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The quantification of local surface morphology in the human cortex is important for examining population
differences as well as developmental changes in neurodegenerative or neurodevelopmental disorders. We
propose a novel cortical shape measure, referred to as the ‘shape complexity index’ (SCI), that represents
localized shape complexity as the difference between the observed distributions of local surface topology,
as quantified by the shape index (SI) measure, to its best fitting simple topological model within a given
neighborhood. We apply a relatively small, adaptive geodesic kernel to calculate the SCI. Due to the small size
of the kernel, the proposed SCI measure captures fine differences of cortical shape. With this novel cortical
feature, we aim to capture comparatively small local surface changes that capture a) the widening versus
deepening of sulcal and gyral regions, as well as b) the emergence and development of secondary and tertiary
sulci. Current cortical shape measures, such as the gyrification index (GI) or intrinsic curvature measures,
investigate the cortical surface at a different scale and are less well suited to capture these particular cortical
surface changes. In our experiments, the proposed SCI demonstrates higher complexity in the gyral/sulcal wall
regions, lower complexity in wider gyral ridges and lowest complexity in wider sulcal fundus regions. In early
postnatal brain development, our experiments show that SCI reveals a pattern of increased cortical shape
complexity with age, as well as sexual dimorphisms in the insula, middle cingulate, parieto-occipital sulcal and
Broca's regions. Overall, sex differences were greatest at 6 months of age and were reduced at 24 months, with
the difference pattern switching from higher complexity in males at 6 months to higher complexity in females
at 24 months. This is the first study of longitudinal, cortical complexity maturation and sex differences, in the
early postnatal period from 6 to 24months of age with fine scale, cortical shape measures. These results provide
information that complement previous studies of gyrification index in early brain development.
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Introduction

Many quantitative brain morphometric measurements, such as
regional volumes (Holland et al., 2014; Koran et al., 2014; Lange et al.,
2015;Marcus Jenkins et al., 2013; Sowell et al., 2002), cortical thickness,
and surface area (Hudziak et al., 2014; Sowell et al., 2004; Storsve et al.,
, University of North Carolina at
2014; Zielinski et al., 2014) have been used to analyze for brain devel-
opment, clinical differences, and diagnostic guidelines. These mea-
surements allow for analyses of the global or local developmental
trajectory over age, differential anatomical changes, and the rela-
tionship between anatomical changes and brain functions or envi-
ronment factors. As the human cerebral cortex is a highly folded,
convoluted object composed of sulci and gyri, the maturation
patterns of sulcal and gyral folding have increasingly been studied.

Historically, older studies of cortical folding have focused on global
measurements that encompass whole hemispheres, particularly the
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Table 1
Demographic information.

Number of scans
All Male Female

202 126 76

Time point 6 months
(mean age ± std)

82 (6.73 ± 0.78) 52 (6.76 ± 0.74) 30 (6.67 ± 0.86)

Time point 12 months
(mean age ± std)

82 (12.77 ± 0.78) 52 (12.68 ± 0.65) 30 (12.93 ± 1.00)

Time point 24 months
(mean age ± std)

38 (24.64 ± 0.58) 22 (24.69 ± 0.64) 16 (24.59 ± 0.49)
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global gyrification index (GI)measurement, which is defined as the area
ratio between the outer cortical surface, such as cerebral hull surface,
and the cortical gray matter surface (Armstrong et al., 1995). While
global GI measurements have the strong advantage of scale invariance,
they generally cannot yield localized measures of complexity. Another
global cortical folding measure is the fractal dimension (FD) (Free
et al., 1996), which provides information about the inherent scale of
the folding in such a complex structure. It has the advantage of being
free of a reference smooth surface, such as the cerebral hull for GI, but
it has shown to be very sensitive to noise in the surface reconstruction
(Free et al., 1996).

More recently, local measurements have been emerging due
to developing computing technology. The traditional FD analysis
used a box-counting approach, but that has to assure the subject
alignment and normalize of brain size. The spherical harmonic
reconstruction reduced the effect of alignment error and brain size
variant (Yotter et al., 2011). Also, the cortical surface's local intrinsic
or extrinsic curvatures at each location were proposed as surrogate
measures of cortical folding (Gaser et al., 2006; Li et al., 2010,
2014). Both intrinsic (called Gaussian curvature) and extrinsic
curvatures (called mean curvature) are fundamental measurements
of local surface shape. Intrinsic curvature captures the tangential
expansion of the local surface and quantifies the amount of excessive
local area compared to the projected area in a tangential plane with
the sign capturing whether the local setting is cup-like or saddle-like
(Ronan et al., 2012, 2014). Similarly, local sulcal depth (Dierker et al.,
2015; Meng et al., 2014; Rettmann et al., 2006) and sulcal length
(Kochunov et al., 2010) measures have been suggested for analysis
as sulcal depth captures a coarse, simplified measure of folding
distance to the cerebral hull in the child and fetal cerebral cortex
of primates.

However, the definition of kernel size or window would be an issue
in performing the local analysis. The localmeasures of GI have been pro-
posed using a larger sized kernel defined by Euclidean distance (Su
et al., 2013) or a quasi-geodesic N-ring neighborhood (Li et al., 2014;
Schaer et al., 2008). The Euclidean spherical kernel was defined using
intersecting locations between the outer surface and a sphere of fixed
radius. For the local GI analysis to be sensible, an adaptive kernel size
needs to encompass at least one sulcal or gyral region. Larger sizes
were usually chosen, typically larger than 20 mm–25 mm, which
leads to local GI measures that encompass several gyri and sulci within
the same kernel. Noneof the local curvature-based studies known to the
authors take into account the overall brain surface size, which affects
the density of the cortical surface sampling. Thus, larger brains would
generally encompass larger local areas for averaging the curvature
within a certain kernel size than smaller brain would. Local GI studies
often correct for overall brain size differences. However, the local
change of surface area has not been taken into account in longitudinal
studies of brain development (Li et al., 2014).

