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The use of simulation science as a means of 
scientifi c inquiry is increasing at a tremen-
dous rate. The process of mathematically 

modeling physical phenomena, experimentally 
estimating important key modeling parameters, 
numerically approximating the solution of the 
mathematical model, and computationally solving 
the resulting algorithm has inundated the scien-
tifi c and engineering worlds. As increasingly more 
science and engineering practitioners advocate 
the use of computer simulation for analyzing and 
predicting physical and biological phenomena, the 
computational science and engineering (CS&E) 
community has started asking introspective ques-
tions, such as1

Can computer-based predictions be used as a re-
liable basis for making crucial decisions?
How can you assess a computer-based predic-
tion’s accuracy or validity?
What confi dence (or error measures) can be as-
signed to a computer-based prediction of a com-
plex event?

Those researchers outside traditional computa-
tional engineering and science areas (traditional 
areas such as computational fl uid dynamics [CFD] 
and computational solid mechanics [CSM]) are 
sometimes shocked to hear these questions being 
asked, as they often have assumed that these types 
of issues had been settled long ago—at the incep-
tion of computing and computational modeling. A 
study of the computational science and engineering  
literature from the past 40 years clearly shows that 
these questions have not been ignored. 

Scientists who employ computing for solving 
problems have always been concerned with accu-
racy, reliability, and robustness. It was not until 
the past 10 years, however, that the CS&E com-
munity has joined together in an attempt to gen-
erate a unifi ed perspective from which to evaluate 
these questions. The consequence of these efforts 
has led to what some are calling a new CS&E 
discipline—validation and verifi cation, or V&V, 
which seeks to articulate processes by which we 
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can obtain answers to these questions. Let us take 
a closer look. 

Validation	and	verifi	cation	
Figure 1 shows the common simulation science 
pipeline consisting of the physical phenomena of 
interest, mathematical modeling of the phenom-
ena, simulation, and evaluation (often through a 
combination of postprocessing and visualization). 
It also identifi es where validation and verifi cation 
fi t into this process (we will further explain these 
terms later in the article).

Scientists frequently use visualization tech-
niques to help them assess their simulation re-
sults. Visualization is the lens through which 
scientists often view modeling and discretization 
interactions—hence, visualization itself must be 
explicitly considered as part of the V&V process. 
Simulation researchers often create their own vi-
sualization tools, claiming that they “don’t trust” 
visualization techniques that they themselves have 
not implemented. CFD researchers creating visu-
alizations of their own data joke that they are ex-
perts in the presentation of their own brand of 
CFD: colorful faulty dynamics. Such a statement 
can only be truly understood in the light of the 
V&V process; it is the means by which simulation 
scientists gain confi dence in their algorithms and
implementations as well as those by others within 
their community. To gain the simulation commu-
nity’s confi dence, the visualization process must 
come under this process’s umbrella.

Visualization techniques have lagged behind in 
error and uncertainty analysis of the methodology 
as a component of a larger scientifi c pipeline. Few 
systematic research efforts have addressed quanti-
fying and minimizing the visualization error bud-
get (a concept we will discuss later in the article). 
Furthermore, there is a real need to look at this 
visualization error budget in the context of the er-
ror that the rest of the computational pipeline gen-
erated and how it impacts visualization algorithms 
(note that this is distinct from the area of “error 
and uncertainty visualization,” which is concerned 
with visualizing errors and uncertainties). 



	 IEEE	Computer	Graphics	and	Applications	 79

We argue that there is a need for creating a focus 
area of visualization research that we tentatively 
call “verifiable visualizations” that will consider 
both the errors of the individual visualization 
component within the scientific pipeline and the 
interaction between and interpretation of the ac-
cumulated errors generated in the computational 
pipeline, including the visualization component. 
We came to this conclusion on the basis of our 
realization that although strict error analysis and 
verification has been the norm in simulation sci-
ence, visualization has lagged behind other com-
putational techniques in this regard.

