
Surface Flow Visualization using the Closest Point Embedding
Mark Kim∗ Charles Hansen†

Scientific Computing and Imaging Institute
University of Utah

ABSTRACT

In this paper, we introduce a novel flow visualization technique for
arbitrary surfaces. This new technique utilizes the closest point em-
bedding to represent the surface, which allows for accurate parti-
cle advection on the surface as well as supports the unsteady flow
line integral convolution (UFLIC) technique on the surface. This
global approach is faster than previous parameterization techniques
and prevents the visual artifacts associated with image-based ap-
proaches.

1 INTRODUCTION

Vector field visualization is a fundamental technique in scientific
visualization and important in numerous scientific and engineering
fields such as computational fluid dynamics. One popular approach
is Line Integral Convolution (LIC) [4] because of its efficient uti-
lization of the graphics processor as well as its ability to be used on
surfaces embedded in 3D.

Computing LIC on surfaces can be done in two ways: image-
space methods and surface parameterization methods. Image-space
methods generate LIC images on the visible parts of the sur-
face [12, 27]. In particular, the visible surface geometry and ve-
locity field is projected onto the screen and LIC is applied in the
image space. By only processing the visible parts, the computation
is highly interactive due to the GPU generated LIC. Unfortunately,
there are issues with image-space based methods. Because only the
visible geometry is processed, artifacts from altering the camera po-
sition can be noticed around silhouette edges or self-occluded areas
of the mesh.

Parameterizing the surface is another way to generate LIC on
surfaces. Li et al. achieve interactive frame rates rendering un-
steady flow by partitioning the mesh into patches which are then
packed into a texture atlas [15]. Partitioning the mesh into patches
is considered a pre-process step that is very time-consuming.

In this paper we present a new method for unsteady flow line
integral convolution on a surface. Our approach is similar to the
closest point embedding, a simple technique for solving PDEs on
embedded surfaces [20]. By using the closest point embedding,
generating the embedded surface can be done at near interactive
rates and generating the LIC can be done at interactive rates, allow-
ing flow visualization without the drawbacks of previous methods.

Our contributions are

• Introduce a fast embedded surface for LIC generation that
works for arbitrary complex surfaces on the GPU.

• An anti-aliased 3D line algorithm for the closest point embed-
ding.

• An interactive unsteady flow LIC with the closest point em-
bedded surface.

∗e-mail: mbk@cs.utah.edu
†e-mail:hansen@cs.utah.edu

To perform the flow visualization, a sparse closest point embed-
ding is constructed by converting the triangular mesh into a sparse
three-dimensional closest point grid. Once the sparse closest point
embedding is constructed, then a refined grid and a neighborhood
index are constructed to visualize the flow. Finally, an unsteady
technique, UFLIC, is run over the refined grid to visualize the flow
field.

The contents of the rest of the paper are as follows. Related
works are in Section 2. Construction of the embedded surface as
the closest point grid is covered in Section 3. Constructing the re-
fined grid and adapting UFLIC for the closest point embedding is
in Section 4, while the results and conclusions are in Sec. 5 and 6,
respectively.

2 RELATED WORKS

2.1 Flow on surfaces
Vector field visualization is a large research field and a comprehen-
sive review is beyond the scope of this paper. Therefore, this review
is limited to relevant work on surface-based flow visualization and
refers readers to [5] for a more thorough review of flow visualiza-
tion and surface flow visualization.

Forssell et al. [7] first applied a LIC-based approach to param-
eterized surfaces by generating the LIC in parameter space. Un-
fortunately, with this scheme it is difficult to get a distortion free
global parameterization. Battke et al. tessellated the surface and
performed LIC in the local coordinate space of each triangle [2].
This technique requires a good mesh to perform correctly, limiting
its usefulness.