Sulcal or gyral patterns analyzed via the abovemeasures may reflect
morphological development and pathological functioning associated
with neuropsychiatric disorders, such as autism and schizophrenia
(Lui et al., 2011). The development of morphological folding is apparent
from approximately 16 weeks of gestational age and develops into an
increasingly complex folding pattern into the early childhood period
(Armstrong et al., 1995; Wright et al., 2014; Zilles et al., 1988). While
the predominant view is one of consistent increase in cortical folding
complexity, with considerable variability of the exact pattern across
different studies, Rettmann et al. (2006) have reported a decrease in
local cortex curvature in the central, cingulate, and parieto-occipital
sulcal regions over the first 4-years of human development. The
observed diversity of reported results in cortical folding studies may
arise from multiple factors, mainly the selection of the measure, as
well as the choice of scale. Studies of sulcal depth and local curvature
yield measures at a very fine scale, measured just within the immediate
neighborhood of a cortical location, whereas studies of local GI yield
relatively large scale measures, capturing regions across multiple sulci
and gyri, combining regions that may be functionally quite divergent.

In this work, we propose an alternative scale that quantifies the
cortical folding via a local complexity metric computed within an
intermediate neighborhood size that does not span across multiple
gyri or sulci. This novel measure complements the existing set of
cortical folding measures and provides a novel viewpoint to the
study of cortical complexity that is relevant for understanding and
investigating underlying mechanisms of development in the early
postnatal period. This measure is able to distinguish whether a sulcal
or gyral region undergoes a widening or deepening process, which
would be undistinguishable via local GI measures. Also, we aim with
the measure to capture the emergence and development of secondary
and tertiary sulci with enhanced localization as compared to GI due to
the smaller kernel size. It is furthermore noteworthy that the discussion
of the kernel size is often treated with limited consideration. Like
intrinsic curvature and GI measures, the novel measure we propose
here is susceptible to the choice of the kernel size, which we aim to
address via the kernel size normalization. This normalization of the
kernel size allows the proposed surface complexity index (SCI) to
have invariant results in terms of brain size and also takes into account
expected surface area changes in longitudinal studies. In addition, the
SCI is directly measureable on surface points without the need of
reference surfaces, such as the smoothed or inflated/simplified brain
surface needed for the computation of GI. Finally, in a reliability study,
we demonstrate the robustness and stability of the SCI measure.

Method

Participants

We studied 202 brain MR images from typically developing subjects
with no family history of autism spectrumdisorder assessed at 6, 12 and
24 months of age as part of a National Institutes of Health-funded,
multi-site, Autism Centers of Excellence (ACE) Network study: the
Infant Brain Imaging Study (IBIS). The MRI scans were acquired at 4
different sites (University of North Carolina at Chapel Hill, University
of Washington at Seattle, Washington University at Saint Louis and
Children's Hospital of Philadelphia) each equipped with 3 T Siemens
Tim Trio scanners. The scan sessions included T1weighted (160 sagittal
slices with TR = 2400 ms, TE = 3.16 ms, flip angle = 8, field of view
224 × 256) and T2 weighted (160 sagittal slices with TR = 3200 ms,
TE = 499 ms, flip angle = 120, field of view 256 × 256) MRI scans. All
datasets possess the same spatial resolution of 1 × 1 × 1 mm3. We
selected the longitudinal MRIs between 6 and 12months of age and be-
tween6 and 24months of age in order to normalize the local kernel size.
The cohort included 76 scans from female subjects (mean months of
age: 12.91 ± 6.74) and 126 scans from male subjects (mean months
of age: 12.33 ± 6.35), see Table 1, from a total of 30 female subjects
(14 with 2 longitudinal and 16 with 3 longitudinal scans) and 52 male
subjects (30 with 2 longitudinal and 22 with 3 longitudinal scans).

A number of quality control procedures were employed to assess
scanner stability and reliability across sites, times, and procedures.
A Lego (Lego Group, Billund, Denmark) brick based phantom (Fonov
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et al., 2010) was scanned monthly at each location and analyzed to
assess image quality and quantitatively address site-specific regional
distortions. In addition, two adult subjects were scanned once per year
at each scanner and after any major scanner update. The data for
these phantoms were evaluated for scanner stability across sites and
time (Gouttard et al., 2008) and are also used here to assess stability
for the proposed cortical shape complexity measure.

Image processing and surface generation

The rawMR T1 and T2-weighted (T1w, T2w) imageswere corrected
separately for geometric distortions (Fonov et al., 2010), as well as for
intensity non-uniformity (Sled et al., 1998). All T2w imageswere rigidly
registered to their corresponding T1w images via standard mutual in-
formation registration using an Automatic Nonlinear Image Matching
and Anatomical Labeling (ANIMAL) tool (Collins et al., 1994; Fonov
et al., 2011). In the case of registration failure, we manually initialized
the registration procedure and reran the registration procedure.
Afterwards, both T1w and T2w images were rigidly transformed to
stereotaxic space based on the registration of the T1w scan (Collins
et al., 1994). A prior intensity growth map (IGM) was applied to both
T1w and T2w images for 12 month scans to enhance the contrast of
the WM/GM boundary due to under-myelination (Kim et al., 2013).
Tissue classification, as according to the Atlas-Based Classification
(ABC) (Van Leemput et al., 1999) and atlas based multi-modal ap-
proach, was performed to obtain white matter (WM), gray matter
(GM), cerebrospinal fluid (CSF), and background. For the 12 and
24 month scans, the inner and outer surface models were extracted
using an adapted version of the ‘Constrained Laplacian-Based Automat-
ed Segmentation with Proximities (CLASP)’ pipeline (Kim et al., 2005).
The surfaces for 6 month scans were generated by propagating surfaces
from corresponding 12 month scans via deformable multi-modal
within-subjects co-registration using ANTs (Avants et al., 2008). The
cortical surface model consisted of 81,920 high-resolution triangle
meshes (40,962 vertices) in each hemisphere. The smoothed middle
surface was obtained by averaging pial and white surfaces and then
two iterations of averaging based surface smoothing. Cortical surface
correspondencewas established via spherical registration to an average
surface template, which performs a sphere-to-sphere warping by
matching crowns of gyri (Robbins et al., 2004).