V&V	within	CS&E
The first goal of the current V&V emphasis within 
the CS&E community is to arrive at a common no-
menclature and semantic understanding of com-
monly used terms. This is imperative to establish 
V&V as the common base or process by which re-
searchers build scientific trust in simulation codes 
and results. We will rely on other work1 as a guide 
and refer interested readers to it for a more com-
plete philosophical and technical discussion of 
V&V. Let us look at a brief overview of several key 
V&V concepts.

As Figure 1 illustrated, the simulation science 
scientific method consists of the following stages: 

Scientific problem of interest (“physical process”). 
This stage states the scientific or engineering 
problem of interest. Scientists should develop 
questions so that they can evaluate quantifiable 
metrics for determining the simulation’s level 
of success. 
Modeling (“mathematical model”). This stage 
concerns developing a model that abstracts the 
problem of interest’s salient features so that ex-
ploring and evaluating the model lets research-

■

■

ers find an answer to the questions specified 
concerning the problem of interest. Modeling 
techniques include, but aren’t limited to, deter-
ministic or probabilistic, discrete, or continuous 
mathematical models. 
Computation (“simulation”). This stage con-
cerns generating algorithms and implementa-
tions that accurately and efficiently evaluate the 
model over the range of data needed to answer 
the questions of interest. 
Evaluation (“visualization”). This stage concerns 
the data’s distillation and evaluation produced 
through computational simulation to answer 
the questions of interest and provide quantifi-
able determination of the experiment’s success.

With this view of the simulation pipeline in place, 
we can now address the definitions of validation 
and verification (definitions are taken directly 
from other research1):

validation—the process of determining whether 
a mathematical model of a physical event rep-
resents the actual physical event with sufficient 
accuracy, and
verification—the process of determining whether 
a computational model obtained by discretizing 
a physical event’s mathematical model and the 
code implementing the computational model 
can be used to represent the model with suf-
ficient accuracy.

From these two definitions, we can see that the 
idea of the error budget is fundamental to simu-
lation science. An error budget comprises those 
assumptions and approximations that introduce 
error (or approximations) into the simulation 
process and their corresponding impact (or cost) 
on the scientific pipeline. Three types of errors are 
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critical components of the scientific process and 
must be quantified and eliminated: 

modeling—errors introduced through the choice 
of a mathematical model to describe observable 
data, 
approximation—errors introduced in the numeri-
cal computation of solutions of the model, and 
uncertainty—errors due to variations in model 
parameters. 

Recognizing these errors lets scientists judiciously 
evaluate which component of the process (for ex-
ample, modeling or numerical approximations) 
requires refinement in light of comparison with 
the real phenomenon of interest. 

The verification process is commonly partitioned 
into two areas that most visualization researchers 
will recognize: solution verification and code verifi-
cation. In solution verification, effort is directed 
toward assuring the input data’s accuracy, esti-
mating the numerical approximation error due to 
discretization, and assuring the resulting simula-
tion output data’s accuracy. In code verification, 
effort is directed toward finding and removing 
source-code mistakes and (numerical) algorith-
mic errors. Once these two forms of debugging 
are accomplished, researchers can not only cor-
rect and refine their scientific tools, but also 
build confidence in the design and handling of 
the scientific tool and the corresponding results 
it produces.

When these results are used in the scientific set-
ting, we can examine differences between compu-
tational and experimental results in light of the 
assumptions used when generating the model and 
simulation. If visualization is the lens through 
which simulation scientists view their data, is 
that lens free of flaws? Is it possible that visual 
discrepancies between simulation and experimen-
tal results could be due to assumptions and ap-
proximations built into the visualization method? 
Are the visualization techniques designed based 
on (and in particular, to respect) properties of the 
model and the simulation used to generate the vi-
sualized data? To place visualization firmly within 
the scientific process, it must undergo the same 
level of rigorous analysis.