Both the Laramee et al. method called Image Space Advection
(ISA) [12] and the Van Wijk method, Image Based Flow Visual-
ization on Surfaces (IBFVS), [27] extend Image Based Flow Visu-
alization [26], or IBFV, a dense texture unsteady 2D flow visual-
ization method, to surfaces. The IBFV method starts with a white
noise texture that is warped by the vector field and then blended
with other white noise textures over time. Both the ISA and IBFVS
extend IBVF by generating, advecting and blending the textures
in image space for arbitrary smooth surfaces. Image-based meth-
ods are very efficient for arbitrary surfaces with the inherent draw-
back of artifacts around silhouettes and self-occluding areas. Re-
cently, Huang et al. extended image space based visualization to
enhance the coherency of the output [10]. This was done by fix-
ing the triangle-texture matching as well as mipmapping the noise
texture. While creating a consistent image, it does not solve the
inherent problem of correct surface occlusion nor allow the use of
other unsteady flow techniques such as dye advection [14, 11].

Li et al. developed Flow Charts for unsteady flow visualization
on surfaces [15]. The Flow Chart method decomposes the triangu-
lar mesh into patches with a texture atlas and then the 2D flow is
run via a particle system. Once the patches are packed into textures,
particle advection schemes for dense texture-based flow visualiza-
tion, GPU Line Integral Convolution, Unsteady Flow Advection-
Convolution and level-set dye advection, are used to visualize the
vector field on the texture [13, 29, 28]. Finally, this texture is then
texture mapped onto the surface during rendering. While Flow
Charts is a flexible flow visualization scheme, it has the follow-
ing drawback: the pre-processing step to decompose the mesh with

a particle system is very time-consuming.

2.2 Closest Point Method
The closest point method (CPM) was introduced by Ruuth and Mer-
riman as an embedding surface for solving PDEs [20]. The CPM’s
usefulness is in its simplicity whereby unmodified R3 differential
operators replace intrinsic surface operators. Macdonald and Ru-
uth continued the work with an implicit time step, which replaced
the original explicit time step as well as evolving a level-set on a
surface [17, 16]. Tian et al. followed up the level-set on a surface
with segmentation on a surface [25] while Hong et al. apply the
CPM to the level-set equation to simulate fire on an animated sur-
face [9]. März and Macdonald followed up the works of Macdonald
and Ruuth with proofs for the principles of the method [18]. Finally,
Auer et al. used the closest point method to solve the Navier-Stokes
equations on dynamic surfaces [1].

(a) The Closest Point ICE Train

(b) The Flow Charts ICE Train

Figure 1: The ICE train visualized with UFLIC with the closest point
embedding (Fig. 1(a)) and using Flow Charts (Fig. 1(b)).

2.2.1 Closest Point Grid
The closest point method utilizes the closest point grid, which is
similar to a discrete distance field [24], except the closest point

method is restricted to neither grid points nor facets of a mesh and
can represent smooth surfaces. Instead of storing the distance to the
surface in the grid, the point on the surface that is nearest to the grid
point is stored. This grid is an embedding (the Closest Point Em-
bedding) whereby a surface is represented in the three-dimensional
grid.

2.2.2 Equivalence of Gradients
One of the fundamental principles of the closest point method is
the “equivalence of gradients” where u is defined as a surface func-
tion, cp(x) is the surface point closest to point x and ν is a volume
function such that

ν(x) = u(cp(x))⇒ ∇su(x) = ∇ν(x) (1)

In other words, the gradient on the surface, ∇Su(x) agrees with
the R3 gradient of the volume function, ν , where ν is the closest
point extension of u. This makes sense because the closest point
extension, ν(x) = u(cp(x)) is constant in the normal direction to
the surface, so changes in ν must be tangent to the surface.

Further, a second principle concerning surface divergence oper-
ators can be derived in a similar fashion to Eq. 1. From these two
principles, other differential operators can be constructed, including
the Laplace-Beltrami operator [20].

3 EMBEDDING THE SURFACE

The closest point embedding accomplishes two objectives. First,
the closest point grid is used to project UFLIC particles back onto
the surface (Sec. 3.1). Second, the closest point embedding is used
to generate a refined grid and a neighborhood index (Sec. 4.1).
This neighborhood index is used to run high pass filtering and
anti-aliasing pathlines on the embedded surface at interactive rates.
Therefore, the closest point embedding provides a good framework
for surface flow visualization.

Usually, surface flow datasets are stored as two-dimensional tri-
angular meshes embedded in a three-dimensional space with the
velocity field embedded at the vertices of the mesh. To achieve
near interactive rates embedding the mesh, Thrust and CUDA are
utilized to convert the mesh to the closest point embedding [8, 19].
Constructing the closest point embedding is covered in Sec. 3.1.
Once the closest point embedding is constructed, it is used during
particle advection to place particles back on the surface, which is
covered in Sec. 3.2.