Local shape complexity index

To describe the local geometric surface shape, we first employ the
well-known surface shape index (SI) (Koenderink and van Doorn,
1992), calculated at each surface vertex on the middle surface using
the following equation: SIi=(2/π)× arctan((k2, i+k1, i)/(k2, i−k1, i)),
where i is the vertex index, k1 and k2 are the principal curvatures at
Fig. 1. Example bunny surface model. a) Surface mesh model, b) shape index (SI) mapping on
containing both concave and convex shapes show a high complexity value. In contrast, regions o
(blue color; simple) to 1.0 (red color; complex).
the i-th vertex on the surface which is calculated by estimating tensor
curvature algorithm in order to have a continuous tensor field over
the whole surface (Cohen-Steiner and Morvan, 2003). The SI score
ranges from −1 to 1 and can be subdivided into 9 standard geometric
topological situations at the following values (see also Supplemental
Fig. S1): spherical cup (SI = −1.0), trough (SI = −0.75), rut/valley
(SI = −0.5), saddle rut (SI = −0.25), saddle (SI = 0), saddle ridge
(SI = 0.25), ridge/crest (SI = 0.5), dome (SI = 0.75), and spherical
dome (SI = 1.0). We employed the Stanford bunny model (Fig. 1a) to
illustrate the SI map (Fig. 1b) and show the efficient capture of the
local geometric shape.

The proposed shape complexity index (SCI) was defined by the
quantification of SI variance within a local region. For example, regions
that have the homogeneous SIs are considered to have a low complexi-
ty, whereas regions that have both convex and concave parts should
have a relatively high complexity (see Fig. 1b). For that purpose, we
investigated three different ways to quantify the homogeneity of the
local SI distribution.
Quantification of the SI distribution

For the quantification of SI homogeneity within a local neighbor-
hood, we computed the histogram of the local SI for all surface vertices
within a geodesic distance. We then looked at three measures derived
from this SI histogram: a) histogram kurtosis (Hosking, 2006), a mea-
sure of the “peakedness” of the distribution, b) histogram (differential)
entropy (Stone and Bray, 1995), an information theory based measure
of heterogeneity, and c) the discrete Earth Mover's Distance (EMD)
(Rubner et al., 2000) between an idealized model of minimally low
complexity and observed histogram of SI. The kurtosis is computed via
the ratio between the fourth moment around the mean and the square
of the variance of the probability distribution. A high kurtosis value
represents a sharper peak and a relatively low value represents a
more rounded peak of histogram (Fig. 2a). The entropy can be estimated
via the histogram bin counts (Fig. 2b). Recently Lefèvre et al.'s study is
based on global statistical analysis using a fitted model from the
observed distribution of measurement (volume, GI, SI, curveness) in
each feature (Lefèvre et al., 2015). It is a good approach to summarize
corresponding surface measures across subjects, which is likely of
Gaussian nature, but it does not capture well the local variability of
the SI distribution within a given surface, which is often non-Gaussian.

For the discrete Earth Mover's Distance (EMD) based complexity
measure, we calculate the difference of the actual observed SI distribu-
tion compared to the best fitting, idealized distribution of a maximally
simple (non-complex) geometric setting (see Fig. 3). The EMD at each
vertex is computed for all 9 ideal basic settings and the minimal EMD
at each vertex is chosen as its complexity measure.
surface, c) its EMD based surface complexity map at a 3 mm geodesic kernel. The regions
f similar shape index show a low complexity score. The range of complexity score is from 0



Fig. 2. Local shape complexity as calculated via kurtosis (a), entropy (b) and EMD (c) within a 3 mm geodesic neighborhood. The distribution of each calculated SCI across the full brain
surface is shown in the bottom row. The kurtosis based SCI is quite noisy compared to the othermeasures, resulting in awide distribution over the full brain. Thewhole brain histogram of
SCI using the entropy tends to be skewed to right side and themeasure seems to have a ceiling effect with little dynamic range. The EMD based SCI measure looks both smoother, of high
dynamic range and a symmetric, near Gaussian whole brain distribution.
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The EMD represents a metric that captures the minimal cost
that must be paid to transform one distribution into the other via
linear optimization (Rubner et al., 2000). For the computation
of this measure, let Pv={(p1,wp1), (p2,wp2), ⋯ , (p9,wp9)} be the his-
togram of SI distribution with 9 bins within an adaptive kernel size
Fig. 3. Local examples of the proposed SCI: The local distributions of SI (blue color histogram)
selected locations (left, vertex is indicated via a black dot). In this particular example, the gyra
and Qs={(q1,wq1), (q2,wq2), ⋯ , (q9,wq9)} be the histogram of the
basic 9 geometric settings mentioned before. Where wpn, and wqn

are the numbers that are representative of each bin. v is the vertex
index, and s is from 1 to 9 for each basic geometric setting. p1–9 and
q1–9 are the bin representatives, so {p1, …, p9} and {q1, …, q9} are
and its best fitting basic model (red color histogram: a) 7th, ridge and b) 3rd, valley) at
l regions (a) shows a higher complexity than the sulcal regions (b).
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{−1.0,−0.75,−0.5,−0.25, 0, 0.25, 0.5, 0.75, 1.0}. And the 9 histograms
of different geometric settings are made using the same number of

vertex on each observed Pv, so∑
9

i¼1
wpi ¼ ∑

9

j¼1
wqj

.

