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Abstract. A Gaussian process (GP) is a powerful and widely used regression technique. The
main building block of a GP regression is the covariance kernel, which characterizes the relationship
between pairs in the random field. The optimization to find the optimal kernel, however, requires
several large-scale and often unstructured matrix inversions. We tackle this challenge by introducing
a hierarchical matrix approach, named HMAT, which effectively decomposes the matrix structure,
in a recursive manner, into significantly smaller matrices where a direct approach could be used
for inversion. Our matrix partitioning uses a particular aggregation strategy for data points, which
promotes the low-rank structure of off-diagonal blocks in the hierarchical kernel matrix. We employ
a randomized linear algebra method for matrix reduction on the low-rank off-diagonal blocks without
factorizing a large matrix. We provide analytical error and cost estimates for the inversion of the
matrix, investigate them empirically with numerical computations, and demonstrate the application
of our approach on three numerical examples involving GP regression for engineering problems and a
large-scale real dataset. We provide the computer implementation of GP-HMAT, HMAT adapted for
GP likelihood and derivative computations, and the implementation of the last numerical example
on a real dataset. We demonstrate superior scalability of the HMAT approach compared to built-in
\ operator in MATLAB for large-scale linear solves Ax = y via a repeatable and verifiable empirical
study. An extension to hierarchical semiseparable (HSS) matrices is discussed as future research.
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1. Introduction.

1.1. Motivation and background. A Gaussian process (GP) is a random field
or a stochastic process defined by a collection of random variables that are typically
associated with spatial points or time instances. Every finite collection of such random
variables has a multivariate normal distribution in the Gaussian process. This Gauss-
ian characteristic makes GP a versatile and amenable tool for numerical computations
in science and engineering [36]. An indispensable part of any GP regression is the task
of matrix inversion and determinant computation, which are major numerical linear
algebra tasks. To be precise, let D = {(xi,yi)}ni=1 be the training samples where
xi ∈ Rd and yi ∈ R are the sampling sites (nodes) and the observational data, and
A a kernel matrix with entries [A]ij = k(xi,xj , `) where k(xi,xj) : Rd × Rd → R is
the kernel function and ` is the vector of hyperparameters. Then, a typical objective
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2 V. KESHAVARZZADEH, S. ZHE, R. M. KIRBY, AND A. NARAYAN

function in GP is the log likelihood:

(1.1) L = −1

2
yT (A+ σ2

nI)−1y − 1

2
log |A+ σ2

nI| −
n

2
log(2π)

where I is the identity matrix, the fixed constant σn represents the effect of noise in
data. The goal in GP training is to maximize the objective function, i.e. log likelihood
L to find the optimal hyperparameters `. In addition to this well-known objective, the
evidence lower bound denoted by Llower has also been universally considered in the
context of variational Bayesian inference and more specifically in variational inference
approaches for GP, e.g. sparse variational GP [11]. In sparse approximations, typically
a Nyström approximation of the kernel matrix with n data points Ann in the form of
Ânn = AT

mnA
−1
mmAnm where m� n (hence sparse approximation) is considered [46].

Both objective functions L and Llower involve linear system solves for computing
the energy term i.e. yT (A+σ2

nI)−1y and log determinant computation. In particular,
the challenge of GP regression is the O(n2) storage and O(n3) arithmetic operation
complexity for inversion which can hamper its application for large n. This issue is
addressed to an extent in the sparse GP approaches [11], which show O(nm) storage
and O(nm2) time complexity. However, the determination of m � n data points,
referred to as induced points or landmark points in the GP literature, is not a trivial
task and, itself, can be cast as a continuous optimization problem [43] or a discrete
sampling problem (as a subset of original n points) [42, 26] in conjunction with the
optimization of hyperparameters.

In this paper, we develop a scalable GP regression approach by leveraging powerful
tools/ideas in the rich field of numerical linear algebra [19, 4]. The significant potential
of using principled linear algebra approaches within the context of GP regression has
also been the subject of much active research [13, 41]. Among many approaches we
specifically adopt the hierarchical low-rank matrices [22, 20] viewpoint that has been
proven to be highly effective in reducing the computational complexity of large-scale
problems. We pragmatically show that 1) the hierarchical decomposition of the ma-
trix, 2) low-rank factorization of off-diagonal blocks via a randomized algorithm, and
3) performing low-rank updates via Sherman-Morrison-Woodburry (SMW) formula
(similar to the Schur-complement formulation in the original H-matrix literature)
collectively render a concrete pipeline for inversion of large-scale matrices which we
further adapt for the task of GP training and regression.

In what follows, we highlight notable aspects of our computational framework
in comparison with a number of existing scalable GP approaches (typically involving
Nyström low-rank approximation) and hierarchical matrix approaches (typically in-
volving solution to finite element or finite difference discretization of elliptic partial
differential equations). We also briefly discuss limitations associated with the current
framework.

Hierarchical decomposition: A limited number of research works have ad-
dressed scalable GP with hierarchical matrix decomposition [13, 17]. In [13], the
authors consider a similar problem but it appears that their hierarchical inversion
procedure requires large matrix-matrix multiplications similar to original H-matrix
works which results in O(n log(n)2k2) scalability. A GP regression approach for large
data sets is presented in [5] where the hierarchy is assumed within a Bayesian in-
ference context. Similar SMW computations are utilized for likelihood evaluation in
their MCMC sampling. In contrast to the GP literature, the literature on hierarchi-
cal matrix approaches for solving sparse linear systems Ax = y associated with the
discretization of elliptic PDEs such as Laplace’s equation is vast [31, 32, 33, 52]. The
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HIERARCHICAL LOW-RANK MATRICES FOR GP REGRESSION 3

majority of research works in the context of sparse solvers incorporate geometric infor-
mation. Geometric multigrid [8, 10] and graph partitioning [24, 25] approaches such
as nested dissection [18] are among the well-established methods used within sparse
solvers. Contrarily, the GP kernel matrices are often dense and constructed on an
unstructured set of nodes. We are mainly interested in forming low-rank off-diagonal
blocks for which we devise a new and simple data aggregation strategy inspired by
(geometry-independent) algebraic multigrid [9, 49].

Low-rank approximation: Many scalable GP approaches leverage efficient
Nyström approximation [15] or ensemble Nyström method [30] for low-rank factor-
ization. These approaches are less systematic and potentially less accurate compared
to the (randomized) linear algebra procedures that we consider in this paper (See
Section 5.1). An example of incorporating randomized SVD into GP computation
(however in a different setting than matrix inversion) is in [7]. Another conceptu-
ally hierarchical approach for GP is considered in [41] where the authors perform
incomplete Cholesky factorization using maximin elimination ordering for invoking a
sparsity pattern. We emphasize that the application of randomized algorithms for
low-rank approximation in hierarchical matrices is not new [34]; however, the success-
ful application and error estimation of such approaches in the matrix-free hierarchical
inversion of dense matrices is less common. For example, the authors in [32] consider
forward computation for hierarchical matrices with a randomized algorithm. The
construction is based on the simplifying assumption that the matrix-vector multipli-
cation in their randomized SVD approach is fast. We eliminate this assumption and
demonstrate a successful subsampling approach for fast computation of the random-
ized range finder that yields the overall desirable scalability O(n log(n)k).

Optimization of parameterized hierarchical matrices: The gradient-based
optimization with parameterized hierarchical matrices has not been the central focus
of the linear algebra community. However, gradient computation is a vital part of
many machine learning procedures, including GP. The authors in [17] consider a
similar GP problem and discuss an approach for HODLR matrices [2] (HODLR:
hierarchical off-diagonal low-rank, similar to our hierarchical construction); however,
the low-rank factorization is based on Nyström approximation and the hierarchical
gradient computation is not apparent from the formulation. In this paper, we provide
concrete algorithmic steps for computing the log likelihood gradient (with respect to
hyperparameters `) in a generic hierarchical setting.