3.1 Constructing the Closest Point Embedding
The closest point embedding is constructed from a surface mesh
with the velocity field at the vertices of the mesh. Figure 2(a) is a
two-dimensional grid, where the blue cells are close to the surface
and the white cells are outside of a narrow band around the surface.
The closest point embedding stores the location on the surface that
is nearest to the cell. Using Figure 2(b) as an example, the cell at
(23,14) is colored red and the closest location on the surface to the
cell is colored green. The value stored in the closest point embed-
ding at the cell (23,14) is (21.3,14.8).

A two-level grid is constructed to store the closest point embed-
ding, similar to Auer et al [1]. The grid has two levels, a coarse
level and a fine level. The coarse level is a three-dimensional grid
where each cell represents a block of sub-cells for interpolating the
closest point position. The fine level is composed of the sub-cells of
the coarse grid cells and is stored in a one-dimensional array. This
two-level grid saves memory by only refining the coarse grid where
the cells are close to the surface.

Construction of the closest point embedding is in Algorithm 1.
The vertices of the surface mesh are binned in the three-dimensional
coarse grid. Every cell that contains at least one vertex is marked as
“on surface.” Figure 2(a) is an example of a one-dimensional curve

(a) The coarse grid. (b) The fine grid. (c) The closest point.

Figure 2: Figures 2(a)-2(c) are two-dimensional examples of the closest point embedding. For all figures, the cells close to the surface are
colored blue, while cells far away from the surface are colored white. Figure 2(a) is an example surface, a curve embedded in a coarse grid.
Figure 2(b) displays part of the fine level of the surface from 2(a), with spacing S = 1/4. An example of the closest point to the surface is shown,
where the red cell is at the fine grid position, (23,14) and the projection is visualized with an arrow, and the surface location (the green point) is at
(21.3,14.8). Finally, Fig. 2(c) focuses on the fine grid cell (from Fig. 2(b)), which is colored red. To determine the closest point on the surface, the
surface vertex (in blue) is fetched. Then, the lines adjacent to the vertex are checked to see if there is a point on them closer to the fine grid cell
than the surface vertex. In this example, there is a point (colored green) on a line adjacent to the surface vertex that is closer than the surface
vertex. The point on the adjacent line is saved to the fine grid.

embedded into a coarse two-dimensional grid. The coarse grid cells
colored blue are “on surface” while white cells are considered far
away. Next, for each coarse grid cell that is “on surface,” it is sub-
divided to create the fine grid cells. Once all the fine grid cells are
determined, then the closest point on the triangular surface is com-
puted and stored in a one-dimensional fine grid array; one for each
coarse grid cell.

1

6

2

2

4
5

3

x

y
0

Figure 3: An example of a triangle face (in blue) projected into a co-
ordinate plane and the seven different regions numbered. The green
vertex is a grid vertex projected into the two-dimensional plane and
is in region 3.

To construct the fine grid cells, each coarse cell that is “on sur-
face” is subdivided into fine cells. Figure 2(b) is a two-dimensional
example of six coarse cells (colored in blue), each subdivided into
16 fine grid cells, which are stored in a one-dimensional array. For
three-dimensions, the number of subdivisions is 64. For each cell
in the fine grid, the vertex on the surface mesh that is nearest to
the cell is saved as the current closest point. For each face adjacent
to the vertex on the surface, the point on the face that is closest to
the grid cell is computed. A two-dimensional example is given in

Fig. 2(c). To determine the closest point on the surface, the surface
vertex nearest to the fine grid cell is fetched (colored blue). Then,
the lines adjacent to the surface vertex are checked to see if there is
a point closer to them than the surface vertex. In this example, there
is a point (colored green) on the line adjacent to the vertex that is
closer to the grid cell than the surface vertex. Therefore, the green
point is saved to the fine grid.

