelerators, and we demonstrate
large-scale parallel remote visualization from TACC’s Stampede
supercomputer to large-format display walls using this system.

1. INTRODUCTION
Large scientific data generated by today’s supercomputers demand
more capable analysis and visualization methods. Molecular dy-
namics (MD) simulations in particular challenge current visualiza-
tion techniques since they frequently combine glyphs, geometric
structures and volume rendering in a single image. Ball-and-stick
representations remain the most popular means of molecular visu-
alization, bearing similarity to physical erector-set models. How-
ever, a one million atom nanosphere dataset could produce 100 gi-
gabytes of tessellated ball-and-stick geometry data; a fifteen mil-
lion atom dataset would produce nearly a terabyte of geometry.
Generating molecular surfaces adds to both the precomputation
cost and the geometric data load. These data test the functional
limits of traditional molecular modeling software (e.g. VMD [17])
and general visualization packages (e.g. ParaView [3], VisIt [9]),
limiting the ability for scientists to explore such models effectively.
To enable better interactive exploration, and ultimately in-transit
visualization and computational steering, it is necessary to increase
the efficiency of rendering ball-and-stick models, and employ vol-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from Permissions@acm.org.
UltraVis 13 November 17, 2013, Denver CO, USA
Copyright 2013 ACM 978-1-4503-2500-4/13/11...$15.00
http://dx.doi.org/10.1145/2535571.2535594 .

umetric models of molecular data similar to the underlying charge
density fields from quantum physics.
Ray casting in particular is an attractive option for rendering molec-
ular data, since ball-and-stick glyphs can be rendered directly with-
out tessellation, and direct volume rendering can be used in place of
molecular surfaces and isosurfaces in illustrating a charge density
or potential field. By employing ray casting, we can reduce both
the computational cost and the memory footprint needed for render-
ing, allowing large MD data to be rendered efficiently on a single
node. However, existing ray casting approaches [28] rely on GPUs
to achieve interactive performance. While GPUs are the most com-
mon accelerator in the world’s top 500 supercomputers, most (89%
in the June 2013 Top 500 list [30]) use only CPU-based process-
ing. Out of the current top ten, only two include GPUs, six systems
use only CPUs, and two include Intel R©Xeon Phi

TM
coprocessors

(MICs) including Tianhe-2, the current world #1. An efficient MD
visualization technique that removes the GPU dependency, allow-
ing for rendering on any compute resource, would broaden the in-
sight and discovery potential for this important class of simulations.
In this paper, we present bnsView, a molecular visualization system
for efficient ray casting and ray tracing of molecular data on multi-
core CPU and many-core MIC (Xeon Phi

TM
) architectures. As a

central component of our approach, we present an efficient parallel
ray tracing framework written in a custom SPMD language (similar
to NVIDIA CUDA [1]), which enables efficient auto-vectorization
of code for both CPUs and MICs. This paper makes the following
contributions:
• a technique for efficient molecular visualization that com-

bines both volume data and ball-and-stick geometry in the
same ray tracing framework, all suitable for both multi-core
and many-core architectures;
• a comparison of our technique with a state-of-the-art accel-

erator (GPU-based) technique; and
• a demonstration of our system used for parallel remote visu-

alization from the Stampede supercomputer to a large-format
tiled display, enabling in-transit visualization of large MD
simulations.

The rest of the paper is organized as follows. In Section 2 we place
our approach in context with related work. We provide background
essential to evaluating our technique in Section 3, and we present
our implementation in detail in Section 4. In Section 5 we discuss
our methodology and results, and we consider future work and con-
clude the paper in Section 6.

2. RELATED WORK
In this section, we present work related to our technique to place

Figure 1: A 65536×8192 (512 megapixel) frame buffer rendered on TACC Stampede using 128 Intel R©Xeon PhiTM ’s and streaming
at 2 fps to the TACC Stallion 328 megapixel tiled display.

our contribution in context.

2.1 Molecular Visualization
Popular molecular visualization applications such as VMD [17]
and PyMol [12] focus on biomolecular problems such as protein
docking; others such as Avogadro [15] emphasize building molec-
ular geometry for ab initio computations. Generally, these applica-
tions are designed for molecules with up to thousands of atoms, and
are not suited for materials problems with hundreds of thousands or
millions of atoms. A large body of work on polygonal molecular
surfaces exists, surveyed by Connolly [10]. For our data in VMD,
molecular surfaces and isosurfaces were prohibitively slow to com-
pute for the 740K nanosphere data, and the 5M atom silicon fissure
data was only representable as rasterized points and lines.

Figure 2: Left: VisIt can generate ball-and-stick models, but
fails for data larger than the 90K nanosphere. Right: ParaView
can render larger volume data such as the 740K nanosphere,
but is slow and uses pre-classification, resulting in poor image
quality compared to post-classified volume rendering.