1.2. Contributions of this paper. Our contribution in this paper was ini-
tially motivated by recent similar works [13, 17]. We develop a scalable hierarchical
inversion algorithm using a principled randomized linear algebra method. We pro-
vide analytical error and cost estimates for the matrix inversion in addition to their
empirical investigations. The practical aspects of our contribution are as follows: 1)
We provide a numerical scheme, HMAT, that requires O(n log(n)k) arithmetic oper-
ations for the linear solve Ax = y 1. Linear solves with HMAT on n = 106 nodes
take slightly more than a minute on a single CPU on a relatively modern computer.
2) Our hierarchical matrix approach is adapted to likelihood L cf. Equation (1.1) and
its derivative ∂L/∂` computation for the task of GP training. We provide another
scheme, GP-HMAT for the GP training/regression that includes the likelihood gra-
dient computations. The code infrastructure for these schemes is implemented in a
modularized way. As a result, several forms of kernels (or hyperparameters) can be

1The empirical results in Section 5 exhibit even superior scalability in the last term, k. In
particular, we present results with O(n log(n)kα) scalability where α ≤ 1/2.
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4 V. KESHAVARZZADEH, S. ZHE, R. M. KIRBY, AND A. NARAYAN

added to the main solver with minimal effort. The HMAT and GP-HMAT solvers are
available in [27].

Limitations of the approach: A limitation of our approach is the sequential
nature of computations. One major advancement is parallelizing the factorization of
off-diagonal blocks. Recursive factorization of these blocks in a hierarchical semisep-
arable format is another advancement that we plan to pursue in our future work.
Another limitation is the range of applicability with respect to various kernels. The
rank structure of matrices (whether kernel or finite difference/element matrices) is not
generally well understood. Our framework similarly to many others (e.g. [41]) is well
suited to the low-rank kernel matrices (or smooth analytical kernels). We promote
low-rankness (of off-diagonal blocks) via our data aggregation strategy, which to the
best of our knowledge is done for the first time. We provide simple guidelines for
practical application of our approach in Section 5.

The organization of the paper is described via the main algorithmic components
of the computational framework: Matrix partitioning: In Section 2, we describe
a new and simple yet effective permutation strategy for aggregation of data points
which results in lower rank off-diagonal blocks in the hierarchical matrix. Low-rank
approximation of off-diagonal blocks: Section 3 discusses our randomized ap-
proach for fast low-rank factorization of off-diagonal blocks. We report relevant error
estimates that will be used for the hierarchical error estimation in the subsequent sec-
tion. Hierarchical matrix inversion via SMW formula: In Section 4, we present
the main algorithm for linear solve Ax = y leveraging hierarchical low-rank SMW
updates. This section also includes theoretical error and cost analyses in addition to
computation of likelihood and its derivative for GP training.

Section 5 presents numerical experiments on three examples involving regression
on an analytical problem for empirical studies on the code scalability and approxi-
mation errors, an engineering problem and a real dataset with a large size. Finally,
Section 6 discusses the final remarks and ideas for future research, including develop-
ment of HSS matrices [12, 51, 53] in combination with high-performance computing
for GP regression.

2. Hierarchical decomposition.

2.1. Notation and setup. Throughout the paper, the following notation and
setup are frequently used: We use bold characters to denote matrices and vectors.
For example, x ∈ Rd indicates a vector of variables in the domain of a multivariate
function. We refer to computing the solution x = A−1y as linear solve and to x as
the solution to linear solve. The vector x ∈ Rn is measured with its Euclidean norm
‖x‖2 = (

∑n
i=1 x

2
i )

1/2 and the matrices are mostly measured by their Frobenius norm
denoted by ‖A‖F = (

∑
i,j A

2
i,j)

1/2. In some cases we report results on l2-norm, i.e.
‖A‖2 = supx∈Rn,x 6=0 ‖Ax‖2/‖x‖2. The notation # denotes the cardinality of a set
(or size of a set), e.g. given I = {0, 1, 2, 3} → #I = 4.

2.2. Matrix partitioning. Our main strategy to decompose large matrices into
smaller ones involves a dyadic hierarchical decomposition. The process depends on two
user-defined parameters: η ∈ N corresponding to the size of the largest square blocks
that we can computationally afford to directly invert, and ν : N → N corresponding
to how finely each set of indices is dyadically partitioned. In this work, we use the
following definition of ν:

ν(k) := 10blog10(k−0.5)c,(2.1)
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which essentially computes the largest power of 10 that is strictly smaller than k. If
we are given a set of indices of size k, then we split this set of indices into two subsets,
one of size ν(k) and the other of size k − ν(k).

WithA an n×n symmetric matrix, we create a tree, where each node corresponds
to a subset of the indices [n], and the branching factor/outdegree is equal to 2. The
creation of the tree proceeds by starting at level 0, where a single parent (root) node
associated with the full ordered index set (1, . . . , n) is declared. The construction of
the tree is now recursively accomplished by looping over the level l: For each node at
level l associated with an ordered index set I, the following operations are performed:

1. If #I ≤ η, then this node is marked as a leaf node, and no further operations
are performed.

2. If #I > η, then we subdivide this node into two child nodes that are inserted
into level l + 1.
(a) Let k = #I. With I = (i1, . . . , ik), let a be a 1 × k row vector corre-

sponding to row i1 and columns I of A, i.e., a = A(i1, I).

(b) We compute a permutation (p1, . . . , pk) of (1, . . . , k), constructed by
ordering elements of a in non-increasing magnitude, i.e.,

|apq+1
| ≤ |apq |, q = 1, . . . , k − 1.

In terms of work, this corresponds to generating/extracting a size-k row
from A and sorting in decreasing order.

(c) A child node of size ν(k) is created at level l+1 associated with the first
ν(k) permuted indices of I, i.e., (jp1 , . . . , jpν(k)).

(d) A second child node of size k − ν(k) is created at level l + 1 associated
with the remaining indices, i.e., (jpν(k)+1

, . . . , jk).
The procedure above is repeated for each node at level l. If, after this procedure,
level l+ 1 is empty, then the decomposition process terminates. Otherwise, the above
procedure is applied again with l← l+1. Figure 1 illustrates the entire decomposition
on a matrix of size n = 5000 and η = 100.
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... ...
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1
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Γ
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1

Fig. 1. An example of the tree structure and its hierarchical matrix counterpart with size
n = 5000. For better visualization, the aspect ratio in the smallest blocks is not respected.
The smallest blocks are meant to be 100 × 100 matrices within 1000 × 1000 blocks. Nodes
associated with the smallest blocks are highlighted in gray color.

By virtue of this decomposition, each node (that is not the root) has precisely 1
sibling associated with the same parent node. If I and J are index sets associated with
a node and its sibling, then the off-diagonal block A(I,J ) (and also its symmetric
counterpart) are approximated by an SVD ΓlΓmΓTr that we describe in the next
sections.
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6 V. KESHAVARZZADEH, S. ZHE, R. M. KIRBY, AND A. NARAYAN

The above strategy for matrix partitioning is adopted from a more generic ap-
proach, maximal independent set (MIS), that is often used in algebraic multigrid [49,
6, 48]. The main difference between our approach and MIS is the size-dependent
parameter ν(k) for division of index sets instead of a parameter that is dependent on
the magnitude of matrix entries (often denoted by θ in the MIS literature). Consider-
ation of ν(k) (and consequently k − ν(k)) directly results in the desirable number of
aggregates, which is 2 in our construction. As mentioned in Section 1, our approach is
also inherently different from graph partitioning approaches (used in sparse solvers),
which are based on min-cut algorithms [44] or nested dissection [18]. In such sparse
solvers, the goal is to minimize the communication between individual processors or
reduce the number of fill-ins in Cholesky factorization. Our goal is to form off-diagonal
blocks that are of low rank. The favorable effect of our aggregation strategy on the
rank of the off-diagonal blocks is empirically demonstrated in Section 5.

3. Low-rank matrix approximation. This part of our framework mainly
adopts the procedures presented in [23]. In particular, we employ the randomized
SVD approach with interpolative decomposition (ID) with some minor modifications
that we briefly explain in this section.