The	state	of	visualization	V&V
To gauge the extent to which verification already 
exists in the visualization community, we reviewed 
papers from the past five years (2003 to 2007) of the 
IEEE Visualization conference (http://vis.computer. 
org). To establish the extent to which the nomen-
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clature is already used, we searched the texts of 
these papers for occurrences of “verify,” “validate,” 
and other forms of these words. Fewer than half of 
the papers ever used any of these words, let alone 
in the context of validation or verification. To 
check whether these concepts exist, we reviewed a 
subset of the papers in greater detail. While many 
include sections presenting a logical and mathe-
matically sound derivation of their technique and 
evaluation of their algorithms’ performance, only 
a handful discussed concepts related to either vali-
dation or verification. Those that did tended not to 
adhere to any standard organization or systematic 
methodology.

However, just as with computational engineer-
ing science practitioners prior to the current V&V 
movement, the visualization community has not 
been summarily negligent or ignored verification 
considerations when designing and implement-
ing visualization techniques. As early as 1995, Al 
Globus and Sam Uselton2 specifically entreated 
the visualization community to adopt verification 
techniques (in terms of error analysis and soft-
ware verification). They even proposed a meth-
odology for evaluating visualization software. 
However, because there is no standard framework 
for verification and validation in visualization, the 
community employs a variety of techniques to de-
fend its work. These range from visual compari-
sons between the results and the observed physical 
phenomena to measurements based on a well-de-
fined set of benchmarks. Furthermore, given that 
resulting visualizations are intended to be viewed 
by humans, some researchers have investigated 
human perception to measure whether visual-
izations are adequately interpreted.3,4 In most of 
these works, the focus is not so much on verifying 
the visualization techniques, but on the closely re-
lated problem of evaluating visualization methods 
for effectiveness.

In the related field of computer graphics, a major 
goal for graphics practitioners is rendering scenes 
that are either indistinguishable from a photograph 
of a real scene or evoke the same visual response 
as that real scene. Perhaps the most straightfor-
ward way of determining whether such a criterion 
is met is to do a side-by-side comparison of a pho-
tograph and a rendering of the same scene. Given 
that certain types of visualization also attempt 
to present data as it would appear in the physical 
world, a similar type of argument has been applied 
in our field. For example, physicists investigating 
3D flows might wish to visually compare their vi-
sualizations with physical observations of flows 
created under the same initial conditions.



	 IEEE	Computer	Graphics	and	Applications	 81

Because many visualization techniques capture 
variables that are not visible in a physical setting, 
comparing a visualization with physical observa-
tions is not often possible. However, we can still 
make side-by-side comparisons between different 
visualization techniques. One type of verifica-
tion leveraging the graphics processing unit is a 
comparison between GPU-accelerated techniques 
and software-based reference implementations. 
For example, Dan Laney and his colleagues pres-
ent a major speedup in understanding radiograph 
simulations that they verified by comparing the 
hardware-accelerated technique with the existing 
software-based implementation.5

In concert with comparison-based verification, 
some visualization techniques use benchmark data 
sets. Some of the data sets have become the stan-
dard because they were used in the original papers, 
whereas others were designed to expose interesting 
cases. For example, the Marschner-Lobb test vol-
ume is an example of an artificially generated data 
set representing a variety of pathological properties 
for a range of visualization and processing tech-
niques.6 Researchers have proposed test data sets 
and benchmarks for a variety of topics including 
streamlines7 and topology.8

Another method that is often employed in the 
visualization community is an evaluation by us-
ers and domain experts. For example, in Diffusion 
Tensor—Magnetic Resonance Imaging (DT-MRI), 
researchers can rely on an expert’s domain knowl-
edge to check correct clustering or segmentation 
of specific regions of the brain.9 The medical com-
munity has relied on manual segmentation as 
ground truth; medical practitioners verify various 
automated segmentation methods by comparing 
their results against those generated manually by 
experts. Other subfields use user studies as well; 
for example, some work compares different 2D 
vector field visualization methods.10

While comparing the results can be instructive, 
verifying the accuracy of visualization techniques 
requires mathematical error determination. Many 
papers in our field provide a derivation of the visu-
alization given existing mathematical models, but 
not all quantify the error involved in evaluating 
the displayed quantities. Recent work details a case 
in which a misleading volume visualization led to 
unnecessary surgery for a patient.11 Uncertainty 
visualization is concerned with helping viewers 
understand such error visually,12 but it has also 
reminded visualization researchers of the impor-
tance of determining error.