General parallel visualization toolkits such as ParaView [3] and
VisIt [9] have molecular visualization capability. Paraview and
VisIt have means of rendering sphere impostors, but not cylinders.
Volume rendering in these packages is relatively slow (VisIt) or
poor-quality due to preclassification in (ParaView), as shown in
Figure 2. Neither ParaView nor VisIt was capable out-of-the-box
of generating bonds for our 740K atom nanosphere or larger data.
Clearly, it would be possible to construct a parallel reader and ren-
dering pipeline for larger MD data in ParaView and VisIt. However,
for reasons of image quality, single node performance and lower
memory utilization, direct ray casting approaches are compelling.
Many specialized molecular visualization tools have been devel-
oped for the GPU. Bajaj et al. [5] employ particle and impostor-
based methods for fast rendering on the GPU using the rasterization
and shader pipeline. They use 3D texture-based volume rendering

at relatively small scales for LOD and illumination purposes. Tarini
et al. [29] use similar techniques to approximate global illumination
and retain real-time performance. The MegaMol framework [14]
employs several different techniques to ray cast millions of atoms
as impostors at real-time rates. Compared to our work, MegaMol’s
only limitation is that it employs rasterization and relies on LOD
for performance, and would not support ray tracing for high-quality
rendering.
The limitations of both general-purpose and molecular vis tools
served as motivation for development of Nanovol [20, 28], a GPU
ray casting application built on an efficient OpenGL volume ray
caster for structured grids [21]. It uses a single-level uniform grid
of “macrocells” to classify and skip empty space as defined by a
transfer function. Macrocells also contain pointers to a list of ball
and stick glyphs, denoted by atom indices and pairs of indices, re-
spectively. GLSL was chosen for its compatibility across multiple
GPUs, and (at the time of implementation) better volume rendering
performance than CUDA. Similarly, the grid acceleration structure
was chosen for its efficiency on the GPU (e.g. [11]). Recently,
Nanovol has been extended to run in a multi-GPU environment,
rendering million-atom MD data at real-time frame rates in the 70-
megapixel stereo 3D CAVE2 environment [28].

2.2 CPU Ray Tracing
Parker et al. [25] demonstrated interactive performance for direct
ray tracing of isosurfaces on a 128-CPU SMP supercomputer. The
algorithms employed by bnsView are based on coherent ray trac-
ing [35], in which rays are traced together in groups or packets [35],
reducing both traversal and intersection costs by exploiting com-
mon memory access patterns and vector instructions. Subsequent
work employed these techniques for interactive CPU visualization
systems for structured [22, 23] and unstructured [33] isosurfacing
and volume rendering. Gribble et al [13] employed coherent ray
tracing for efficient rendering of multi-million atom sphere glyphs.
Work integrating the Manta interactive ray tracer [6] into ParaView [8]
and more generally for interception of polygonal geometry from
OpenGL [7] has proven the advantages of ray tracing methods in vi-
sualizing large data in parallel, particularly with weak scaling. The
recent Embree 2.0 framework [36] delivers interactive ray tracing
of polygonal models on both CPUs and Intel R©Xeon Phi

TM
accelerators,

in part by using the Intel SPMD Program Compiler (ISPC) [26].
This framework is an open-source counterpart to the ray tracing
framework we developed in IVL [24] for molecular visualization.

3. BACKGROUND
This section provides background on techniques used in our render-
ing approach. Readers experienced with molecular visualization
concepts and vectorized ray tracing can proceed to Section 4.

3.1 Volumetric modeling of molecular data
In volume visualizing molecular data, our goal is to approximate a
charge density or potential model that would provide insight into
the presence of molecular surfaces or materials interfaces. Volu-
metric representation lets us represent this continuously, allowing
for viewing from distances at which ball and stick representation
would be impractical. We model this using a radial basis function
(RBF), a continuous, real-valued function φ whose value decays
with respect to distance from the atom. The global field function
Φ consists of summing the radial basis functions for all particles i
contributing to a point in space,di = |x−xi| Φ = ∑

i
φi(di) (1)

Common choices of φ are Gaussians and polynomials with com-
pact support. While more sophisticated models are possible [20],
in this work for simplicity we use a Gaussian with height scaled by
radius

φi(r) =
√

re−d2/r2
i (2)

where ri is the covalent radius. The
√

r prefactor dampens the
height of the Gaussian, distributing charge density more evenly
across large and small atoms (though a rough approximation, this
is similar in behavior to charge density plots from Density Func-
tional Theory computation). We use

√
2ri as the support width for

the basis function corresponds, which corresponds roughly to the
Van der Waals radius. Outside of this outer radius we can clamp
the contribution of the basis function to zero.
To precompute a structured volume using this model, we create a
grid with a fixed resolution (typically 1 to 4 voxels per Ångström),
depending on accuracy and memory requirements. We then iterate
over each atom in the molecule, applying the radial basis function
to each voxel it overlaps within the outer radius.

3.2 SPMD Coherent Ray Tracing
Achieving good ray tracing performance on modern architectures
requires making good use of SIMD vector units. On GPUs this
is typically achieved through languages such as CUDA, OpenCL,
or GLSL using specialized kernels e.g. [4, 16]. On CPUs in “co-
herent” ray tracing, rays are bundled together into packets that si-
multaneously compute traversal, intersection, and shading routines
using SIMD vector instructions [35]. To take advantage of vector
intrinsics, coherent ray tracers must organize data in structure-of-
arrays layout corresponding to vector width (e.g., SSE operating on
4 floats at once). However, SIMD width and vector instruction set
vary across different CPU and accelerator architectures. To better
exploit both vector- and thread-parallelism across all these differ-
ent architectures and instruction set, a mechanism for abstracting
SIMD lanes and multiple threads is increasingly in order.
IVL [24] is an experimental single-program, multiple-data (SPMD)
compiler that can transparently target a variety of instruction sets
including Intel R©SSE, Intel R©AVX, and Intel R©Xeon Phi