3.1. Computing the range approximator Q. The most significant building
block of a randomized SVD factorization is the range approximator matrix Q. Given
a matrix A ∈ Rm×n, the range approximator matrix Q ∈ Rm×k with k orthonormal
columns, is sought that admits

(3.1) ‖A−QQTA‖F ≤ ε

where ε is a positive error tolerance (and is a crucial part of our error analysis).
The high-level idea is then to approximate SVD of A from the SVD of a smaller
matrix B = QTA. A key consideration is efficient computation of Q, and that is
indeed achieved via a randomized approach. In particular, the range approximator
Q ∈ Rm×k is found from a QR factorization on another matrix Y = AΩ where
Ω ∈ Rn×(k+p) is a random matrix drawn from standard normal distribution with k
being a target rank and p an oversampling parameter.

One significant bottleneck in performing this randomized approach is the com-
putation of Y = AΩ. The complexity of computing Y is O(mnk) which for large
m and n (and assuming m ≈ n) yield quadratic scalability i.e. O(n2k) which will
deteriorate the scalability for the main inversion algorithm. We ideally aim to keep
the complexity of individual steps within the main algorithm to O(n) such that the
overall algorithm exhibits the desired scalability. In our case, the main algorithm
achieves O(n log(n)) scalability where the log(n) term appears due to the depth of
the hierarchical tree structure cf. Lemma 4.6.

The complexity issue of Y and the ways to address it have been discussed in [23,
38, 50]; however, the actual implementation of the approaches therein decreases the
complexity of O(mnk) to only O(mn log(k)). To achieve the desired scalability for
the inversion algorithm, we subsample quite significantly in the second dimension of
A ∈ Rm×n, so that the inner product of each subsampled row of A and respective
columns of smaller Ω is computed fast.

We set a maximum number of entries that we afford to evaluate from the kernel de-
noted by nmax and find the number of subsampled columns as ninnprod = bnmax/mc.
We also ensure that the number of subsampled columns is within the range [2k, 10k]
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via

(3.2) ninnprod ← min(max(2k, ninnprod), 10k).

The above relation and the choice of nmax are user-defined. Once this number is
found, then the samples are uniformly drawn from integer numbers {1, . . . , n}. With
the above consideration, the number of subsampled columns will be at most, 10k
which yields the O(nk2) scalability (where again we assumed m ≈ n just to report
the scalability) for computation of Y = AΩ. This is a desirable estimate as the cost is
linearly proportional to the number of degrees of freedom. The minimum 2k samples
also facilitates the justification for the subsampling, which we empirically investigate
via a numerical example.

Note that evaluating Ã ∈ Rm×ninnprod is significantly cheaper than evaluating
A ∈ Rm×n from the kernel function. However, the cost associated with this evaluation
(i.e. calculation of exp(.)) is not considered in our cost analysis, which is beyond the
scope of this paper. We mainly consider basic matrix operations, e.g. addition and
multiplication, in our cost analysis.

Once Q is computed, the computation of B = QTA can be followed; however,
matrix A ∈ Rm×n is a full matrix that renders computation of B costly. Therefore,
we consider a sketch of matrix A via interpolative decomposition (ID) [21, 14] cf. 9,
a useful and well-established linear algebra procedure.

3.2. Randomized SVD with ID. To compute the randomized SVD with ID,
we specifically follow Algorithm 5.2 in [23]. The ID matrix, denoted by X, is found
from the interpolative decomposition procedure, applied to the matrix Q ∈ Rm×k cf.
Equation (3.1).

Algorithm 3.1 presents various steps in computing the SVD factorization, given
GP nodes N ∈ Rd×n where d is the dimension of data points and n is the number of
GP nodes, and two index sets I1, I2 where #I1 = n1, #I2 = n2. As an example for
n = 106, using the relation (2.1) results in n1 = 105 and n2 = 9× 105 for the largest
(and first) off-diagonal block in the hierarchical decomposition. Also, considering
nmax = 5× 106 and k = 20 yields ninnprod = 50.

Algorithm 3.1 Randomized SVD with ID: [Γl,Γm,Γr]← rsvd id(N , [I1, I2], k)

1: Compute the matrix Ã ∈ Rn1×ninnprod from the kernel function using ninnprod cf.
Equation (3.2)

2: Compute Y = ÃΩ where Ω ∈ Rninnprod×k is a standard normal random matrix
3: Compute the range approximator matrix Q ∈ Rn1×k via [Q,RY ]← qr(Y )
4: Compute the ID matrix X ∈ Rn1×k from Q and row indices IID, i.e. Q '
XQ(IID, :) cf. Section 9

5: Evaluate the row skeleton matrix A(IID, :) ∈ Rk×n2 from the kernel function
6: Compute the QR factorization of the row skeleton matrix, i.e. [W ,R] ←
qr(A(IID, :)T ) where W ∈ Rn2×k is an orthonormal matrix and R ∈ Rk×k

7: Compute Z = XRT where Z ∈ Rn1×k

8: Compute an SVD of Z = ΓlΓmΓ̃Tr where Γl ∈ Rn1×k, Γm ∈ Rk×k and Γ̃r ∈ Rk×k
9: Form the orthonormal matrix Γr = W Γ̃r where Γr ∈ Rn2×k

The following two theorems provide bounds for the error tolerance ε cf. Equa-
tion (3.1). The first one concerns the mean of such error and the second one concerns
the probability of failure. We use both estimates, i.e. mean and the threshold (i.e.
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8 V. KESHAVARZZADEH, S. ZHE, R. M. KIRBY, AND A. NARAYAN

the right-hand side of inequality (3.4)) to generate random samples of error in the
empirical studies.

Theorem 3.1 (Theorem 10.5 in [23]). Suppose that A ∈ Rm×n is a real matrix
with singular values σ1 ≥ σ2 ≥ . . .. Choose a target rank k ≥ 2 and an oversampling
parameter p ≥ 2 where k+p ≤ min{m,n}. Draw an n×(k+p) standard Gaussian ma-
trix Ω, and construct the sample matrix Y = AΩ. Then the expected approximation
error (with respect to Frobenius norm) is

(3.3) E‖(I −QQT )A‖F ≤
(

1 +
k

p− 1

)1/2√
min{m,n} − k σk+1.

Theorem 3.2 (Theorem 10.7 in [23]). Consider the hypotheses of Theorem 3.1.
Assume further that p ≥ 4. For all u, t ≥ 1,

(3.4) ‖(I −QQT )A‖F ≤

[(
1 + t

√
3k

p+ 1

)√
min{m,n} − k + ut

e
√
k + p

p+ 1

]
σk+1

with the failure probability at most 2t−p + e−u
2/2.

In our empirical studies, we use t = e ≈ 2.718 and u =
√

2p. As a result, the
failure probability simplifies to 3e−p. The following lemma provides a bound for the
SVD factorization in Algorithm 3.1 using the error tolerance ε provided in the above
theorems.

Lemma 3.3 (Lemma 5.1 in [23]). Let A be an m × n matrix and Q an m × k
matrix that satisfy (3.1), i.e. ‖A −QQTA‖ ≤ ε. Suppose that U ,S and V are the
matrices consructed by Algorithm 3.1. Then,

(3.5) ‖A−USV T ‖F ≤
[
1 +

√
k + 4k(n− k)

]
ε.

In the next section, we use the above bound, εsvd =
[
1 +

√
k + 4k(n− k)

]
ε as the

error in the off-diagonal factorization in our hierarchical construction.

4. SMW computations and GP approximation. In this section, we discuss
the main inversion algorithm cf. Subsection 4.1, the analytical error and cost esti-
mates cf. Subsections 4.2 and 4.3, the computation of likelihood and its gradient cf.
Subsection 4.4 and finally, the GP regression using the hierarchical matrix framework
cf. Subsection 4.5.

4.1. SMW computations for linear solve. We have hitherto discussed ma-
trix decomposition and our way of computing an SVD factorization for a rectangu-
lar matrix. In this subsection, we present our main tool for matrix inversion, i.e.
Sherman-Morrison-Woodbury formula and discuss the associated algorithm for the
hierarchical linear solve.