Another example where error is being consid-
ered is error control in streamline integration. The 

goal of most streamline integration techniques 
is maximizing accuracy while minimizing error 
and computational effort. Both Runge-Kutta and 
extrapolation methods are common in the liter-
ature—with the choice of which integration tech-
nique to use chosen on the basis of a multitude of 
mathematical and computational factors, such as 
error per computational cost and availability (and 
strength) of error estimators, among others. The 
lack of smoothness at element or grid boundaries 
can cause large errors during integration, leading 
some to use adaptive error control techniques such 
as Runge-Kutta with error estimation and adaptive 
step size control. Verifying streamline accuracy is 
relegated to what has been accomplished for the 
numerical technique and ordinary differential 
equation (ODE) solver employed.

Because viewers come to their own conclusions, 
some have argued that visualization researchers 
are in the business of applied perception.13 It is not 
enough to ensure that each important aspect of a 
data set can be seen, but rather we must guarantee 
that a wide audience will understand it. Because 
of perceptive differences, visualization has been 
called a subjective field that relies on an expert’s 
domain knowledge to ensure correct interpreta-
tion.9 While these points are important, we argue 
that validation and verification are concerned with 
ensuring that the visualization accurately displays 
the information, not whether viewers interpret 
them correctly.

The	need	for	verifiable	visualization
We might naturally ask whether this is much ado 
about nothing—that is, is it the case that there 
exist concrete examples of visualization and data 
analysis methods that are currently used but do 
not necessarily respect some set of the constraints 
or properties that interest the user community? 
Are there methods (or methodologies) that could 
benefit from being included in the verification 
approach? To illustrate the issues, we use the ex-
cellent work of Guo-Shi Li, Xavier Tricoche, and 
Chuck Hansen as an example; most of the discus-
sion in this section is based on their work.14

Consider the following computational-science 
example. We are given a vector field u(x, y) = (u, 
v)T over a domain Cartesian lattice on Ω, and we 
wish to simulate for visualization purposes dye 
advection through this field. A model of dye dif-
fusion concentration C written in an Eulerian-
frame is 

∂
∂

= ⋅∇ = ∇C
t

C C( )u ν 2
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where the left-hand side denotes the Eulerian-frame 
equivalent of the total derivative of the time rate-
of-change of concentration and the right-hand side 
denotes second-order diffusion with parameter ν. 
Explicit time discretization of this equation can be 
quite expensive owing to CFL (Courant-Friedrich-
Levy) and diffusion number limit considerations. 
A semi-Lagrangian technique can solve equations 
of this form. We can use a splitting scheme in cas-
es in which Lagrangian upwinding discretizes the 
advection operator. The implicit Euler-Backward 
or Crank-Nicolson approaches handle is used for 
time-discretizing the diffusion term. The spatial 
and temporal discretization of the diffusion term 
is fairly straightforward using standard finite-dif-
ference techniques; the challenge is in the advec-
tion term’s discretization.

To solve the advection term in a Lagrangian 
fashion, we must evaluate the vector field u(x, y) 
at nonlattice coordinates, and hence some form 
of approximation of the vector field is necessary. 
A common approach is to use bilinear interpola-
tion for evaluating the velocity field. Although this 
approach is unconditionally stable even with rela-
tively long time-stepping, it is subject to numerical 
diffusion due to interpolation.

The result is a smearing artifact that is entirely 
due to the algorithm and not related to the physi-
cal process. In addition, the algorithm does not 
conserve the system’s invariant properties (such as 
mass). The interpolant can overshoot or undershoot 
the samples within the local stencil, causing an ar-
tificial increase or decrease of mass in the system. 
Figure 2 shows the errors that can accumulate ow-
ing to a methodology that does not explicitly respect 
the system’s invariant properties. Although visual-
ization researchers have developed several methods 
to suppress the numerical diffusion that is added 
due to the handling of the advection terms, they are 

not based on any physical properties of the underly-
ing problem. With current dye advection schemes, 
the data under analysis could be incorrectly inter-
preted owing to inaccuracies in the interpolation 
methods. Without proper verification techniques, 
these errors could continue to compound with each 
improvement to existing algorithms.