TM
. It au-

tomatically generates structure-of-arrays (SOA) layout for varying
data across SIMD lanes and ensures properly vectorized control
flow via masking and conditional execution, thus enabling effi-
cient use of SIMD vector instructions. Crucially, it allows the pro-
grammer to write code once and emit for multiple vector backends
(SSE, AVX, MIC and potentially others). IVL is closely related to
the publicly available ISPC [26], but in addition supports dynamic
polymorphism, operator overloading, verbatim low-level C++ code
embedded within its SPMD code, and support for transparently “of-
floading” code and data to an accelerators where applicable. At the

time of implementation, IVL offered concrete feature and perfor-
mance advantages over ISPC. However, performance and behavior
of our system should be similar and reproducible in an ISPC im-
plementation as well.

4. IMPLEMENTATION
In this section we describe the implementation of bnsView on the
CPU and MIC. At a high level, bnsView uses a bounding volume
hierarchy (BVH) to accelerate opaque ball and stick geometry, and
a single level grid of macrocells to accelerate volume rendering
(similar to Nanovol). We chose a BVH based approach because (in
part inspired by our experiences with Embree [36]) we anticipated
better performance using coherent ray tracing algorithms on SIMD
hardware. At the same time, volume rendering is accelerated using
a single-level structured grid, similar to Nanovol. These accelera-
tion structures are shown in Figure 3.

(a) uniform grid (b) BVH

Figure 3: Acceleration structures. (a) Uniform grid uniformly
decomposes world space. In Nanovol on the GPU, a grid is used
for both volume and polygonal data: each macrocell stores in-
dices to ball and stick primitives that overlap it; a primitive can
be referenced by more than one macrocell. (b) In bnsView, we
use a macrocell grid to accelerate traversal of the volume data,
but use a bounding volume hierarchy (right) for the polygonal
data: Each BVH leaf node contains up to 4 primitives (either
balls or sticks); nodes may overlap but no object will be con-
tained by more than one leaf.

4.1 Preprocess pipeline
Data is input as a set of atoms, each with a type (e.g., carbon) and
3D position in Ångströms. The following preprocess steps then
occur:

1. Atoms are inserted into a uniform grid of particles (inde-
pendent from the macrocell grid associated with the volume
data). The dimensions of this grid are chosen by dividing the
bounds of the molecule by minimum bond length (specifi-
cally, the spacing between any two atoms).

2. Bonds are built using nearest-neighbor lookup from this grid
structure.

3. Compute bounding boxes and centroids for ball and stick
primitives; compute global bounds in the same pass.

4. BVH construction, described below.
5. The structured volume is precomputed using the RBF model.

This is implemented using multiple threads (OpenMP), with
resolution chosen by a “voxels per Ångström” parameter (de-
fault to four).

6. If necessary, data are transferred across the bus to the MIC. In
our implementation, this data transfer is done transparently
by the IVL compiler’s runtime.

BVH construction is a binned variant of a surface area heuristic
(SAH) build used for axis-aligned kd-trees or bounding volume hi-
erarchies of polygonal data [31]. First, we build the list of base
primitives (balls and sticks), their centroids and bounding boxes.
We sort primitives into three separate indexed lists, along X, Y and
Z axes. Then a recursive routine proceeds as follows: if the num-
ber of primitives in the node is less than the “leaf” threshold (we
use four primitives per leaf), we return. Otherwise, we initialize the
“best cost” as the SAH of the parent node. To find the partition split
plane, we sweep from left to right over the chosen axes, extending
the bounds of the partition and computing the the heuristic, and
choosing the partition with the minimal cost. We then recursively
call the routine for left and right children, passing their already
sorted sub-lists of primitives. For reasons of convenience we used
the already-implemented SAH builder in the RIVL polygonal ray
tracer. Since this builder has never been designed or optimized for
real-time rebuilds we are currently limited to static scene geome-
try. However, the Embree framework [36] contains several BVH
builders that are applicable to our needs and would enable interac-
tive rebuilds as well.

4.2 Ray tracing framework
BnsView is built on top of RIVL, a ray tracing engine written in
IVL [24], and a precursor of the SPMD module that is now part of
Embree 2.0 (which is written using the publicly available ISPC [26]).
As with other SPMD languages, kernels are expressed in scalar
form that perform traversal, intersection, and rendering in SIMD
parallel on rays. Semantically, these rays are expressed as vary-
ing data IVL and ISPC, and are distributed across SIMD lanes
by the compiler. Scene data, such as camera, geometry, acceler-
ation structure, transfer function, are uniform, thus constant across
SIMD lanes. Like ray tracers in GLSL, OpenCL or CUDA, task-
parallelism is expressed by subdividing the screen into ’tiles’ that
are then scheduled to be rendered in parallel. Inside each tile ren-
dering task the SPMD compiler then gangs multiple rays together
into SIMD-sized chunks/warps that are processed in SPMD fash-
ion. All tiles of a task are scheduled together into a tasking system
in which all threads pick tasks from a shared task pool while avail-
able; all SPMD control flow is handled by the compiler.
Like GPU programming, IVL maintains the concept of host and
device. The first step is to perform host-to-device copy of all data
precomputed on the CPU (the BVH, balls, sticks, and structured
data if it exists). For CPU backends, pointers to the data are shared
with the kernel and no explicit data copy is made. To generate
rays, we pass a frame buffer, camera and scene data to a device-
side kernel, which in turn divides the frame buffer into tile tasks.
In IVL/ISPC, this involves writing a renderTile task, which
processes all of a tile’s pixels in SIMD width-sized chunks, gener-
ates a ray per pixel (all SIMD-parallel), and passes this ray to our
framework, thus beginning the ray casting or tracing process.
Tracing a ray consists of two separate passes:

1. opaque geometry traversal, using a bounding volume hier-
archy around ball and stick geometry. This stores a single
opaque hit position and gradient, which can then be shaded.