The SMW formula for matrix inversion, with a similar formula for determinant
computation is as follows:

(4.1)
A−1 = (AD +UCV )−1 = A−1

D −A
−1
D U(C−1 + V A−1

D U)−1V A−1
D

det(A) = det(AD +UCV ) = det(AD)det(C)det(C−1 + V A−1
D U)
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where A is represented via the following dyadic decomposition to the diagonal blocks
AD and off-diagonal blocks AOD = UCV :
(4.2)

A =

[
A11 ΓlΓmΓTr
ΓrΓTmΓTl A22

]
=

[
A11 0
0 A22

]
︸ ︷︷ ︸

AD

+

[
Γl 0
0 Γr

]
︸ ︷︷ ︸

U

[
Γm 0
0 ΓTm

]
︸ ︷︷ ︸

C

[
0 ΓTr
ΓTl 0

]
︸ ︷︷ ︸

V

.

It is beneficial to revisit Figure 1 (lower right pane) to notice that every diagonal
block of the original matrix is decomposed with the dyadic decomposition introduced
above. The decomposition of diagonal blocks is continued until the block becomes
smaller than or equal to η.

Including the right-hand side y = [yT1 y
T
2 ]T in the first line of (4.1) yields

(4.3) x = A−1y = A−1
D y −A

−1
D U(C−1 + V A−1

D U)−1V A−1
D y,

which is the main equation in our hierarchical linear solve approach. To better un-
derstand the hierarchical linear solve algorithm, we transform the above equation to
a decomposed matrix form

(4.4)

x = A−1y =

[
xD1

xD2

]
−
[
ql1 0
0 ql2

](
C−1
smw

[
qry2
qry1

])

=

[
xD1

xD2

]
−
[
ql1sqry1
ql2sqry2

]
by introducing the following important variables: xD1

:= A−1
11 y1 ∈ Rn1×dy , xD2

:=
A−1

22 y2 ∈ Rn2×dy , ql1 := A−1
11 Γl ∈ Rn1×k, ql2 := A−1

22 ΓTr ∈ Rn2×k, qlr1 := ΓTl ql1 ∈
Rk×k, qlr2 := Γrql2 ∈ Rk×k, qry1 := ΓTl xD1

∈ Rk×dy , qry2 := ΓrxD2
∈ Rk×dy where

(4.5) Csmw :=

[
Γ−1
m qlr2
qlr1 Γ−Tm

]
,

[
sqry1
sqry2

]
:= C−1

smw

[
qry2
qry1

]
.

In Equations (4.4) and (4.5), the matrix Csmw is the SMW correction matrix, i.e.
Csmw = C−1 + V A−1

D U and sqry1 ∈ Rk×dy , sqry2 ∈ Rk×dy are two vectors (when
dy = 1) or matrices (when dy > 1) obtained from a small size linear solve, i.e. 2k×2k
with SMW correction matrix as the left-hand side. We also recall from the previous
section that Γl ∈ Rn1×k, Γm ∈ Rk×k and Γr ∈ Rn2×k.

It is important to emphasize a crucial point in this hierarchical SMW computa-
tion. Finding x, the solution to the linear solve problem, involves computing A−1

D U .
The solver hierarchically solves A−1y or (A−1

D y). The solver is also recursively called
to solve A−1

D U . Only the right-hand side should be changed from y to U . Indeed, the
solver solves a portion of y and (approximate) right singular vector of the off-diagonal
block at a particular level simultaneously. We achieve this by concatenating [y1 Γl]
or [y2 Γr]. The main psuedocode for linear solve denoted by back solve and its
associated psuedocodes are presented in 10.

4.2. Error estimate. In this subsection, we develop an error estimate for the
hierarchical computation of the solution x. In both error and cost estimates we
consider the particular dyadic decomposition shown in Figure 1 (right). We develop
the total error for original (largest) matrix by assuming the smallest diagonal block
(with size nmin) in the lower right corner of the matrix and enlarging the matrix by
adding similar size diagonal blocks. Using the SMW formula, the foundation of our
error estimation is built on the fact that the full matrix at level i (i.e. combination of
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10 V. KESHAVARZZADEH, S. ZHE, R. M. KIRBY, AND A. NARAYAN

diagonal and off-diagonal blocks) forms the diagonal part of the matrix at level i− 1,

i.e. A
(i−1)
D = A

(i)
D +A

(i)
OD.

To simplify the presentation, we define two particular notations for computing the
Frobenius norm of the matrix and the difference of matrices (i.e. the difference/error
between the (full) matrix and its approximation): fα(A) = ‖A‖F and fε(A) =

‖A−Â‖F . Similarly, we define scalar variables αi = fα(A
(i)−1

D ), βi = fα(U (i)), εD,i =

fε(A
(i)−1

D ) and εOD,i = fε(U
(i)) to denote fα and fε quantities at level i.

The main result in Proposition 4.3 bounds the error of matrix inversion in a
hierarchical matrix, that requires the estimate of error in each component of off-
diagonal factorizations (computed individually at each level) cf. Lemma 4.1 and
the Frobenius norm of the inverse of diagonal blocks (computed hierarchically) cf.
Lemma 4.2.

Lemma 4.1. Given AOD = UCV , fε(AOD) = ‖AOD − ÂOD‖ = ε cf. Equa-
tion (3.5) and assuming β = min(‖U‖, ‖C‖, ‖V ‖) then

fε(U) ≤ ε/β2, fε(C) ≤ ε/β2, fε(V ) ≤ ε/β2.

Proof. See A.1.

When we exercise the result of the above lemma in the numerical examples, we
set ε←

√
2εsvd cf. Equation (3.5).

Lemma 4.2. Consider the hierarchical matrix A
(i−1)
D = A

(i)
D + A

(i)
OD where L

is the deepest level. Assuming the minimum singular value of the SMW correction

matrix across all levels is constant, i.e. σmin(C
(i)
smw) = σCmin ∀i, knowing the rank

of such matrices is 2k, i.e. rank(C
(i)
smw) = 2k, and letting βL−j denote β (defined in

Lemma 4.1) at level L− j, then

αL−i = ‖A(L−i)−1

D ‖F ≤ α2i

L κ
2i−1

i−1∏
j=0

β2i−j−1

L−j

where αL = ‖A(L)−1

D ‖F is associated with the smallest two diagonal blocks at level L

and κ =
√

2k/σCmin .

Proof. See A.2.

Using the results of Lemma 4.1 and Lemma 4.2, the following proposition states the
main result for the inversion error in a hierarchical matrix:

Proposition 4.3. Given the settings of the hierarchical matrix A
(i−1)
D = A

(i)
D +

A
(i)
OD, having the estimates for the Frobenius norm of the inverse of hierarchical matrix

at level L − i as αL−i cf. Lemma 4.2 and the error at the deepest level denoted by
εD,L = ε, the error in matrix inversion at level L− i is

(4.6) εD,L−i ≤

 k∏
j=L−i+1

aj

 ε+ bL−i+1 +

L∑
k=L−i+2

 k−1∏
j=L−i+1

aj

 bk

where ai = κα2
iβ

4
i and bi = 2κα3

iβ
3
i εOD,i.

Proof. See A.3.
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The above error estimate, indeed, is the error in one larger block as formed with
accumulation of smaller size blocks. For example to seed the recursive formula for
n = 104, we first compute the error in the n = 103 block, which is computed as εD,0
starting from a nmin = 100 block (which involves direct inversion); εD,0 in that case
is computed via the following direct formula:

(4.7) εD,L−i ≤ bL−i+1 +

L∑
k=L−i+2

 k−1∏
j=L−i+1

aj

 bk

where simply ε is set to zero in the beginning of the chain of errors (i.e. in (4.6)).
Having the error in the matrix inverse, the error in the solution of linear solve Ax = y
is computed as fε(x) = εD,0fα(y) where εD,0 is the error in the inversion of the largest
block, i.e. the original matrix.

4.3. Cost estimate. The cost estimate for inversion in this section follows the
ideas for cost analysis and estimates in [20]. As a result, the inversion cost is obtained
based on the complexity of H-matrix multiplication operations (specifically, in our
case, H-matrix-vector multiplication) and that itself is bounded via storage cost for
H-matrices in addition to the cost of performing matrix reduction. We do not show the
detailed constants associated with these bounds and only present the main complexity
terms that give rise to the computational complexity in our hierarchical construction.
In particular, it is shown that the computational complexity of finding x (in Ax = y)
is in the form of O(n log(n)k) in our HMAT approach.