In three-dimensions, the adjacent faces to a surface vertex are
triangles. To compute the point on a triangle closest to the fine grid
cell, the triangle is translated and rotated such that one vertex is at
the origin while the two other vertices are in a coordinate plane.
This transforms finding the closest point into a two-dimensional
problem, where solving for the location in two-dimensions gives
seven regions where the projected grid vertex can lie [22]. Figure 3
is an example of a triangle projected into two-dimensions with the
seven regions (labeled 0− 6) and a grid vertex, which is in region
3, projected onto the coordinate plane. If this new point on the face
is nearer to the fine grid cell than the current closest point, then the
current closest point is updated to this new point. This continues
until all faces have been processed, and then the closest point is
stored in the refined grid cell. The velocity grid is constructed in a
similar manner, except the velocity is stored in the grid cell instead
of the closest point.

3.2 Using the Closest Point Embedding

Once the triangular mesh is converted to a closest point embed-
ding, a new reprojection step is required to place particles back on
the surface after the advection method. To place a particle back
onto the surface with closest point embedding, a WENO4 inter-
polant (Alg. 2) is used to interpolate the position on the surface [6].
For every particle, pi the closest point is retrieved from the closest
point embedding data structure based on the position of the parti-
cle, in one-dimension. This process is repeated for the three cells
surrounding the particle because the WENO4 interpolant requires
three neighbors for the parabolic interpolation. These are interpo-
lated to compute the location on the surface, cpi. The particle, pi is
placed at the location of the interpolated result, cpi.

Algorithm 1 BuildClosestPointGrid() Input: Triangular Mesh, T M
with velocity field V M Output: coarse grid CG, fine grid FG

for all Vertices vi in mesh T M do
idx← index(vi) . Mark cells in coarse grid as “on surface”
CG[idx]← True

end for
for all Cells cell ∈CG that are True do

. For all cells that are “on surface”
for all Fine Grid FG ∈ cell do . Generate subcells

. Compute the closest point on the surface, cp
vtx← T M vertex nearest to FG
closest point cp← vtx
distance d←‖cp−FG‖
. Calculate closest point on faces adjacent to vertex vtx
for all Face f adjacent to vtx do

f pt← triToEmbedded(f ,FG)
. triToEmbedded returns the point on face f

closest to FG (Schneider et al. [22])
dnew = ‖ f pt−FG‖
if dnew < d then

d← dnew
cp← f pt

end if
end for
FG← cp . Store closest point in grid

end for
end for

Algorithm 2 WENO1d(f1, f2, f3, f4,x)
wp1← parabola(f1, f2, f3,x)

. parabola function in Alg. 3
wp2← parabola(f4, f3, f2,1− x)
f ← (wp1.x ·wp1.y+wp2.x ·wp2.y)/(wp1.x+wp2.x)
return f

4 FLOW VISUALIZATION WITH THE CLOSEST POINT EM-
BEDDING

To demonstrate the effectiveness of the closest point embedding for
flow visualization, we adapt the unsteady flow line integral con-
volution, or UFLIC, to visualize surface flow. In this section, we
describe constructing the three-dimensional data structure, called
the sparsely-stored refined grid, that is used to visualize the flow
and adapting UFLIC to the closest point embedding.

Unsteady Flow Line Integral Convolution (UFLIC) is a tech-
nique to visualize two-dimensional unsteady flow [23]. In this
scheme, particles are released from the center of every pixel and
are advected forward, depositing their scalar value along the path-
line. Once the advection and depositing is completed, the accumu-
lated values are normalized, filtered and jittered, creating the flow
visualization.

Algorithm 3 parabola(f1, f2, f3,x)
Fx← (f3− f1) ·0.5 . first derivative
Fxx← f1−2∗ f2 + f3 . second derivative
IS← Fx ∗ (Fx +Fxx)+4/3∗Fxx ∗Fxx . smoothness IS
IS← IS+ ε . ε = 0.000001
IS← IS · IS
wp.x = (2− x)/IS . weight
wp.y = f2 + x · (Fx +0.5 · x ·Fxx) . value at x
return wp

Figure 4: To construct the sparsely-stored refined grid, the closest
point embedding is subdivided. Using the original two-dimensional
closest point embedding example from Fig. 2, the fine grid is subdi-
vided and two grid cells are each subdivided into eight refined grid
cells, in red.