2. volume rendering of the RBF-modeled structured data (front-
to-back, from camera viewpoint to first opaque hitpoint), us-
ing a uniform grid for acceleration. This stores an integrated
color and opacity.

Generally, the volume rendering pass is more costly, so we use the
opaque geometry pass for occlusion and early termination of the
volume rendering pass. Either pass can be enabled or disabled,
depending on the need of the shader calling it. This approach limits
secondary bounces to occuring at opaque geometry intersections or

where the ray terminated in the volume. However, by calling this
trace function iteratively and integrating color in between, one
can fully implement various ray tracing effects.

4.3 BVH traversal, ball and stick intersection
Our BVH traversal is similar in practice to coherent BVH traver-
sal [32], with fewer optimizations (e.g. no interval arithmetic and
per-packet culling tests) but simpler implementation. Rays start at
the root node and descend into children when any ray in the vary-
ing packet intersects the child bounding box. Active rays, automat-
ically masked by conditionals, intersect ball and stick geometry at
the leaf nodes. Then, the rays traverse up the stack to the subse-
quent node, repeating the process until no more nodes remain and
traversal ends. With coherent traversal, nodes are traversed when
any single ray intersects, thus the stack maintained for BVH traver-
sal (as well as all traversal control flow associated with it) is uni-
form. This stands in contrast to a GPU implementation where each
separate thread (corresponding to SIMD lane on the CPU/MIC)
would have a separate stack. Packet-based traversal typically suf-
fers from somewhat lower SIMD utilization than GPU-style inde-
pendent ray traversal (in particular for complex models as we are
using), but in turn suffers less from control flow divergence, and
in particular does not require the frequent scatter/gather required
by GPU methods; when weighed against each other, packet ap-
proaches are often preferable on CPUs.
Intersecting balls and sticks employs standard ray-sphere and ray-
cylinder intersection tests. Like nodes in the BVH, spheres and
cylinders are also uniform data. Thus, the tests are performed in
SIMD parallel for multiple (active) varying rays on a single geo-
metric primitive.

4.4 Structured volume rendering and shading
Structured volume rendering is implemented in straightforward fash-
ion, using ray casting with uniform sampling, trilinear interpolation
of the structured grid, and post-classification. We transform the
ray into volume grid coordinates, determine entry and exit coordi-
nates of the volume bounding box, then march along at a fixed step
size. Trilinear interpolation is implemented as seven linear interpo-
lations, with care taken to reduce the cost of address translation. We
note that volume data are not bricked for maximal cache efficiency;
performance could be improved with better cache strategies.
To improve volume rendering performance, bnsView employs a
macrocell grid on top of volume data similar to Nanovol. This grid
contains only minimum and maximum range values of the volume
data, not pointers to ball and stick geometry. Unlike with coherent
BVH traversal, rays traverse the volume grid and intersect voxels
independently. Nonetheless, we found this provided up to 3× per-
formance improvement on data with significant empty space such
as the large nanosphere.
We implemented several options for volumetric shading. With no
lighting, we simply return the trilinear interpolant and classify. With
central differences, we fetch the interpolated values at six neighbor-
ing voxels in the X,Y and Z directions. This ensures smooth gradi-
ents but is costly in particular on architectures that do not contain
hardware 3D texture units and dedicated texture caches. All in-
terpolation and shading operations are performed in parallel (for
varying ray data).

4.5 Ray tracing modalities
The ray tracer can determine how to shade the results of both passes
for a range of effects. BnsView can fully ray-trace molecular data
using opaque geometry, volume data, or both for a wide range of
visual effects. For example, we can render ball-and-stick only with

Figure 4: Ray tracing modalities with bnsView. From left to right: ball-and-stick with diffuse illumination and shadows (58 fps on
the Xeon Phi), ambient occlusion (1.8 fps), and path traced with a metal BRDF (0.25 fps); unlit volume rendering with volumetric
shadows (16 fps), and the same with gradient lighting (3.7 fps).

ambient occlusion or a reflective metal, or use volume rendering for
occlusion rays, achieving a soft-shadow effect. Several examples
are shown in Figure 4.

5. RESULTS
We present the results of our experiments below. Unless stated oth-
erwise, the following benchmarks were conducted using a 1024×
1024 frame buffer on a visualization node of Stampede with dual
8-core (16 cores total) 2.7 GHz Intel R©Xeon

TM
E5-2680 with 32

GB RAM, an Intel R©Xeon Phi
TM

SE10P with 61 cores at 1.1 GHz
with 8 GB RAM, and an NVIDIA K20 (Kepler) GPU with 6 GB
RAM. All computations were carried out in single-precision float-
ing point. On the CPU, we used the 8-wide AVX instruction set.