EMD P;Qð Þ ¼ ∑m
i¼1 ∑

n
j¼1 dij f ij

∑m
i¼1 ∑

n
j¼1 f ij

; m;n ¼ 9ð Þ

where fij is the flow between the elements of observed pi and the
elements of basic geometric setting qj. The distance dij is calculated by
the absolute difference between the histogramelements, i.e. the SImea-
sures. Theminimized amount of flow f is calculated by solving the linear
programming problems in cost function with the following conditions.

f i; j ≥ 0;1 ≤ i ≤ 9;1 ≤ j ≤ 9

∑
9

i¼1
f i; j ≤ wqj

;1 ≤ j ≤ 9

∑
9

j¼1
f i; j ≤ wpi ;1 ≤ i ≤ 9

∑
9

i¼1
∑
9

j¼1
f i; j ¼ ∑

9

j¼1
wqj

:

The EMD for SI histograms,which ranges from−1 to 1, is maximally
bounded at 2. As we are searching for the minimal EMD over selected
geometric settings, it can be shown (independent of the granularity of
the selected geometric settings employed) that the EMD is maximally
1 (maximal EMD is achievedwhen theobserved distribution is balanced
and bimodal at the SI extrema of 1 and−1).

SCIv ¼ min EMD Pv;Q sð Þð Þ; s ∈ 1;2;…;9f g

The one histogram among the 9 histograms of geometric setting
would be best representative to reveal the homogeneity of obtained
SIs within an adaptive kernel size. That histogram matches up the
peak of the histogram of obtained SIs. Therefore, the SCIv on each vertex
is decided after calculating minimum EMD between the observed Pv
histogram and the histogram of 9 different geometric settings.

Fig. 2 shows a comparison of the 3 measures on an example surface.
While a good overall correlation across themeasures is visible, there are
predominant differences. The kurtosis results indicate a measure that is
noisier than the other twomeasures. The entropy results show a ceiling
effect that results in a limited dynamic range for areas of higher
Fig. 4. The radius of different geodesic kernels ismapped on the surfacemodel of 6-month-old b
detect valuable local complexity, and a kernel size beyond 5–6 mm encompasses both sulcal a
complexity. Thewhole brain histogramof the entropymeasure, not sur-
prisingly, tends to be skewed to the right side. The EMD based complex-
ity measure looks smoother across the brain than the other measures
and seems to have a high dynamic range. The whole brain histogram
of the EMD measure indicates a symmetric, near Gaussian distribution.
These observations lead us to choose the EMD based measure for our
quantification of a local shape complexity index/SCI.

Adaptive kernel size

The SCI is based on the distribution of the shape indexwithin a given
neighborhood/kernel. As such, the SCI is relatively sensitive to the
choice of kernel size. As the mesh cannot be considered perfectly
sampled in a uniform way, we use local geodesic distances for the SI
histogram computation. Fig. 4 illustrates the size of local geodesic
kernels at various (randomly sampled) cortical locations for an example
surface of a 6-month-old subject. For a kernel size over approximately
5 mm, several cortical locations would sample both gyral ridges and
sulcal fundi. As we aim to compute a local surface complexity metric
that remains within a sulcus or gyrus, we made the decision to employ
a kernel size that does not cover both sulci and gyri within the same
kernel. Given the visualization in Fig. 4, we chose 3 mm as the
‘empirical fixed kernel size’ (Kim et al., 2015). Other kernel size choices
(e.g. 2.5– 4.0 mm) would be valid, though such different choices would
change the nature of the computed SCI and its biological interpretation.
Experimental results presented later (see Fig. 5) indicate that a kernel
size of 3 mm is a good choice, with respect to the dynamic range of
the computed SCI. The last columnof Fig. 5 has been extended to include
also a kernel size of 8 mm, which captures such neighboring folds
within a single kernel. The results indeed show that our proposed SCI
is sensitive to such an enlargement of the kernel in that the computed
age effects are quite different between a 3mmand 8mmkernel.We ex-
pected such a difference, and would not call this a problem, but rather a
feature. If one is interested in a measure capturing multiple gyri/sulci
then a kernel size of 8 mm or larger is suggested. In our work, we set
out from the start to create a measurement whose scale captures single
gyri/sulci areas, which is why the results in the manuscript focus on a
kernel size at 3 mm. While additional analyses at a multi-gyri/sulci
kernel size could be done, we have chosen not to perform such
analyses given the ceiling effect in the SCI that we observe at 8 mm
already (see Fig. 5a and b).

A fixed constant kernel size for brain surfaces of different subjects
has the limitation of resulting in an inconsistently sized area at corre-
sponding points due to inter-subject differences in brain surface size,
even at the same age (in this case, 6 months). Overall, the total surface
area shows the mainly linear growth pattern within the window of
rain at 50 randomly selected surface vertices. A kernel size below3mm seems too small to
nd gyral regions.