4.1 Construction
To visualize pathlines on the surface, a high resolution data struc-
ture, the sparsely-stored refined grid, is constructed. Using the clos-
est point grid size as the refined grid size could result in surface
aliasing because it might be too coarse. Globally refining the clos-
est point embedding size would lead to an unacceptable increase
in memory. Therefore, the refined grid size is decoupled from the
closest point grid size. The closest point grid from Sec. 3 is used to
build the refined grid. Once the refined grid is built, a neighborhood
index is constructed to speed-up high pass filtering and anti-aliasing
the three-dimensional pathlines.

To construct the sparsely-stored refined grid, the closest point
grid from Sec. 3 is utilized. The closest point grid is subdivided to
refine the grid to suitable levels to visualize the surface. For each
cell in the closest point grid that is near the surface, the closest point
cell is subdivided into refined grid cells, according to a user-defined
parameter, in each dimension. For example, in Figure 4, two cells in
the closest point grid (the blue grid) are each subdivided into eight
refined grid cells that are highlighted in red.

Once the refined grid is created, the neighborhood index is con-
structed to speed-up applying the high pass filter and anti-aliasing
the pathline because interpolating the closest point for every neigh-
bor lookup is computationally expensive. To construct the neigh-
borhood index, for each refined grid cell, the closest point of the
neighboring refined grid cells, ncpi is computed using the closest
point grid and a WENO4 interpolant (Sec. 3.2). Then, the index of
the ncpi is computed, idxncp and stored in the neighboring index
array. By storing the neighboring indices, the Laplacian filter can
be applied directly on the refined grid and the anti-aliasing of the
pathline is sped-up.

For example, in Figure 5, the green cell is the current cell with an
index of cc. The yellow cells are its neighboring cells with indices
of rc, lc, uc and dc. In three-dimensions, the neighbor cells would
be the neighbors in two-dimensions plus the near and far cells, nc
and f c. The neighborhood index for the green cell is [cc,cc,uc,dc]
because the right and left neighbors project back into the original
green cell.

4.2 UFLIC
To adapt UFLIC to the embedded three-dimensional surface, a
piecewise pathline is constructed by advecting the seed particles
in three-dimensions, and depositing values onto the surface refined
grid. A piecewise pathline is used because the velocity field may

Figure 5: Continuing with the two-dimensional fine grid example from
Fig. 4, a single refined grid cell is highlighted in green, with its four
neighbors (in two-dimensions) colored yellow.

advect the particle off the surface. If the advected particle is not
near the surface, then the pathline is iteratively bisected. This bi-
nary search continues until the advected particle is in a grid cell
that contains surface. Then the advected particle is projected onto
the surface and a line is drawn on the refined grid from the starting
point to the advected point. This process is repeated until the length
of the piecewise pathline is the same length as the original pathline.

An example is given in Figure 7. In Figure 7(a), the pathline
ends off the surface, i.e. in a white cell. The pathline length is cut
in half (Fig. 7(b)), but again the pathline terminates off the surface
in a white cell. The pathline is halved a third time (Fig. 7(c)) and
this time the pathline ends in a blue cell, which contains the sur-
face. A pathline is drawn between the beginning point and the end
point, and the end point is projected onto the surface (Sec. 3.2) and
becomes the new starting point, as in Figure 7(d).

To draw the piecewise pathline, a three-dimensional Bresenham
algorithm [3] is used and adapted for anti-aliasing. To anti-alias the
line, a low-pass Gaussian filter is applied to the neighbors in the
plane orthogonal to the primary direction of the line. For each grid
step, if the step is in the z-axis, the low-pass filter is applied to the
xy-plane. Otherwise, if the step is in the y or x-axis, then the xz or
yz-plane are updated in a similar fashion, respectively.

4.3 UFLIC with the Closest Point Embedding
To run UFLIC on the closest point embedding, initially a white
noise refined grid is created. Given closest point and velocity grids,
the refined grid is constructed as in Sec. 4.1. Once the refined grid
is constructed, each refined grid cell is seeded with a particle, and
the particle is projected onto the surface using the WENO4 from
Sec. 3.2. The particles fetch the velocity from the velocity grid us-
ing a linear interpolant and the noise values from the noise refined
grid. The particles draw pathlines on the surface as described in
Sec. 4.2.