5.1 Overall performance comparison
We evaluated bnsView on the CPU, bnsView on MIC, and Nanovol
on the GPU for five molecular datasets ranging from 20 thousand to
15 million atoms. We considered a “far” and “near” reference view,
and report performance. For both volume rendering methods, we
used a fixed step size of 0.5 samples per voxel unit. We use the
same pre-integrated transfer function with a 256-bin lookup table.
For our RBF volume data we used 4 voxels per Ångström for all
data sets except the silicon fissure (SiO2) and alumina nanospheres
(ANP3), which used 1 voxel per Ångström to fit the memory con-
straints of the GPU and MIC. To save space, we also cast volume
data from float to one-byte scalars.
BnsView and Nanovol ray cast molecular data similarly, using dif-
ferent algorithms. These algorithms were chosen to maximize per-
formance and maintain flexibility in these respective systems, not
explicitly to make the fairest comparison for this paper. We chose
coherent BVH traversal in bnsView because it is a known efficient
method for handling large geometry on the CPU. Likewise, Nano-
vol was developed using a uniform grid because that performed
well for traversal of structured data on the GPU [21]. In develop-
ment of Nanovol [28], it was assumed that volume rendering would
invariably be the performance bottleneck, and that a grid accelera-
tion structure would be sufficient. This generally holds true, but for
large molecular data when a coarse grid is chosen, the cost of ball-
and-stick rendering increases relative to the cost of volume render-
ing. More efficient ball-and-stick ray tracing, for example using
BVH traversal [4] would be possible on the GPU, but would likely
require a reimplementation of Nanovol in CUDA or OpenCL, and
falls outside the scope of our work. Despite their different choice
of algorithm, bnsView and Nanovol are functionally (and intention-
ally) very similar and exhibit shared behavior. Compared to other
systems such as MegaMol, ParaView or VisIt, comparison of these
two systems, while acknowledging their differences, is fair.
In all, we are able to achieve interactive performance for ray casting
on all platforms. We show results in Table 3 and reference scenes in

FB size (MP) .0625 .25 1 4 16
bnsView 44 14 4 1.1 .3
nanovol 18 5 2 0.7 .19

Table 1: Performance in fps scaling to frame buffer size
(megapixels).

N. cores 1 2 4 8 16
bnsView .394 .779 1.54 3.05 5.93

Table 2: Performance in fps scaling to number of cores.

Figure 6. For ball-and-stick geometry alone, bnsView on the CPU
and MIC performs better than Nanovol on the GPU by up to 2×
– 5×. This can be explained by the efficiency of coherent BVH
traversal employed by bnsView, compared to the grid implementa-
tion of Nanovol. In particular, building coarser grids due to GPU
memory constraints decreases efficiency, and performance suffers
when many balls and sticks reside in each grid cell, as discussed
above.
For volume rendering alone, Nanovol on the GPU is generally faster
than bnsView on both the CPU (2× – 7×, average 5×) and the MIC
(0.65× – 5.7×, average 2.5 ×). BnsView and Nanovol employ the
same volume rendering algorithm (grid traversal with macrocells),
with the GPU having the advantage of optimally cache-aligned 3D
texture and built-in hardware for texture sampling, interpolation,
and caching. Despite this, GPU volume-only performance is not
always better: with larger volume data such as the nanosphere740k
(1 GB) and ANP3 (2 GB) datasets, the MIC outperforms the GPU
by up to 1.5×. This is especially surprising given that bnsView
uses no special bricking and paging of large volume data, com-
pared to the native 3D texture format of the GPU; we suspect the
performance advantage is due to better behavior of MIC for cache-
incoherent memory access. Gradient lighting with central differ-
ences is expensive for bnsView, incurring a 1.5× – 3× performance
penalty compared to unlit volume rendering. In contrast, lighting
is only slightly (10-20%) more costly for Nanovol on the GPU. Al-
though volume lighting is not always used in practice, it is worth
noting that it is faster on the GPU, likely due to that platform’s ef-
ficiency for algorithms with good cache locality. Comparing CPU
to GPU and Xeon Phi

TM
performance, we note that while the CPU

renders more slowly than accelerators or co-processors (on aver-
age, a dual-socketed CPU configuration is roughly 2× slower than
one Xeon Phi

TM
accelerator board), it is still capable of interactive

performance, and in particular is not subject to the same scene size
limits that GPUs and accelerators are. Generally, the CPU is bet-
ter at handling geometry and worse at volume rendering, arguably
due to our SandyBridge-based CPUs’ lack of hardware-support for
gather which is available on both GPU and Xeon Phi

TM
(as well as

on some newer CPU generations).

Figure 6: Reference scenes. From left to right: Al2O3 nanobowl (20K atoms), small carbon nanosphere (90K atoms), large carbon
nanosphere (740K atoms), SiO2 fissure (5M atoms), and ANP3 alumina nanoparticle combustion (15M atoms).

Figure 7: Reference scenes in bnsView with volumetric lighting and shadows.

-­‐1	

-­‐0.5	

0	

0.5	

1	

1.5	

2	

0.0625	
 0.25	
 1	
 4	
 16	

log	

(FPS)	

Frame	
 buffer	
 size	
 (MP)	

bnsView	

Nanovol	

-­‐0.6	

-­‐0.4	

-­‐0.2	

0	

0.2	

0.4	

0.6	

0.8	

1	

1	
 2	
 4	
 8	
 16	

log	

(FPS)	

number	
 of	
 CPU	
 cores	

Figure 5: Log-scale frame rate plotted against frame buffer
size (left) and number of cores (right).