First, we briefly mention the storage cost for general matrices i.e. O(mn) and
O(k(m+n)) for full and reduced matrices and cost of SVD analysis i.e. O(k2(n+m))
cf. Algorithm 3.1. Next, we present the sparsity constant and the idea of small and
large leaves, which will be used to bound the storage cost. For the formal definitions
of H-tree, block H-tree and the set of H-matrices (denoted by H(T , k)) see Section 1
of [20].

Definition 4.4 (sparsity constant). Let TI×J be a block H-tree based on TI
and TJ . The sparsity constant Csp of TI×J is defined by

(4.8) Csp := max{max
r∈TI

#{s ∈ TJ |r × s ∈ TI×J }, max
s∈TJ

#{r ∈ TI |r × s ∈ TI×J }}.

In simple terms, the constant Csp is the maximum number of sets in an individual
H-tree at a certain level that give rise to a number of blocks in the block H-tree. In
other words, the total number of blocks in the block H-tree, based on TI and TI ,
is bounded by Csp multiplied by the total number of (index) sets that exist in the
individual H-tree. The maximum number of blocks at any level in our hierarchical
construction is 2; therefore, an equivalent sparsity constant is Csp = 2.

Definition 4.5 (small and large leaves). Let T be a block H-tree based on TI and
TJ . The set of small leaves of T is denoted by L−(T ) := {r×s | #r ≤ nmin or #s ≤
nmin}, and the set of large leaves is denoted as L+(T ) := L(T )\L−(T ).

The above definition formally distinguishes between the leaves that admit full (L−(T ))
and low-rank representation (L+(T )). These leaves or blocks are clearly apparent in
Figure 1. The gray ones belong to L−(T ) and the rest of blocks belong to L+(T ).
In addition to the above definitions, we provide the computational complexity of
operations within the SMW formula as discussed in Section 4.1 cf. Table 1. The
estimates in Table 1 are based on the assumption that for small matrices, the inversion
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12 V. KESHAVARZZADEH, S. ZHE, R. M. KIRBY, AND A. NARAYAN

Table 1
Computational complexity of various terms in SMW linear solve computations.

Variable xDi qli qlri qryi sqry1
Computational complexity n2 kn2 k2n kn k2

has the same complexity as multiplication. This assumption is one building block of
the proof in Theorem 2.29 in [20]. This assumption can be true when considering
iterative techniques such as a conjugate gradient on small linear solve problems. In
those cases, the solution is found via a possibly small number of iterations involving
matrix-vector operations with n2 complexity. Among various terms in Table 1, the
most significant cost is associated with the computation of qli which is equivalent to
the cost of a linear solve with a square matrix with size Rn×n and a right-hand side
matrix with size Rn×k, i.e. qli = A−1Γ.

Next, we present the result for storage complexity which is used to bound matvec
multiplication in hierarchical matrices. In the next result, the number of degrees of
freedom #I is replaced with n and the number of levels in the tree #L is replaced
with log(n). The storage requirement for a hierarchical matrix whose off-diagonal
blocks have rank k is denoted by CH,St(T , k).

Lemma 4.6 (storage complexity). Let T be a block H-tree based on TI and TI
with sparsity constant Csp and minimal block size nmin. Then, the storage require-
ments for an H-matrix are bounded by:

(4.9)
CH,St(T , k) ≤ 2Cspnmin(#I#L)

≤ C1n log(n)

where C1 := 2Cspnmin.

Proof. See A.4.

Lemma 4.7 (matrix-vector product). Let T be a block H-tree. The complexity
CH·v(T , k) of the matrix-vector product for an H-matrix A ∈ H(T , k) can be bounded
from above and below by

(4.10) CH,St(T , k) ≤ CH·v(T , k) ≤ 2CH,St(T , k).

Proof. See A.5.

Lemma 4.8 (truncation). Let T be a block H-tree based on the H-trees TI and
TJ . A trancation of an H-matrix A ∈ H(T , k) can be computed with complexity
CH,Trunc ≤ kCH,St(T , k).

Proof. See A.6.

Using the results in Lemmata 4.6, 4.7 and 4.8, we bound the cost of linear solve
Ax = y in the form of O(n log(n)k):

Theorem 4.9. Let T be a block H-tree of the index set I × I with #I = n,
A ∈ H(T , k) an H-matrix and y ∈ Rn be a vector. We assume that the linear solve
associated with the small blocks r × s ∈ L−1(T ) has the same complexity as matrix-
vector multiplication. Then, the cost of computing A−1y denoted by CH,\ is bounded
by

(4.11) CH,\ ≤ 3C1kn log(n).
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Proof. The proof adopts the same idea as the proofs of Theorems 2.24 and 2.29
in [20], which bound the complexity of factorizing the inverse of an H-matrix with
the complexity of matrix-matrix multiplication for two H-matrices. The cost involves
two main parts: 1) the truncation cost for the H-matrix; and once the matrix is in
the hierarchical form i.e. large leaves are reduced matrices, 2) the cost of the inver-
sion according to SMW formula (4.4) bounded by the matrix-vector multiplication
complexity. The statement in the second part is proven by induction over the depth
of the tree.

• Truncation of a full matrix toH-matrix: This cost is provided in Lemma (4.8):

CH,Trunc ≤ kCH,St
Lemma (4.6)

≤ C1kn log(n).
• Cost of hierarchical inversions (linear solves) for an H-matrix: To explain

the induction, consider a hierarchical matrix that at the deepest level is a
single square small block. The matrix gets larger by adding (similar size)
diagonal and off-diagonal blocks to previous levels, similarly to the discussion
for hierarchical error estimation. It is assumed that the cost of linear solve
for small blocks is bounded by matrix-vector multiplication. This is justified
in [20] by considering the smallest possible scenario which is nmin = 1. In this
scenario, both inversion and multiplication involve one elementary operation.
However, in our case the base of the induction is satisfied if n2 < kn log(n)
i.e. n < k log(n) 2, which is typically satisfied for small enough n and large
enough k.
For larger matrices, we assume that a large A22 yields the linear solve ql2
with complexity bounded by kCH·v. We make this assumption by considering
that computing ql2 ∈ Rn×k involves k timeH-matrix-vector multiplication i.e.
kCH·v ≤ 2C1kn log(n). Note that the most significant cost in SMW compu-
tations is associated with computation of ql2 . This term also appeared as the
most significant term in our error analysis. Adding another block i.e. going
up in the hierarchy, we perform computations associated with a smaller block
plus SMW correction computations that have smaller complexity compared
to computation of ql2 . Therefore, it is concluded that the complexity of the
inversion of anH-matrix via SMW computations is bounded by 2C1kn log(n).

Adding two parts of the computational complexity yields CH,\ ≤ 3C1kn log(n).

4.4. Computation of log likelihood and its derivative. In this subsection,
we discuss the computation of the energy term yTA−1y, the log of the determinant,
i.e. log(det(A)) and their sensitivities. Before proceeding further, we emphasize that
all sensitivity derivations stem from two main expressions

(4.12)
∂A−1

∂`
= −A−1 ∂A

∂`
A−1,

∂ log(det(A))

∂`
= Tr

(
A−1 ∂A

∂`

)
with the application of the chain rule.

To compute the log determinant, we introduce the following notation: Denoting
the eigenvalues of a square matrix A ∈ Rn×n by {σi}ni=1, the log of determinant is
computed by Λ = fΛ(A) = log(det(A)) = log(

∏n
i=1 σi) =

∑n
i=1 log(σi).