Fig. 5. The validation for different kernel sizes: a) shows the raw SCI with each kernel size from 2.5 mm to 4 mm and b) smoothed local SCI. Red color indicates complex and blue color
indicates relatively simply shaped regions. The ratio between the smoothed SCI at 3 mm (second row) and with the SCI at the other kernel sizes is show in c). The correlation map of SCIs
across all 6 month datasets computed at 3 mm kernel size as compared to computed with the other kernel sizes is visualized in d). The raw t-score map of the age effect calculated at all
kernel sizes in e).
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our observed age, from 6 months to 24 months (Figs. S2a, S3). Thus we
feel that a linear correction, while not perfect, is still appropriate. Also,
the changes of local surface area show a clear non-uniform pattern, in
that the bilateral superior and inferior middle frontal and posterior cin-
gulate regions have a relatively high increase in surface area, whereas
the superior parietal and cuneus regions actually decrease in surface
area. Thus, for an appropriate longitudinal/developmental study of any
kernel based cortical surface analysis, the kernel size should be adapted
to take into account the variability of expected change in surface area
across different anatomical regions. Thus, an appropriate normalization
of the kernel size needs to be adopted. As we are studying longitudinal
changes of cortical shape from 6 to 24 months, we chose the youngest
time point (6 months) as a reference for the kernel size normalization.

For 6-month-old subjects, we suggest normalizing the hemisphere
kernel size globally for the brain surface via the ratio of that subject's
brain surface area to the average brain surface area in each hemisphere.
The kernel size ki for the i-th subject at 6 months of age is then
computed as follows:

ki ¼ kfixed �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

∑ jSAi; j

1
N
∑N

n∑ jSAn; j

vuuut

where SAi,j is the local surface area at vertex j of the i-th surface that is
calculated via averaging within one vertex neighborhood, and kfixed is
the chosen fixed kernel size of 3 mm, and N is the number of subjects.
We computed the SCI variations in the presence of simple brain scaling
differences from80% (a) to 120% (c) using a single/same kernel size. The
observed differences are smaller than 0.1% of the SCI range across the
brain and thus our proposed SCI measure is likely stable in the presence
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of global scaling/size differences. Furthermore,we control for global size
effects, by incorporating the full brain surface area as a normalization
factor of the subject-specific kernel size ki (Fig. S4).

While for subjects of 6-months-old, we calculate the local SCI using
the above formula, we chose different normalization methods for
older subjects, as the local surface area expansion in brain development
has been shown to be non-uniform across the brain (Hill et al., 2010; Li
et al., 2014).

We use a two-time point dataset in order to normalize a locally
adaptive kernel that takes into account the local developmental brain
surface size. The locally normalized kernel size is computed here as
the globally normalized kernel scaled with the local surface area ratio
at 12 or 24 months versus the one at 6 months. The equation for the
local kernel size ki,j for the i-th subject at vertex j at age a = 12 or
24 months is then as follows:

kai; j ¼ ki �
ffiffiffiffiffiffiffiffiffiffiffi
SAa

i; j

SA6m
i; j

vuut :

This local normalization increases or decreases the kernel size as a
ratio of the surface area change, such that for an individual the same
local, relative kernel size is longitudinally employed. The left and
right mean kernel size is 3.0152 mm (variance: 0.0105 mm) and
3.0315 mm (variance: 0.0122 mm) in 6 months of age. The range of
mean at 12 months is between 3.1445 mm and 3.5634 mm and
between 3.2545 mm and 4.2412 mm at 24 months. The similar pattern
of mean and variance of kernel size is shown in 12 and 24 month data
(see also Supplemental Fig. S5).

Statistical analysis

All raw SCI maps were first mapped onto the common MNI surface
template space (Lyttelton et al., 2007) for further processing and
analysis. As a first common step in the analysis of measurements at
the cortical surface, we computed a geodesic heat kernel based smooth-
ing of the SCI maps. The smoothing employed a 2.5mm bandwidth and
100 iterations (Chung et al., 2005). The effects of age and sex were
tested via a longitudinal mixed effects model in SurfStat, a toolbox for
statistical analysis of cortical surface data employing random field theo-
ry for statistical inference (Chung et al., 2010). Firstly, the longitudinal
linear mixed model with a random intercept and slope was fitted to
the data capturing estimates for contributions of age, sex, as well as
sex ∗ age interactions, with the following formula:

yi=β0+β1 sexi+β2 agei+β3 agei∗sexi+γiwhere yi is the depen-
dent variable, SCI, and γi is the random effects coefficient for subject i.
To correct for the multiple comparisons, we employ standard false
discovery rate (FDR) (Benjamini and Hochberg, 1995) for the effect of
age and adaptive FDR for the effect of sex (Storey et al., 2004).

Results

Local complexity example

Fig. 3 shows two examples of the local SCI measure alongside the
local SI histogram distribution and the idealized histogram of its corre-
sponding best fitting basic geometry setting. In this particular example,
the selected gyral region, which is close to a gyral top, is more complex
than the selected sulcal region as indicated by the higher EMD score
(Fig. 3a). The deep sulcal fundus regions, sulcal wall in deep sulcal
regions or wide gyral regions tend to have simpler complexity, as
expected, whereas the sulcal wall in relatively shallow sulcal regions
or the gyral ridge regions shows a relatively low SCI score (Fig. 3b).
Gyral saddle and gyral ridge regions display an intermediate level of
shape complexity.
Reproducibility

We evaluated the stability and reliability of the proposed shape
complexity measure using a large set of scan/rescan dataset. Two
human phantoms (male, age 26 and 27 at the start of this study) were
scanned at the four different imaging sites, each equipped with a
Siemens 3 T Tim Trio scanners for evaluation, at irregular intervals
over the period of 2.5 years. The same scanning sequences were
employed as for the developmental MRI scans. Overall, this resulted in
35 scan sessions for subject I and 31 scan sessions for subject II.We com-
puted the tissue segmentation, brain surface reconstruction, and SCI
maps independently and analyzed the local coefficients of variation
(COV) as a measure of stability that is defined by the ratio between
the standard deviation and mean: COVi=100×σi/μi, where i is a num-
ber of vertex. This analysis revealed excellent stability with overall
across-site COV values below 0.8% for all cortical regions, as well as
COV values below 0.3% for most of the brain (see Fig. 6). The higher
COV values, approximately 0.8%, resulted from the inferior frontal
region next to the eyeball, likely due to the variance of the brain mask
in that region. It is noteworthy that overall intra-cranial volume
measures showed across-site COV just below 1% (Bryson et al., 2008;
Hazlett et al., 2012) in this dataset. Therefore, our measure seems to
be as stable as computations of such ICV measures, at least in the
adult brain.