5.2 Frame buffer size and number of cores
In Figure 5-left, we benchmark the nanosphere740k “far” scene us-
ing volume rendering at varying frame buffer sizes (2562 to 40962).
Generally, we see GPU performance increase at a faster rate with
respect to frame buffer size, up until the 4 MP mark where both
systems are roughly 3× slower than 1 MP (5 fps vs 1.5 fps for

bnsView, 2 fps vs 0.70 fps for Nanovol). This implies the GPU
implementation depends more strongly on coherence for perfor-
mance, and at high enough resolution it makes less difference.
In Figure 5-right, we examine bnsView performance (again with
the nanosphere740k far scene) with one to sixteen cores of a 2.7
GHz E5-2680 Sandy Bridge Xeon CPU. We achieve 94% scalabil-
ity at 16 cores, likely due to non-uniform memory access (NUMA)
effects.

5.3 Remote visualization with bnsView
We integrated bnsView with the DisplayCluster [18] framework to
enable remote in-transit visualization of a live molecular dynam-
ics simulation (a one million atom version of the large nanosphere
model in Figure 6). Using eight nodes of Stampede, and using MPI
for image-parallel rendering with replicated data, we performed vi-
sualization on the Intel R©Xeon Phi

TM
co-processors while the sim-

ulation (using LAMMPS [27]) ran on the nodes’ CPUs. We were
able to achieve 20 fps for a 4096×2048 frame buffer streaming to
Stallion, TACC’s 80-panel, 328 megapixel tiled display at the Uni-
versity of Texas at Austin. This corresponds closely to the per-node

Dataset nanobowl ns90k ns740k SiO2 ANP3
num. atoms (M) 0.020 0.092 0.742 4.8 14.7

data size per timestep (MB) 0.8 3 40 160 950
geometry size (MB) 0.7 6 52 130 504

BVH size (MB) 0.5 4 34 160 430
str. vol size (MB) 1.1 11 720 92 2012

voxels per Ångström 4 4 4 1 1
bond build time (s) 0.03 0.18 2 10 28
BVH build time (s) 0.08 0.9 7.5 50 128

str. vol build time (s) 0.6 1.1 128 35 70
bnsView (CPU) b&s 63 / 55 42 / 45 39 / 40 33 / 45 17.4 / 30
Intel R©Xeon

TM
volume 15.1 / 7.94 8.75 / 9.31 6.82 / 7.91 15.3 / 7.67 1.3 / 4.0

E5-2680 vol+b&s 22 / 15 8.6 / 10.2 6.07 / 7.85 13.3 / 7.65 1.31 / 6.4
vol+b&s, lit 6.15 / 4.02 2.42 / 2.97 1.57 / 2.46 4.51 / 2.02 0.35 / 1.91

bnsView (MIC) b&s 160 / 130 90 / 95 70 / 41 72 / 91 33 / 48
Intel R©Xeon Phi

TM
volume 53 / 32 26 / 28 19.6 / 22.5 36 / 40 3.59 / 12.3

SE10P vol+b&s 71 / 46 23.3 / 28.3 18.1 / 23.8 39 / 33 3.22 / 28.0
vol+b&s, lit 36 / 22 12.4 / 14.8 9.98 / 14.1 20.3 / 10.7 1.18 / 14.1

nanovol (GPU) b&s 78 / 66 40 / 74 21 / 40 36 / 41 6.80 / 26
NVIDIA volume 73 / 60 36 / 54 12.9 / 24.3 105 / 88 3.51 / 70
Tesla K20 vol+b&s 34 / 30.5 20.7 / 29.9 7.0 / 11.6 20.1 / 24.4 2.63 / 19.5

vol+b&s, lit 41 / 32.5 19.5 / 26 6.0 / 10.7 19.6 / 20.9 2.50 / 17.3

Table 3: Performance for (far / close) views, in frames per second, at 1024×1024 resolution for five molecules ranging from 20K to
15M atoms. The fastest fps result for each render type is in bold font. Reference images (using vol+b&s) are shown in Figure 6.

performance at 1 MP from Table 3. Using sixteen nodes of Stam-
pede, we generated a 32768× 8192 image at 0.5 fps, successfully
utilizing most of the display at native resolution. Using 128 Stam-
pede nodes, we were able to fill a 512 megapixel frame buffer at 2
fps (see Figure 1).
BnsView updates geometry in a separate thread whenever a new
timestep arrives, allowing scientists to interact with the run as it
progresses. The use of a platform-independent SPMD compiler
opens up new possibilities for remote, in-transit and in situ visual-
ization of this kind, with either the CPUs or the MIC co-processors
tasked with rendering and the other with computation, using the
same rendering algorithm and SPMD code independent of the un-
derlying hardware or instruction set.