Once all the particles have generated pathlines on the refined
grid, a sharpening filter is applied because of the diffusive nature
of the UFLIC method [23]. A 3D Laplacian filter is applied to the
embedded refined grid by looking up the closest point neighbor-
hood index and fetching the value from the surface cells. Once the
filtering is completed, the surface is jittered by adding random val-
ues back onto the refined grid and the method is ready for the next
iteration.

5 RESULTS AND DISCUSSION

To test this new method, three datasets are used: the ICE train,
the F6 plane and the cylinder combustion datasets (Figs. 1, 6 and 8

(a) The Closest Point Airliner

(b) The Flow Charts Airliner

Figure 6: The airliner (F6) dataset visualized with UFLIC and
the closest point embedding (Fig. 6(a)) and using Flow Charts in
Fig. 6(b).

respectively). An important goal is that the closest point embedding
has comparable results to Flow Charts [15], so each dataset has a
figure using Flow Charts for comparison purposes.

The ICE train (Fig. 1) is a simulation of a high speed train trav-
eling at 250 km/h with wind blowing at a 30 degree angle. The
wind creates a drop in pressure, generating separation and attach-
ment flow patterns, which can be seen on the surface in Figure 1(a).
Shear stress is shown on the airliner (F6) dataset, which is in Fig-
ure 6(a). The combustion dataset (Fig. 8) is a complex combus-
tion cylinder with input and exhaust pipes as well as valves inside
the combustion chamber. The swirling flow visualization is aligned
with an axis through the cylinder, which is to be expected and can
be seen on the cylinder exterior in Figure 8(a).

The timing results and the dimensions of the closest point grid
and refined grid for the datasets are in Table 1 and were performed
with an Intel Core i7-3770 using a Nvidia GeForce GTX-780 GPU
and CUDA v5.5. All tests were performed with a life span (ttl) set
to 2. The timing results are produced for constructing the closest
point grid, constructing the refined grid and neighborhood index
and running UFLIC. All timing results are in seconds. All datasets
were constructed and run with less than 1GB of GPU RAM.

To save time initializing memory on the GPU, a simple memory
pool manager is used. In a preprocess step, a large amount of GPU
memory is allocated as a memory pool: all the datasets run a max-
imum of 975,175KB of RAM. The memory is split into two types,
temporary and permanent. Permanent data, such as the closest point
grid or the grey scale refined grid, are data structures that will last
the full iteration. Temporary data is usually helper arrays to com-
pact other arrays in Thrust. Permanent data is added at the head of
the memory pool while temporary data is added to the tail of the
memory pool. This way, permanent arrays are not interleaved with
temporary arrays and the temporary data can be pushed and popped

(a) Original pathline (b) A new bisected pathline from the
original pathline 7(a), cut in half.

(c) A subline from 7(b), cut in half. (d) A new sub-pathline is started.

Figure 7: Figures 7(a)-7(d) are two-dimensional examples of the pathlines being halved until it is on the surface. In Fig. 7(a), the original pathline
does not end in a cell near the surface (cells colored blue). Therefore, the length is cut in half, but again the pathline does not end in a cell near
the surface, and the pathline is reduced again (Fig. 7(c)). The pathline now terminates on a cell close to the surface, and a pathline is drawn,
shown in red in Figure 7(d). A new pathline is started (in Fig. 7(d)) where the previous pathline ended and using the previous pathline’s length.
Drawing pathlines in this manner is repeated until the original pathline length is drawn.

Table 1: The timing results (in seconds) and dimensions for the datasets. All timing results were performed with an Intel Core i7-3770 with
an Nvidia GeForce GTX-780 GPU.

Timing (seconds) Dimensions (w×h×d)
Build CPM Build Refined Grid UFLIC Closest Point Refined Grid

Ice Train 0.03 0.02 0.1 (512×58×69) (2048×232×276)
F6 0.06 0.11 0.12 (384×191×55) (1536×764×220)
Cylinder 0.07 0.21 0.17 (144×222×472) (432×666×1416)

of the tail of the memory pool without affecting the permanent data.
Allocating 975MB as a preprocess takes 0.30s. Allocating on the
fly can more than double the runtime, making interactivity difficult.