Multiplying [yT01 y
T
02] (where the notation y01 denotes the first column of y1) to

the left of Equation (4.4) and taking the log of Equation (4.1).b, i.e. log(det(A)) =
log(det(AD)) + log(det(C)) + log(det(C−1 + V A−1

D U)), the energy term and log

2n2 is the complexity of the matvec operation and kn log(n) is the target bound.
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determinant are computed hierarchically as

(4.13)
(Energy) Π = Π1 + Π2 −

[yT01ql1 yT02ql2 ] C−1
smw

 qTl2y02

qTl1y01


(Sum log eigs) Λ = Λ1 + Λ2 + 2fΛ(Γm) + fΛ (Csmw)

where Π1 := yT01xD01
∈ R, Π2 := yT02xD02

∈ R, Λ1 := fΛ(A11) ∈ R, Λ2 := fΛ(A22) ∈
R. Defining T1 = Π1 + Π2 (T for term), and

(4.14) T21 = [yT01ql1 yT02ql2 ], T22 = C−1
smw, T23 = [yT02ql2 yT01ql1 ]T

sensitivities of Π and Λ are written as
(4.15)
∂Π

∂`
=

∂Π1

∂`
+
∂Π2

∂`
− ∂T21

∂`
T22T23 − T21

∂T22

∂`
T23 − T21T22

∂T23

∂`

∂Λ

∂`
=

∂Λ1

∂`
+
∂Λ2

∂`
+ 2 sum (diag(∂Γm/∂`)� diag(Γm)) + Tr

(
C−1
smw

[
∂Csmw
∂`

])
where � denotes Hadamard division. The sensitivity computation for Π and Λ de-
pends on several terms e.g. ∂T21/∂` and ∂Csmw/∂`. The derivations for these terms
are provided in Appendix 12. The derivative terms such as ∂Π1/∂` are computed
hierarchically, and they depend on the hierarchical computation of (∂A/∂`)x where
x is the solution to the linear solve problem which can be in the form of a vector or
matrix. The key part of sensitivity computation is the hierarchical computation of
(∂A/∂`)x. The detailed pseudocodes for the calculation of likelihood and its gradient
are provided in 10.

4.5. GP regression. The (log) likelihood (cf. Equation (1.1)) optimization
is possible after finding Π, Λ, and their gradients. To compute L, we replace only A
(in all previous expressions) with Ã := A + σ2

nI, where σn is a fixed regularization
parameter (or noise parameter in GP), set by the user. We also distinguish between
training and test data by subscripts .◦ and .∗., i.e. y◦ and y∗, denote the vectors of
training and test data, respectively.

We find the optimal hyperparameter `∗ by maximizing L (in particular, we min-
imize −L). After finding the optimal hyperparameter `∗, we compute the mean
and variance of the GP test dataset [36] via y∗|◦ = ȳ∗ + Σ∗◦Σ

−1
◦◦ (y◦ − ȳ◦) and

Σ∗|◦ = diag(Σ∗∗)− diag(Σ∗◦Σ
−1
◦◦ Σ◦∗) where ȳ◦ is the sample average of the training

dataset and ȳ∗ is defined analogously. As the sample average of the test dataset is
not known a priori, we assume a simple model for this average and set ȳ∗ = ȳ◦. The
covariance matrix Σ◦◦ ≡ A+σ2

nI is the hierarchical matrix that is inverted in a linear
solve format, which is the main subject of this paper. Computation in the first equa-
tion is straightforward as Σ−1

◦◦ (y◦ − ȳ◦) is already in a linear solve format. However,
depending on the number of data points in the test dataset, the matrix Σ∗◦ may need
to be reduced. In the GP-HMAT package, we have provided both options, one with
the full computation on the covariance matrix between training and test datasets Σ∗◦
and one with reducing Σ∗◦ via randomized SVD with ID (cf. Algorithm 3.1) using
the rank parameter k as set by the user for off-diagonal matrix factorization.

5. Numerical experiments.
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5.1. Illustrative numerical example. In this example, we illustrate some im-
portant aspects of our hierarchical approach. The majority of results throughout this
example are reported using a fixed setting: The GP nodes are considered as uniformly
distributed points in the 2D square N ∈ [0, 1]2. The right-hand side y is also a ran-
domly generated (uniformly distributed) vector with ‖y‖2 = 1. The normalized errors
are computed with respect to true solutions that are obtained from direct inversions.
We consider only one hyperparameter ` in this example and, if not stated, results are
associated with the squared exponential kernel. We provide results associated with
data in higher dimensions i.e. d = 10 and d = 4 in the second and third numerical
examples cf. Sections 5.1 and 5.2. A number of other empirical studies are provided
in 14.

Smoothness of kernels and the effect of permutation on rank: In the first
experiment, we consider n = 1500 nodes to compute the kernel matrix. In the left
pane of Figure 2, the decay of kernel value with respect to Euclidean distance for three
different kernels, i.e. squared exponential, exponential, and a kernel that considers l1
distance as a distance function, is shown. In the first two kernels, f = ‖xi − xj‖22/`2
and we set ` = 0.3. To generate the data, we compute the kernel values k(x0,x)
where x0 = [0, 0]. From this figure, it is seen that the last kernel with l1 distance
function exhibits non-smooth decay with respect to r, i.e. the l2 distance. The first
two kernels are clearly more smooth in terms of decay of the kernel; however, the more
important factor is the rank of submatrices, in particular, the off-diagonal blocks that
are generated using these kernels.

To study the rank of off-diagonal blocks, we decompose the nodes with size #I =
1500 to two aggregates with predefined sizes of #I1 = 500 and #I2 = 1000 and we
consider two scenarios: 1) we do not permute the original nodes, i.e. we consider the
first 500 random nodes as the first aggregate and the rest i.e. 1000 random nodes
as the second aggregate; the singular value decay of the resulting kernel matrix A12

(i.e. k(x1,x2) with x1 ≡ N(:, I1) and x2 ≡ N(:, I2)) is shown in the middle pane
of Figure 2, and 2) we permute the original nodes with index I by applying the
algorithm described in Section 2.2, referred to as permute. The singular value decay
of the resulting kernel matrix A12 is shown in the right pane of Figure 2.

The rank of A12 (using the built-in rank function) for three cases in the middle
pane is 133, 500, 500. After permutation with the permute algorithm, the resulting
rank of A12 is 85, 206, 500. It is apparent that the last case, i.e. the one with l1
distance function is always a full rank matrix and the permutation has no impact
on it. However, node permutation has a favorable effect on the rank of the squared
exponential kernel and even more impact on the exponential kernel.

Remark 5.1. Determining the rank of a matrix A ∈ Rm×n (for large m and
n) is an intensive task. Assuming it is similar to the scalability of full SVD, the
cost scales as O(nm2) (where m < n). A more computationally efficient proxy to
rank is the numerical (or stable) rank defined as r(A) = ‖A‖2F /‖A‖22 where r(A) ≤
rank(A), ∀ A [39]. Although numerical rank is efficient, it is not informative in terms
of revealing the actual rank of the matrix in the above experiment. Therefore, for
unstructured GP matrices, the computation of actual rank is recommended.

These results motivate more in-depth numerical research on the hierarchical low-
rank partitioning of matrices e.g. possibly some direct nuclear norm optimization
of the matrix. We deem our partitioning to be efficient, easily implementable, and
sufficient for the scope of current paper.

Practical Recommendation: As a practical recommendation for utilizing the
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Fig. 2. Kernel smoothness and the effect of permutation on three kernels.

approach for inversion of different kernels, one can perform a simple similar test of one-
level dyadic decomposition of a small size matrix and inspect rank k of the off-diagonal
block A12 ∈ Rm×n before and after application of the permute procedure (the cost is
insignificant for small m and n cf. Remark 5.1). If after permutation, k � min{m,n}
(e.g. the red curves associated with squared exponential kernel) is observed, the
overall framework will be successful however if the rank reduction is negligible i.e.
k ' min{m,n} (e.g. the black curves associated with l1 distances), the low-rank
factorization of off-diagonal blocks yields inaccurate (or erroneous) results for inversion
and determinant computation. In those instances, a different class of approaches, i.e.
iterative approaches such as conjugate gradient, might be more effective; however,
the rate of convergence in those approaches is also dependent on the decay rate of
singular values [40].