6. CONCLUSION
We have presented an efficient method for large molecular visu-
alization on CPU and MIC architectures, capable of ray casting
millions of ball and stick glyphs and efficiently volume render-
ing both from precomputed structured data. We used coherent
BVH traversal in a ray tracer implemented in an SPMD compiler
to achieve high performance across both CPUs and Intel R©Xeon
Phi

TM
co-processors without having to write dedicated code for each

platform. We find our method to be competitive with Nanovol on
the GPU for similar tasks. For volume and ball-and-stick ray cast-
ing, bnsView is up to 2× faster on the Intel R©Xeon Phi

TM
’s, and

competitive on the CPU with a ray caster performing similar tasks
on a state-of-the-art K20 GPU. With the implementations we have
chosen, the GPU is more capable for some tasks (volumetric light-
ing), and the CPU/Intel R©Xeon Phi

TM
at others (ray casting opaque

geometry).
The main barrier to using our implementation for in-transit visual-
ization is preprocess time. In particular, precomputing structured
data is the most significant preprocess bottleneck. This could be
avoided altogether by directly rendering from the particle data; an
approach we would like like to further investigate in future work.
If the bottleneck around computing the structured data could be

avoided the next biggest bottleneck would be BVH construction
time, which in our current implementation is clearly non-interactive.
Integrating our framework with some of the fast BVH builders that
have recently been added to the Embree framework interactive re-
builds should be possible even for non-trivial data sets. We would
also be interested in lazy (implicit) BVH builds, e.g. [2, 19, 34].
In addition, in future work we would also like to investigate larger
distributed data with our system. Since both IVL and RIVL are
closed-source experimental codebases, in order to make our soft-
ware more accessible we also plan future development around the
open-source ISPC and Embree ray tracing frameworks [36]. Ul-
timately, we would like to construct a common framework with
which to evaluate similar visualization algorithms on CPU, Intel R©Xeon
Phi

TM
, and GPU, using Stampede as a testbed.

7. ACKNOWLEDGMENTS
This work was funded in part by National Science Foundation grants
OCI-1134872 and ACI-1339863. Additional funding was provided
by a Computational Postdoctoral Fellowship at Argonne National
Laboratory under the American Reinvestment and Recovery Act
(ARRA) and the research used resources of the Argonne Leader-
ship Computing Facility at Argonne National Laboratory, both of
which were supported by the Office of Science of the U.S. De-
partment of Energy under contract DE-AC02-06CH11357. At Ar-
gonne National Laboratory, we would like to thank Maria Chan
at the Center for Nanoscale Materials and Kah Chun Lau at the
Materials Science Division for the nanobowl and nanospheres data
sets, respectively. We thank Ken-ichi Nomura at the University of
Southern California for the SiO2 fissure and ANP3 data sets.

8. REFERENCES[1] NVIDIA CUDA Compute Unified Device Architecture -
Programming Guide, 2007.

[2] A. T. Áfra. Incoherent ray tracing without acceleration
structures. In Eurographics (Short Papers), pages 97–100,

2012.
[3] J. Ahrens, B. Geveci, and C. Law. Paraview: An end user

tool for large data visualization. the Visualization Handbook.
Edited by CD Hansen and CR Johnson. Elsevier, 2005.

[4] T. Aila and S. Laine. Understanding the efficiency of ray
traversal on gpus. In Proc. High-Performance Graphics
2009, pages 145–149, 2009.

[5] C. Bajaj, P. Djeu, V. Siddavanahalli, and A. Thane. Texmol:
Interactive visual exploration of large flexible
multi-component molecular complexes. In Proceedings of
the conference on Visualization’04, pages 243–250. IEEE
Computer Society, 2004.

[6] J. Bigler, A. Stephens, and S. G. Parker. Design for parallel
interactive ray tracing systems. In Interactive Ray Tracing
2006, IEEE Symposium on, pages 187–196. IEEE, 2006.

[7] C. Brownlee, T. Fogal, and C. D. Hansen. GLuRay:
Enhanced ray tracing in existing scientific visualization
applications using OpenGL interception. In Eurographics
Symposium on Parallel Graphics and Visualization, pages
41–50. The Eurographics Association, 2012.

[8] C. Brownlee, J. Patchett, L.-T. Lo, D. DeMarle, C. Mitchell,
J. Ahrens, and C. D. Hansen. A study of ray tracing
large-scale scientific data in two widely used parallel
visualization applications. In Eurographics Symposium on
Parallel Graphics and Visualization, pages 51–60. The
Eurographics Association, 2012.

[9] H. Childs, E. Brugger, K. Bonnell, J. Meredith, M. Miller,
B. Whitlock, and N. Max. A contract based system for large
data visualization. In Visualization, 2005. VIS 05. IEEE,
pages 191–198. IEEE, 2005.

[10] M. Connolly. Molecular Surfaces: A Review. Network
Science Online, 1996.
http://www.netsci.org/Science/Compchem/feature14.html.

[11] C. Crassin, F. Neyret, S. Lefebvre, and E. Eisemann.
Gigavoxels: Ray-guided streaming for efficient and detailed
voxel rendering. In Proceedings of the 2009 symposium on
Interactive 3D graphics and games, pages 15–22. ACM,
2009.

[12] W. L. DeLano. The PyMOL molecular graphics system,
http://www.pymol.org. 2002.

[13] C. P. Gribble, T. Ize, A. Kensler, I. Wald, and S. G. Parker. A
coherent grid traversal approach to visualizing particle-based
simulation data. Visualization and Computer Graphics, IEEE
Transactions on, 13(4):758–768, 2007.

[14] S. Grottel, P. Beck, C. Muller, G. Reina, J. Roth, H.-R.
Trebin, and T. Ertl. Visualization of electrostatic dipoles in
molecular dynamics of metal oxides. Visualization and
Computer Graphics, IEEE Transactions on,
18(12):2061–2068, 2012.