These experimental results demonstrate a near interactive rate
for constructing the closest point grid and an interactive rate for
running the UFLIC. The results also show reasonable memory us-
age with less than 1GB of GPU RAM used for any of the datasets.
The timing results for the closest point embedding with UFLIC are
similar to the performance of UFLIC with Flow Charts using high
resolution textures and a ttl of 2, although it was generated on older
GPU hardware.

6 CONCLUSION AND FUTURE WORKS

We have introduced a new method for surface flow visualization us-
ing the closest point embedding. This new scheme achieves inter-
active rates for performing unsteady flow visualization and a near
interactive rate for creating the embedded surface grid. The key
idea is that by embedding the closest point to a surface into the
surrounding grid, particles can be kept on the surface. Further, the
closest point embedding can also perform the high pass filtering
required for UFLIC.

With our new technique, there are numerous advantages com-
pared to previous works. It avoids the visibility problems of image-
space approaches, such as popping artifacts on the silhouettes, and
can resolve occluded areas that image-space methods cannot. Fur-
ther, it does not require a texture atlas like Flow Charts. However,
for this implementation a static resolution was chosen, a constraint
shared with Flow Charts. This limits the ability to zoom into in-
tricate areas of the surface which is sometimes needed, and can be
handled with image-space approaches. This is something we would
like to revisit in the future.

In the future, we would like to explore the fast embedding tech-
nique to visualize unsteady flow on moving surfaces. Further, we
would like to adapt other flow visualization techniques such as
UFAC [29] or reaction-diffusion [21] and optimize the amount of
memory used. Although a two-level grid is used to save memory,

a hierarchical approach would be beneficial to reduce the memory
usage and increase the performance.

ACKNOWLEDGEMENTS

This research was supported by the DOE, NNSA, Award DE-
NA0002375: (PSAAP) Carbon-Capture Multidisciplinary Simula-
tion Center, the DOE SciDAC Institute of Scalable Data Manage-
ment Analysis and Visualization DOE DE-SC0007446, NSF ACI-
1339881, and NSF IIS-1162013.

REFERENCES

[1] S. Auer, C. Macdonald, M. Treib, J. Schneider, and R. Westermann.
Real-time fluid effects on surfaces using the closest point method.
Computer Graphics Forum, 31(6):1909–1923, 2012.

[2] H. Battke, D. Stalling, and H.-C. Hege. Fast line integral convolution
for arbitrary surfaces in 3d. In H.-C. Hege and K. Polthier, editors,
Visualization and Mathematics, pages 181–195. Springer Berlin Hei-
delberg, 1997.

[3] J. Bresenham. Algorithm for computer control of a digital plotter. IBM
Systems Journal, 4(1):25–30, 1965.

[4] B. Cabral and L. C. Leedom. Imaging vector fields using line integral
convolution. In Proceedings of the 20th Annual Conference on Com-
puter Graphics and Interactive Techniques, SIGGRAPH ’93, pages
263–270, New York, NY, USA, 1993. ACM.

[5] M. Edmunds, R. S. Laramee, G. Chen, N. Max, E. Zhang, and
C. Ware. Surface-based flow visualization. Computers & Graphics,
36(8):974 – 990, 2012. Graphics Interaction Virtual Environments and
Applications 2012.

[6] E. Edwards and R. Bridson. A high-order accurate particle-in-cell
method. International Journal for Numerical Methods in Engineering,
90(9):1073–1088, 2012.

[7] L. K. Forssell and S. D. Cohen. Using line integral convolution for
flow visualization: Curvilinear grids, variable-speed animation, and
unsteady flows. Visualization and Computer Graphics, IEEE Trans-
actions on, 1(2):133–141, June 1995.

[8] J. Hoberock and N. Bell. Thrust: A parallel template library. Thrust:
A Parallel Template Library, 2009.

(a) Closest Point Cylinder

(b) Flow Charts Cylinder

Figure 8: Engine cylinder visualizations. Figures 8(a) and 8(b) use
UFLIC with the closest point embedding and Flow Charts, respec-
tively, for visualizing flow in a combustion cylinder.

[9] Y. Hong, D. Zhu, X. Qiu, and Z. Wang. Geometry-based control of
fire simulation. The Visual Computer, 26(9):1217–1228, 2010.