Comparison with respect to (1) aggregation strategy and (2) low-rank
approximation: In this part of the example, we investigate the performance of two
main building blocks of our framework with available approaches in the literature:
(1) Aggregation strategy: We test accuracy and timing of our aggregation strat-
egy, permute, with the maximal independent set: MIS(1) and MIS(2) [6] cf. 8. The
test is performed on a matrix with n = 5000 and η = 1050. The MIS approach
depends on a tunable aggregation parameter denoted by θ. This parameter results in
different numbers and sizes of aggregates. In each case, we sort the aggregates based
on their size, select the largest as the first aggregate and the combination of the rest
as the second one. In cases where the procedure results in one aggregate, we divide
the aggregate into two equal size aggregates (roughly equal for odd sizes). The first
plot in Figure 3 shows the accuracy in the solution of Ax = y for two choices of
coarse and fine aggregation parameter i.e. θ = 0.3, 0.9. The accuracy of the three
approaches are almost similar (although the coarse θ exhibits larger errors), but to
demonstrate the effectiveness of our approach we specifically measure only the aggre-
gation time using the three approaches within the hierarchical construction for a wide
range of θ, i.e. θ ∈ [0.25, 0.95]. The efficiency of permute is apparent compared to
other approaches. This experiment also shows that our aggregation strategy is not
dependent on θ. It always divides the input set to two sets with pre-defined sizes cf.
Equation (2.1), which results in more efficiency.
(2) Low-rank approximation: As mentioned in Section 1, the Nyström approx-
imation and its variants have been extensively used in the GP literature. To test
this approach, we replace our low-rank factorization approach, randomized SVD
with ID denoted by RSVD ID, with two versions of the Nyström approximation.
In the Nyström approximation, an efficient factorization is achieved via k(xl,xr) '
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k(xl,xm)k−1(xm,xm)k(xm,xr) where the nodes xl ∈ Rd×n1 and xr ∈ Rd×n2 are
known. The main difficulty, however, is the determination of xm ∈ Rd×k. We con-
sider two scenarios for xm: 1) k uniformly distributed random nodes xm ∈ U [0, 1]2

denoted by Nyström-Rand (similarly to [13]), and 2) first obtaining randomized range
finder Q from Y = k(xl,xr)Ω, i.e. [Q,RY ] ← qr(Y ) and then finding k pivots i.e.
important row indices Ik by performing pivoted QR factorization onQT cf. Section 3,
which yields xm ← xl(:, Ik). The second scenario is denoted by Nyström-QR. From
the third plot in Figure 3, which shows the normalized error in x, it is again obvious
that the randomized SVD approach significantly outperforms Nyström approxima-
tions. This empirical result is indeed in accordance with the fundamental result of
the Eckart–Young theorem [16], which states that the best rank k approximation to
A (in the spectral or Frobenius norm), is given by its singular value decomposition
with k terms.
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Fig. 3. Accuracy and computation time of three aggregation strategies (left and middle
panes). Comparison of accuracy between randomized SVD and Nyström approximations for
low-rank factorization in the linear solve Ax = y.

Empirical cost - scalability: A major aspect of hierarchical matrix represen-
tation is the cost of the approach, which we empirically study via wall-clock time
(real time) in this part of the example. In Section 4.3, we found an estimate in the
form of O(n log(n)k) where k is the rank in the off-diagonal blocks. The theoretical
scalability has linear dependence on n log(n) and k. To study the scalability with re-
spect to these terms, we time the code (via tic-toc in MATLAB) for different choices
of n and k. In particular, we consider n = {105, 2 × 105, 5 × 105, 1 × 106} and
k = {5, 10, 20, 30, 50}, and set η = 1050. The expression for ν is according to (2.1).

Figure 4 (left pane) shows the relationship between actual time and n log(n). For
every choice of k, we find the slope of the fitted line (in the log-log scale), denoted by
r, via least square on the pair (log(n log(n)), log(t)) where t is the wall-clock time. As
seen, the scalability of the code slightly degrades as k increases. We note that these
are actual/empirical results from the code and they depend on the implementation
and the platform in which the code is implemented. Nonetheless, for a relatively large
k, i.e. k = 50 we deem the slope r ' 1.1 and as a result the scalability of almost
O(n log(n)), promising for our empirical results.

We also compute the scalability with respect to k for different choices of n, cf.
middle pane in Figure 4. While the relationship between k and time in log-log scale
is not necessarily linear as seen in the plot, we perform the same line fitting and find
slopes for different cases of n. The slope for the scalability of k is around r = 0.5.
Our theoretical cost estimate shows linear scalability with respect to k while the
reality is more promising i.e. the empirical scalability based on these experiments is
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O(n log(n)
√
k).

Finally, to compare the code with built-in MATLAB capabilities i.e. \, as a
baseline approach, we time kernel matrix computation, \ execution, and the sum of
two operations with respect to different sizes. Note that the data points are associated
with significantly smaller n as a direct inversion of larger size matrices e.g. n = 5×104,
can be very time consuming (or impossible). From these results, the HMAT solver is
clearly superior in terms of both scalability and actual time for matrices with large
sizes. A sufficiently accurate estimate (i.e. k = 50) for n = 105 is obtained in almost
10 seconds with HMAT while using built-in capabilities, but it takes more than 10
seconds to find a solution for only n = 1.5× 104 which involves both (vectorized, i.e.
no for loop) kernel computation and \.
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Fig. 4. Scalability of HMAT solver with respect to size n (left) and rank parameter k
(middle); scalability of \ and full computation of kernel matrix (right).

5.2. Regression on a double-phase linear elastic structure. In the second
numerical example, we consider regression on a parametric elliptic partial differential
equation (PDE) where the output quantity of interest (QoI) is a spatially-averaged
quantity. We particularly consider the average von Mises stress in a double-phase lin-
ear elastic structure. The details of the simulation for computing parametric average
von Mises stress are provided in 15.

The target quantity is the spatial average of von Mises stress in 1) the full domain
of the structure denoted by q1 and 2) the region associated with the stiffer material
denoted by q2. We train two individual Gaussian processes with 10-dimensional para-
metric variables ξ (which model elasticity field) as input (or feature) and q1 and q2

as target variables, i.e. ξ
GP1−→ q1 and ξ

GP2−→ q2.
To find the best GP model in this example, we perform a statistical boosting

strategy. The total number of samples in each case of GP regression is 2000 samples
(in 10 dimension, i.e. ξ ∈ [0, 1]10 ). We consider 90% of the data points for training
and 10% for testing. We divide all data points into 10 disjoint sets of 200 samples for
testing (in addition to 1800 samples for training). Each individual case is associated
with one model in the boosting study. To perform the hierarchical matrix compu-
tations, we consider k = 20 and use the squared exponential kernel with the noise
parameter σn = 10−3.

The result of statistical boosting for optimal hyperparameters is briefly discussed
in 15, cf. Figure 14. The results of point-wise error for the best `∗ in two regression
cases q1 and q2 are also shown in 15, cf. Figure 14. The probability distribution
functions (PDFs) of q1 and q2 for both test data and GP prediction are shown in
Figure 5. The agreement between the PDFs is apparent from this figure which is
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promising for general surrogate modeling purposes. The numerical values for the
normalized error of prediction i.e. eqi,∗ = ‖qi − qi,∗‖2/‖qi‖2, i = 1, 2 where qi ∈
R200×1, and the normalized error in mean and standard deviation, i.e. eµ and eσ are
provided in Table 2.
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Fig. 5. Probability distribution functions of test data and GP prediction for q1 and q2.

Table 2
Normalized error of prediction and normalized error in mean and standard deviation for two

quantities q1 and q2.

eqi,∗ eµ eσ
Computation of q1 1.95× 10−4 7.76× 10−5 3.83× 10−2

Computation of q2 6.41× 10−4 2.28× 10−5 4.67× 10−2

5.3. Regression on NYC taxi trip record. In this example, we study the
performance of the approach on a relatively large-scale problem. Again, we perform
the regressions with GP-HMAT on a single CPU. Our main objective is to show the
applicability of the GP-HMAT approach in the regression of datasets that are not
possible with the usual built-in capabilities of scientific computing platforms.