[15] M. D. Hanwell, D. E. Curtis, D. C. Lonie, T. Vandermeersch,
E. Zurek, and G. R. Hutchison. Avogadro: an advanced
semantic chemical editor, visualization, and analysis
platform. Journal of cheminformatics, 4(1):1–17, 2012.

[16] D. Hughes, I. Lim, M. Jones, A. Knoll, and B. Spencer.
Ink-compact: In-kernel stream compaction and its
application to multi-kernel data visualization on
general-purpose gpus. In Computer Graphics Forum. Wiley
Online Library, 2013.

[17] W. Humphrey, A. Dalke, K. Schulten, et al. VMD: visual
molecular dynamics. Journal of molecular graphics,
14(1):33–38, 1996.

[18] G. P. Johnson, G. D. Abram, B. Westing, P. Navratil, and
K. Gaither. Displaycluster: An interactive visualization
environment for tiled displays. In Cluster Computing
(CLUSTER), 2012 IEEE International Conference on, pages
239–247. IEEE, 2012.

[19] T. Karras and T. Aila. Fast parallel construction of
high-quality bounding volume hierarchies. Proc.
High-Performance Graphics, 2013.

[20] A. Knoll, M. Chan, K. Lau, B. Lui, J. Greeley, L. Curtiss,
M. Hereld, and M. Papka. Uncertainty classification and
visualization of molecular interfaces. International Journal
of Uncertainty Quantification, 3(2):157–169, 2013.

[21] A. Knoll, Y. Hijazi, R. Westerteiger, M. Schott, C. Hansen,
and H. Hagen. Volume ray casting with peak finding and
differential sampling. Visualization and Computer Graphics,
IEEE Transactions on, 15(6):1571–1578, 2009.

[22] A. Knoll, S. Thelen, I. Wald, C. D. Hansen, H. Hagen, and
M. E. Papka. Full-resolution interactive CPU volume
rendering with coherent BVH traversal. In Pacific
Visualization Symposium (PacificVis), 2011 IEEE, pages
3–10. IEEE, 2011.

[23] A. M. Knoll, I. Wald, and C. D. Hansen. Coherent
multiresolution isosurface ray tracing. The Visual Computer,
25(3):209–225, 2009.

[24] R. Leißa, S. Hack, and I. Wald. Extending a c-like language
for portable SIMD programming. In Proceedings of the 17th
ACM SIGPLAN symposium on Principles and Practice of
Parallel Programming, pages 65–74. ACM, 2012.

[25] S. Parker, P. Shirley, Y. Livnat, C. Hansen, and P. Sloan.
Interactive ray tracing for isosurface rendering. In
Visualization’98. Proceedings, pages 233–238. IEEE, 1998.

[26] M. Pharr and W. Mark. ispc: A SPMD compiler for
high-performance CPU programming. Proceedings of
Innovative Parallel Computing (InPar), 2012.

[27] S. Plimpton. Lammps user manual. Sandia National
Laboratory, 2005.

[28] K. Reda, A. Knoll, K. Nomura, M. Papka, A. Johnson, and
J. Leigh. Visualizing large-scale atomistic simulations in
ultra-high resolution immersive environments. In IEEE
LDAV (to appear), 2013.

[29] M. Tarini, P. Cignoni, and C. Montani. Ambient occlusion
and edge cueing for enhancing real time molecular
visualization. Visualization and Computer Graphics, IEEE
Transactions on, 12(5):1237–1244, 2006.

[30] TOP500.org. Architecture Share for 6/2013, June 2013.
[31] I. Wald. On fast construction of SAH-based bounding

volume hierarchies. In Interactive Ray Tracing, 2007. RT’07.
IEEE Symposium on, pages 33–40. IEEE, 2007.

[32] I. Wald, S. Boulos, and P. Shirley. Ray tracing deformable
scenes using dynamic bounding volume hierarchies. ACM
Transactions on Graphics (TOG), 26(1):6, 2007.

[33] I. Wald, H. Friedrich, A. Knoll, and C. D. Hansen.
Interactive isosurface ray tracing of time-varying tetrahedral
volumes. Visualization and Computer Graphics, IEEE
Transactions on, 13(6):1727–1734, 2007.

[34] I. Wald, T. Ize, and S. G. Parker. Fast, parallel, and
asynchronous construction of bvhs for ray tracing animated
scenes. Computers & Graphics, 32(1):3–13, 2008.

[35] I. Wald, P. Slusallek, C. Benthin, and M. Wagner. Interactive
Rendering with Coherent Ray Tracing. Computer Graphics
Forum (Proceedings of EUROGRAPHICS), 20(3):153–164,

2001.
[36] S. Woop, C. Benthin, and I. Wald. Intel embree 2.0:

Photorealistic ray tracing kernels, http://embree.github.io.
2013.

	Introduction
	Related Work
	Molecular Visualization
	CPU Ray Tracing

	Background
	Volumetric modeling of molecular data
	SPMD Coherent Ray Tracing

	Implementation
	Preprocess pipeline
	Ray tracing framework
	BVH traversal, ball and stick intersection
	Structured volume rendering and shading
	Ray tracing modalities

	Results
	Overall performance comparison
	Frame buffer size and number of cores
	Remote visualization with bnsView

	Conclusion
	Acknowledgments
	References