Local complexity over age

Fig. 7 shows t-statistic maps under FDR threshold p b 0.001 for the
age effect mapped onto the average template surface. Scatter plots at
selected regions with regional peaks of significance, as well as regions
of non-significance illustrate the local distributions. Local SCI in most
brain regions revealed a highly positive correlation with age, except in
the bilateral superior frontal, inferior temporal, and lingual gyral regions
(a, g), where no significant age correlationswere observed. The cerebral
cortex showed a larger significant age correlation in the anterior and
posterior cingulate (d, f), pre- and post-central gyral region (b), and
superior temporal gyral region (c). No cortical regions showed a
significantly negative association of age and the local SCI. Fig. 8 shows
the linear SCI change rates per month between 6 and 24 months of
age. While statistically not significant, the left calcarine fissure showed
decreasing SCI (cold color regions) at a change rate of SCI is −0.0012
per month. Of those regions with increasing SCI (warm color regions)
the largest increase is observed in the left parahippocampal gyrus
region (0.0017 per month), with a mean SCI change rate of 0.0005
across the brain. Finally, we observe that the overall distribution of
the age effect and change rates appears largely symmetric across
hemispheres, though no analysis of asymmetry is performed here.

Sexual dimorphism of local complexity

Several small cortical regions show higher SCI for male subjects at
6 months of age (shown in red) in cross-sectional analysis (see
Fig. 9a). Those regional differences are no longer visible at 12 months,
but other regions show the significant differences with some more
complex in females (shown in blue) and in males (shown in red) (see
Fig. 9b). At 24 months, higher complexity in left lateral prefrontal,
occipital and right inferior temporal region is predominant for female
(see Fig. 9c). It means the growth pattern of complexity changes during
this period.

Fig. 10 displays the results of the longitudinal analysis of sex as well
as the sex ∗ age interaction. Male subjects show persistently higher
complexity in the left insula, visual cortex, superior temporal, right
post-central, left posterior ventral cingulate, and parieto-occipital sulcus
region (shown in red; a, b, d, e). Female subjects have higher cortical
complexity mainly around Broca's regions (shown in blue; c). The
difference in sex ∗ age interaction of SCI shows the nearly opposite



Fig. 6. Coefficients of variation for SCI maps were calculated using two sets of adult brains (Case I and Case II). Almost all regions show coefficients below 0.3%.

Fig. 7. The effect of age. SCI increased in almost regions except bilateral superior frontal and inferior temporal regions from 6 to 24 months of age. s is slope value using linear fitting.
(See the large-scale picture of T value map also in Supplemental Fig. S6.)
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Fig. 8. The SCI change rates permonth between 6 and 24months old. Themost regions show the increasing rateswithmean rate 0.0005 except bilateral calcarine fissure and lingual gyrus
regions. (See the piece-wise linear SCI change rates map between 6 and 12 months and between 12 and 24 months in the Supplemental Fig. S7.)
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results comparing the statistical difference of sex, Fig. 10A (Fig. 10B).
The longitudinal change of SCI in female subjects is larger than in
males in the left insula (a), the left posterior ventral cingulate (d), and
the parieto-occipital sulcus (e), and slower in Broca's regions (e). Addi-
tional regions, such as the right anterior superior temporal gyrus
(f) region, show no significant sex differences, but has a significant
age ∗ sex interaction, where the longitudinal change in SCI is larger in
male than female subjects.
Sensitivity to kernel size choice

The surface area of the human brain grows rapidly, aswell as cortical
thickness in the first years of life. Since the cortical surfaces at all time
pointswere generated using the samenumber of vertices, a fixed kernel
size would be expected to yield different results than presented above,
leading to differing biological interpretations. Therefore, we chose to
investigate the influence of the kernel in more detail, with results
presented in Fig. 5. The top row shows the calculated SCIs with different
global geodesic kernel sizes in a randomly selected 6-month-old
dataset. SCIs that are calculated with a small kernel size, 2.5 mm, tend
to show a ceiling effect with few regions of high complexity and large
parts of the brain at relatively low complexity. Results using a larger ker-
nel size (over 3.5 mm) show a ceiling effect with few regions of relative
low complexity. These effects are even more pronounced following the
Fig. 9. The cross-sectional result of sexual dimorphisms. Male is more complex than female at 6
superior frontal and parieto-occipital sulcal region is more complex in female, but left parietal
difference in regions in which sexual dimorphism appeared in 6 and 12 months of age, left pre
local smoothing operation (Fig. 5b). A kernel size close to 3 mm seems
to have the best dynamic range for the proposed SCI.

The local difference of SCI is about 10% when the kernel size is
decreasing or increasing by 0.5 mm, as seen in the ratio maps in
Fig. 5c. More complex regions, such as the pre-/post central region or
the superior-/inferior parietal lobes, show a bigger sensitivity to the
choice of kernel size, demonstrated by the local magnitude differences
in the ratio maps.

While local differences in the raw SCI values for the different ker-
nel sizes are observed, the result of population analysis shows a sim-
ilar pattern. So, we computed the SCI values at 6 months of age for all
subjects at all kernel sizes and compared these SCI maps between the
different kernel sizes via correlation (see Fig. 5 d). The kernel sizes
were globally normalized as described above. Correlation maps of
the SCI maps were very high (N0.95) across the whole brain for ker-
nel size variations up to 4 mm. We would expect higher differences
for kernel sizes 5 mm and above, as the scales of measurement
would be significantly enlarged. And, we also see that the resulting
correlations maps are highly similar across the selected kernel
sizes. We then looked further into the age effect maps computed at
the different kernel sizes. All kernel sizes, here, were corrected as
proposed above using global hemisphere kernel size normalization
at 6 months and local kernel size normalization at older ages. The
results in Fig. 5e show that the age effect maps look highly similar
across the different kernel sizes.
months of age, but the more complex regions in female do not appear in this age (a). Left
and right anterior cingulate region is more complex in male at 12 months (b). There is no
frontal region, on the other hand, is more complex in female at 24 months (c).