[10] J. Huang, W. Pei, C. Wen, G. Chen, W. Chen, and H. Bao. Output-
coherent image-space lic for surface flow visualization. 2014 IEEE
Pacific Visualization Symposium, 0:137–144, 2012.

[11] G. K. Karch, F. Sadlo, D. Weiskopf, C.-D. Munz, and T. Ertl. Vi-
sualization of advection-diffusion in unsteady fluid flow. Computer
Graphics Forum, 31(3pt2):1105–1114, 2012.

[12] R. S. Laramee, B. Jobard, and H. Hauser. Image space based visu-
alization of unsteady flow on surfaces. In IEEE Visualization, pages
131–138, 2003.

[13] G.-S. Li, X. Tricoche, and C. Hansen. Gpuflic: Interactive and ac-
curate dense visualization of unsteady flows. In Proceedings of the
Eighth Joint Eurographics / IEEE VGTC Conference on Visualization,
EUROVIS’06, pages 29–34, Aire-la-Ville, Switzerland, Switzerland,
2006. Eurographics Association.

[14] G.-S. Li, X. Tricoche, and C. Hansen. Physically-based dye advection
for flow visualization. Computer Graphics Forum, 27(3):727–734,
2008.

[15] G.-S. Li, X. Tricoche, D. Weiskopf, and C. D. Hansen. Flow charts:
Visualization of vector fields on arbitrary surfaces. IEEE Transactions
on Visualization and Computer Graphics, 14(5):1067–1080, 2008.

[16] C. B. Macdonald and S. J. Ruuth. Level set equations on surfaces
via the closest point method. Journal of Scientific Computing, 35(2-
3):219–240, June 2008.

[17] C. B. Macdonald and S. J. Ruuth. The implicit closest point method
for the numerical solution of partial differential equations on surfaces.
SIAM Journal on Scientific Computing, 31(6):4330–4350, Dec. 2009.

[18] T. März and C. B. Macdonald. Calculus on surfaces with gen-
eral closest point functions. SIAM Journal on Numerical Analysis,
50(6):3303–3328, 2012.

[19] J. Nickolls, I. Buck, M. Garland, and K. Skadron. Scalable parallel
programming with cuda. Queue, 6(2):40–53, Mar. 2008.

[20] S. J. Ruuth and B. Merriman. A simple embedding method for solving
partial differential equations on surfaces. Journal of Computational
Physics, 227(3):1943–1961, 2008.

[21] A. Sanderson, C. Johnson, and R. Kirby. Display of vector fields using
a reaction-diffusion model. In Visualization, 2004. IEEE, pages 115–
122, Oct 2004.

[22] P. J. Schneider and D. Eberly. Geometric Tools for Computer Graph-
ics. Elsevier Science Inc., New York, NY, USA, 2002.

[23] H.-W. Shen and D. Kao. Uflic: a line integral convolution algorithm
for visualizing unsteady flows. In Visualization ’97., Proceedings,
pages 317–322, 1997.

[24] R. Strzodka and A. Telea. Generalized distance transforms and skele-
tons in graphics hardware. In Proceedings of the Sixth Joint Euro-
graphics - IEEE TCVG Conference on Visualization, VISSYM’04,
pages 221–230, Aire-la-Ville, Switzerland, Switzerland, 2004. Euro-
graphics Association.

[25] L. Tian, C. Macdonald, and S. Ruuth. Segmentation on surfaces with
the closest point method. In Image Processing (ICIP), 2009 16th IEEE
International Conference on, pages 3009–3012, Nov 2009.

[26] J. J. van Wijk. Image based flow visualization. In Proceedings of
the 29th Annual Conference on Computer Graphics and Interactive
Techniques, SIGGRAPH ’02, pages 745–754, New York, NY, USA,
2002. ACM.

[27] J. J. van Wijk. Image based flow visualization for curved surfaces. In
Visualization, 2003. VIS 2003. IEEE, pages 123–130, 2003.

[28] D. Weiskopf. Dye advection without the blur: A level-set approach for
texture-based visualization of unsteady flow. Comput. Graph. Forum,
23(3):479–488, 2004.

[29] D. Weiskopf, G. Erlebacher, and T. Ertl. A texture-based framework
for spacetime-coherent visualization of time-dependent vector fields.
In Visualization, 2003. VIS 2003. IEEE, pages 107–114, 2003.