With the advent of programmable graphics 
hardware, advection techniques for visualization 
have increased substantially in interactivity. How-
ever, verifying these techniques is a difficult task 
that is frequently accomplished by comparing im-
ages generated with existing algorithms. We need a 
more formal verification process to guarantee that 
the recent speedups are not sacrificing the analysis’ 
integrity for the ability to see changes in real time.

In other disciplines, researchers have proposed 
physically based numerical schemes for dye advec-
tion that avoid numerical diffusion and conserve 
mass, based on an algorithm that uses quasi-
parabolic functions to represent the distribution 
of dye material within control volumes in a piece-
wise fashion. These schemes address the interpola-
tion issue, but from a different perspective than is 
normally taken in the visualization community. 
The schemes do not just attempt to eliminate in-
terpolation errors by going to higher-order inter-
polation (in isolation), but rather step back and 
investigate which model and discretization prop-
erties are required to solve the problem of inter-
est. As a consequence of this investigation, you not 
only get a higher-order interpolation scheme (and 
hence less diffusion), but also a particular high-
order scheme that preserves a fundamental prop-
erty of the differential operator you were trying to 
simulate. Li and colleagues14 took the first step at 
incorporating this method into texture advection, 
and thus achieved visualizations that are closer to 
the ground truth.

Figure	2.	Visualization	of	a	synthetic	flow	of	zero	divergence	exhibiting	a	splitting	behavior.	(a)	The	properties	
of	the	flow	using	a	line	integral	convolution	algorithm	that	shows	the	behavior	of	the	field.	(b)	Current	dye	
advection	algorithms	exhibit	interpolation	errors	that	make	the	field	appear	divergent	and	diffusive.	(c)	
Physically	based	dye	advection	would	result	in	the	correct	splitting	behavior.	Images	used	with	permission.14

(a)	 (b)	 (c)
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There is a need for creating a focus area of visu-
alization research that we tentatively call “veri-

fiable visualizations” that will consider both the 
errors of the individual visualization component 
within the scientific pipeline (as you would accom-
plish verification of the simulation component) and 
the interaction between and interpretation of the 
accumulated errors generated in the computational 
pipeline, including the visualization component. 

To begin this process, we must first clearly un-
derstand what V&V encompasses and what it at-
tempts to accomplish. Most V&V efforts of this 
form set out to “[provide the] community with a 
common language, a conceptual framework, and 
general guidance for implementing the processes 
of computational model V&V” (adapted from 
the abstract of the American Society of Mechani-
cal Engineering-ASME 2006 Guide for Verification 
and Validation in Computational Solid Mechanics 
(http://catalog.asme.org/Codes/PrintBook/VV_
10_2006_Guide_Verification.cfm)

From this, we see that we need three compo-
nents for successful V&V efforts: a common lan-
guage, a conceptual framework, and guidance of 
implementation.

We advocate that the visualization community 
put into place a common visualization verification 
language, a framework consisting of data and vi-
sualization pipelines, and examples that individual 
researchers can mimic or extend while verifying 
their visualizations, and in doing so initiate a scien-
tific culture of verifiable visualization. Successfully 
completing this vision will provide the visualiza-
tion community with the framework for entering 
the V&V world—that is, in the same way that com-
putational scientists seek verifiable simulations, 
they will now be able to view their simulation data 
through the lens of verifiable visualization.

The process of creating such a framework is like-
ly to have other benefits. The data, code, and work-
flows that will be generated will not only serve for 
V&V but should also be useful for issues related to 
benchmarking and debugging in general. Also, by 
providing a platform for people to contribute their 
own workflows, we will encourage greater repro-
ducibility of scientific results. 
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