Fig. 10. The longitudinal result of sexual dimorphism. Insula (a), left visual cortex (b), middle cingulate (d) and parieto-occipital sulcal regions (e) are more complex in male, but right
Broca's regions (c) are more complex in female (panel A). The SCI change rates are shown in panel B. Regions a, d and e (in which male is more complex) show that female has fast
rate of changes than male, region c (in which female is more complex), on the other hand, shows that male has fast rate of changes than female. The longitudinal scatter plot is shown
in the right column. And s (red is male, blue is female) is slope value using linear fitting.
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In summary, while the results in Fig. 5 show that the proposed SCI is
sensitive to the choice of the kernel size, the relativemagnitude of SCI is
highly stable within kernel size differences of 0.5mm, and the age effect
results of our longitudinal study are stable across even larger kernel size
differences. Based on these results, we feel that the proposed SCI should
be considered stable, with respect to the choice of the kernel sizewithin
a limited range.
Discussion

Local shape complexity index (SCI)

This paper introduces a novelmethod called shape complexity index
for the quantification of local cortical shape. The SCI maps show that
wide sulcal fundal regions display the lowest levels of local complexity,
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whereas several gyral walls and narrow gyral ridges display a high level
of complexity. Gyral saddle regions andwider gyral ridges display inter-
mediate complexity levels. As concave cup and convex dome regions
are located at the opposite extremes of the SI scale, these cortical loca-
tions encompassing both sulcal to gyral situations within the relatively
small 3 mm geodesic kernel, show largest complexity, as can be seen
in these results (see Fig. 3-a). In contrast, locations at deep sulci close
to saddle region show lower complexity, as expected (see Fig. 3-b).

The proposed SCI is reliable in a scan/rescan setting and produces
stable results. In contrast to local gyrification index, the SCI does not
necessitate the definition of a reference surface, such as the outer
surface or cerebral hull. The proposed SCI also offers novel insights
into cortical folding assessment with an intermediately sized scale
(3 mm) between the fine scale curvature measures (b1 mm) and the
larger scale GI (N20 mm).
The effect of age and sex on surface complexity in the first 2 years of life

The morphological development of the human brain does not fully
mature until late in childhood as measured by cortical thickness
(Shaw et al., 2008; Sowell et al., 2003, 2004), by surface area (Hill
et al., 2010) or by the gyrification index (Dubois et al., 2008; Li et al.,
2014; Ronan et al., 2014). The global GI significantly increases in the
left (slope = 0.0167) and right hemispheres (slope = 0.0314) from
6months to 24months (Fig. 11). Themajor sulci emerge in the third tri-
mester.While almost all secondary sulci are present at gestational week
32 as well as highly variable tertiary sulci are present by gestational
week 36 or the early postnatal period, minor restructuring occurs up
to age 8 years (Lohmann et al., 1999;Welker, 1990). The onset of prima-
ry, secondary and tertiary sulci results inmajor changes of cortical com-
plexity. Furthermore, regional patterns of cortical surface change in the
postnatal period are main factors that differentiate the human brain
from other primates (Mueller et al., 2013). For example, rapid cortical
changes in the temporal–parietal junction and cingulate sulcal region
are related to high order cognitive functioning (Mueller et al., 2013),
whereas comparative slow cortical changes are found in the precentral
gyrus, superior frontal and inferior temporal/temporal tip (Li et al.,
2014). In this study, we provide further evidence for changes in local
cortical surface complexity from 6 months to 2 years of age. The
observed longitudinal patterns indicate that we should expect further
increases in local surface complexity beyond 2 years of age.

In recent years, sulcal pits and gyral ridges have been hypothesized
to be sources of cortical folding change, with the frequency of the
major sulcal pits being stable postnatally (Im et al., 2010; Meng et al.,
2014). The SCI based results presented here show a regional pattern of
increased complexity close to the previously detected secondary or
Fig. 11. The global gyrification index over the observed age, from 6 months to 24 months. Bo
tertiary sulcus and gyral ridges. Fig. 12 shows an example of increased
SCI within the supramarginal gyrus region in a selected subject.

The inferior temporal lobe has relatively shallow sulci and large sur-
face ratio comparing total surface area (Kim et al., 2000; Toro et al.,
2008), consisting mainly of the parahippocampal gyrus, the lateral
occipitotemporal gyrus, and the medial occipitotemporal gyrus. Even
though these gyri appear relatively late, at about 30 weeks gestational
age (Chi et al., 1977), the inferior temporal region decreases in cortical
thickness after the postnatal toddler period (approximately age 4–5)
(Shaw et al., 2008). Additionally, areal expansion in these regions is
low in the early postnatal period (Hill et al., 2010; Li et al., 2014).
Here, our SCI shows a stable surface complexity in the inferior temporal
lobe between the ages of 6 months and 2 years, indicating that while
surface area continues to increase at a low rate in this age period, local
folding complexity does not.

Most studies of the effect on sex on brain structure investigate
periods later than early childhood (Creze et al., 2014; Luders et al.,
2004). Consequently, the differences in developmental trajectories in
the early postnatal phase (age 0–2) remain largely unclear. Recently,
Li et al. (2014) showed that male subjects exhibit larger localized GI
values than females as neonates and at 2 years of age, in a cross-
sectional analysis of the left paracentral and precuneus cortex, but
without significant differences at 1 year. In our study, we also found
concurring evidence that the male cortical surface is more complex
than the female cortex at 6 months of age, though in different cortical
regions. In our study, we found increased complexity change rates in fe-
males in the insula, middle cingulate, parieto-occipital sulcal, and right
Broca's region. Additionally, our cross-sectional results show higher
complexity in the lateral prefrontal, occipital, and temporal regions of
females at 2 years of age. These differences between our sulcal complex-
ity findings and Li et al.'s local GI findings are likely due to methodolog-
ical differences, as well as different viewpoints of scale between GI
(large scale) and sulcal complexity (small/medium scale). Our results
provide evidence that males show higher cortical complexity early on,
but females show higher complexity later in development. Our findings
suggest that higher complexity in females arises in the second year of
life. These findings complement earlier findings that male infant brains
show increased growth rates during the first 3 months (Holland et al.,
2014), and at a later stage, adult females present greater cortical folding
complexity in frontal and parietal regions, as measured via GI and the
sulcation index (Dubois et al., 2008; Luders et al., 2004).

The relationship between shape complexity and tangential
expansion/intrinsic curvature

Intrinsic curvature is a measurement often employed to investigate
the tangential expansion of the cerebral cortex (Ronan et al., 2012,
th hemispheres significantly increase (left slope 0.0167 and right slope 0.0314, p b 0.01).



Fig. 12. The change of SCI from 6months to 24 months in the supramarginal gyrus region in a selected subject. SCI increase here is due to an emerging non-primary sulcus in gyral ridge
regions (black arrow), and a sulcus extension of an existing sulcus (gray arrow). The SCI color mapping is adjusted to highlight this particular effect.
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2014). The underlying hypothesis in developmental studies is that
cortical folding can be captured by locally measured tangential surface
expansion. However, the morphological changes due to developmental
processes are not directly described by local changes of intrinsic
curvature. For example, a local widening of a sulcal or a gyral region
will lead to different results, depending on the geometric setting, with
reduced values in deep sulcal cup and gyral top settings and increased
values in most sulcal valleys and deeper gyral ridges. In general, the in-
terpretation of local effects can be quite difficult, and a process leading
to a more folded or complex surface can yield positive or negative
changes of intrinsic curvature, depending on the local setting.

The age effect results in our data were analyzed via their local intrin-
sic curvature (Fig. S8). Tangential expansion decreased bilaterally in the
central sulcal, the superior frontal gyrus, the orbitofrontal cortex, and
the lingual gyrus region. In contrast, a positive age correlation was
observed in the posterior cingulate gyrus region, as well as in portions
of the lateral temporal and parietal lobes. While these results are diffi-
cult to interpret, the reduced tangential expansion is more closely
located to early maturing major sulci, whereas regions of late matura-
tion are more likely to show positive tangential expansion (Hill et al.,
2010; Li et al., 2014).

Next, we investigated the correlation between our novel surface
complexitymeasure and intrinsic curvature to illustrate how the results
differ. Over a large part of the brain, the two measures were correlated
overall (either positively or negatively) (Fig. S9). The regions of signifi-
cant positive correlation contain deep sulci or major gyri, such as the
superior temporal gyrus, the cingulate gyrus, and a portion of pre- and
post-central sulcal regions. On the other hand, the negative correlation
appears in the insula, portions of the occipital lobe (spanning primary
visual cortex), and the orbitofrontal region with relatively different
shapes (Jang et al., 2006; Regis et al., 2005). The regions with a positive
correlation between SCI and intrinsic curvature may be increasing
in complexity due to tangential surface expansion which may be
due to evolutionary pressure from additional mitotic rounds of the
proliferative neuronal precursor pool, as captured by leading (evolution-
ary) hypotheses of expanded cortical areas (Rakic, 1995). In contrast, re-
gions with a negative correlation may show higher complexity (as
compared to intrinsic curvature) due to development of secondary and
tertiary sulci, and sulcal pits or additional gyral branches (Hill et al.,
2010).

Finally, we observe that a number of regions with a strong age asso-
ciation for the intrinsic curvature are not present in the correlationmap.
Furthermore, some regions of high correlation between SCI and intrinsic
curvature are not shown in the age effect map using the intrinsic
curvature. This further indicates that our novel measure captures a
shape perspective that is complementary andmore intuitive comparing
to intrinsic curvature.
Conclusion

In this paper, we propose a novel method to calculate local cortical
surface shape complexity that does not require a reference simplified
surfacemodel. Themeasure captures local shape changesmainlywithin
a single sulcal or gyral region, which allows us to discriminate the wid-
ening (reduced SCI) versus deepening (non-reduced SCI) of regions, as
well as to identify regions with developing secondary and tertiary sulci.
The proposed SCI does not aim to capture any particular cortical region
more efficiently. Our experimental results do not indicate that there is
such a location specific sensitivity in capturing changes of SCI across
the cortical surface.

Our quantitative complexity study of cortical shape changes in early
development using this metric shows a regionally specific pattern over
the age and the difference of sexually dimorphic pattern. In contrast to
other methods, the local measure presented quantifies complexity at
the intermediate local scale (of 3mm at 6months of age). It is notewor-
thy that the results presented here are the first to take into account
localized brain surface growth and inter-subject size differences via an
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adaptive geodesic kernel size. This local correction accounts for non-
uniform surface growth over time into the analysis.

To our knowledge, this is the first longitudinal study of surface com-
plexity development in the first two years of life, at an intermediate
scale that does not span multiple sulci or gyri. We found that the local
SCI is highly correlated with age. We also found sexual dimorphisms
in the insula, middle cingulate, and parieto-occipital sulcal region and
in Broca's region.
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