In this example, we use the datasets available in [1]. We use the yellow taxi trip
records associated with December 2020. This dataset has 18 features (including cat-
egorical and quantitative variables) with almost 1.4 million data points. We consider
four features, trip distance, payment type, fare amount, and tip amount, as the input
to our regression model and consider the total amount as the target variable. To use
the dataset, we perform data cleansing by removing corrupt data points i.e. those
including NaN (not a number) and negative feature/target values. We then extract
n = 105 data points randomly for performing the regression analysis. Out of these
n = 105 points, we randomly choose n◦ = 9 × 104 points for training and n∗ = 104

for testing. The data points and GP implementation for this example are available
in [27]. We normalize each dimension of the data with its max value and denote
normalized input and output with {xi}4i=1 and y, respectively.

Figure 6 shows the PDF for the normalized feature variables as well as the nor-
malized target variable. Note that the second feature is comprised of integer variables,
i.e. payment type = {1, 2, 3, 4} which is normalized to x3 = {0.25, 0.5, 0.75, 1} and
therefore it is represented via the probability mass function (PMF).

For training, we set k = 30 and η = 1050. It is beneficial to discuss the timing
of the optimization for this particular example. The total time for training (using
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Fig. 6. Probability distribution functions of trip distance, fare amount, and tip amount
(left), probability mass function for payment type (middle) and probability distribution func-
tion for the target variable, total amount (right).

tic-toc) is t = 4057.26 seconds, i.e. about 67 minutes. In the first numerical example,
we reported that the HMAT solver for n = 105 and k = 30 takes 8.51 seconds. The
number of iterations and number of function evaluations is 14 and 70 respectively
for likelihood optimization. In addition, each GP-HMAT evaluation time (including
linear solve and sensitivity calculations for every dimension) for four-dimensional data
is roughly 5 = 4 + 1 times the evaluation time for one linear solve. Using the above
empirical estimates, the time for one GP-HMAT calculation is t̂ = 4057.26/70 = 57.96
seconds (assuming there is no overhead time in optimization), which yields the ratio
57.96/8.51 = 6.81 between the time of one GP-HMAT calculation and one linear
solve, i.e. HMAT calculation. We also individually run the GP-HMAT code with the
current setting and find that an individual run takes t = 60.9240 seconds, which is
slightly higher than our estimate (our estimate is effectively obtained from averaging
over many runs). Computing the derivative of log determinant from A−1(∂A/∂`) by
factorizing ∂A/∂` (as a monolithic matrix not a hierarchical matrix) and applying
HMAT solve to a matrix right-hand side (instead of vector) can be less accurate and
potentially more costly.

After finding the optimal `∗ = [0.9907, 0.9705, 0.9732, 0.8882], to study the quality
of the prediction with respect to rank parameter, we find the GP mean with different
parameters k, namely k = 5, 10, 30, 50, 70. The result of the mean of log point-wise
error is shown in Figure 7 (left). The PDFs of the test data and GP estimates are
shown in Figure 7 (right). We provide the numerical values associated with the mean
of log point-wise error, i.e. E(log10(|y − y∗|)) and normalized error in mean and
standard deviation, i.e. eµ and eσ Table 3. From these results, as expected, the
regression with a higher rank parameter, in general, yields more accurate estimates,
but the rank k = 70 estimate is not better than k = 50 prediction in all measured
norms. From visual inspection of the right pane in Figure 7, almost all predictions
provide a sufficiently accurate estimate for the probabilistic content of the target
variable y. Indeed, the test data line is visible only on a large zoom scale, which is
due to the superimposition of several similar lines in the plot.

6. Concluding remarks. We develop a scalable tool for GP training and re-
gression. Our approach revolves around hierarchical low-rank matrices that are ex-
ploited for efficient GP training. We provide a practical implementation for hierar-
chical matrix decomposition that entails an aggregation procedure to promote the
low-rank structure of the off-diagonal blocks. The off-diagonal blocks of the hierar-
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Fig. 7. Log of point-wise error in GP prediction log10(|y − y∗|) (left) and probability
distribution functions of test data and GP predictions for target y (right).

Table 3
The mean of log point-wise error and normalized error in mean and standard deviation for

various rank parameters used in GP regression.

µlog(|y−y∗|) eµ eσ
Regr. (k = 5) −2.81 6.72× 10−2 4.00× 10−2

Regr. (k = 10) −2.92 3.77× 10−2 8.00× 10−3

Regr. (k = 30) −3.05 9.51× 10−3 9.60× 10−4

Regr. (k = 50) −3.15 5.81× 10−3 4.52× 10−3

Regr. (k = 70) −3.11 4.06× 10−3 8.90× 10−3

chical matrix are factorized with a randomized SVD approach with certified accuracy
and scalability. We develop hierarchical error and cost estimates and verify them
via empirical studies. Our approach can be viewed as another practical approach for
sparse GP regression that scales in the form of O(n log(n)). The following remarks
discuss three research directions as possible extensions to the current GP-HMAT ap-
proach: 1) HSS matrices: The factorization for off-diagonal blocks in our work has
been done separately for each off-diagonal block. In a subset class of hierarchical ma-
trices, hierarchical semiseparable (HSS) matrices [12, 51, 34], the factors representing
the off-diagonal blocks admit certain recursive relations that make the hierarchical
representation inexpensive to store and to apply. We plan to investigate the potential
of these fast matrix constructions in combination with high-performance computing
within the context of scalable GP approaches in our future research. 2) Application
to finite element analysis (FEA) and topology optimization: The application of sim-
ilar numerical methods/solvers e.g. multigrid solvers [3] has been considered in the
context of linear elasticity and topology optimization. In the same vein, we plan to
develop a systematic framework for optimization of parameterized hierarchical matri-
ces in the context of topology optimization (and possibly nonlinear elasticity), which
could significantly accelerate the design optimization process. 3) Adaptation of the
HMAT solver for quadrature optimization: In a similar context to evaluating a kernel
matrix, we evaluate the Jacobian matrix of a nonlinear system from the polynomial
recurrence rules for quadrature optimization [28, 29] (referred to as designed quad-
rature). As another research direction, we aim to adapt the computations in the
HMAT solver to the designed quadrature framework for accelerated computation of
quadrature rules in multiple dimensions.
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Appendix.

7. Remarks. This section of the supplementary materials discusses various
remarks from different parts of the paper:

Remark 7.1. Definition of kernels: Given the following distance function:
f(xi,xj , `) = (xi − xj)TM(xi − xj), M = `−2I where I is the identity matrix,
squared exponential and exponential kernels and their derivatives are given by

(7.1)

squared exponential: k(xi,xj , `) = exp(−1

2
f),

∂k

∂`
= −1

2
k
∂f

∂`

exponential kernel: k(xi,xj , `) = exp(−
√
f),

∂k

∂`
= − 1

2
√
f
k
∂f

∂`
.

We have also included the implementation of the automatic relevance determination
(ARD) [35] kernel within the code, which involves multiple hyperparameters, i.e. for
ARD kernel the normalization matrix and its derivative areM = diag(`)−2, ∂M/∂` =
−2diag(`)−3 where ` is a vector of hyperparameters with a size equivalent to the di-
mension of data points.

Remark 7.2. Section 2: We are mainly interested in finding aggregates such that
the resulting off-diagonal blocks exhibit a low-rank structure. This depends on the
analyticity of the kernel as well as the location of GP nodes. We have attempted to
tackle this problem by pursuing some form of nuclear norm optimization [37] to reduce
the rank of off-diagonal blocks; however, we have found that this problem is inherently
difficult, and rank reduction may not be even possible for every generic kernel (e.g.
the kernel with l1 distance function in the first numerical example of Section 5). On
the other hand, our aggregation strategy produces a sufficiently satisfactory result
given its simplicity and implementation efficiency.

Remark 7.3. Section 2: In the original H-matrix development, a concept of
admissible and inadmissible blocks are introduced which helps specifying the diagonal
and off-diagonal blocks. The admissible blocks involve full (or exact) representation
of the kernel and the inadmissible blocks are associated with the regions of the matrix
where low-rank approximation is used. In those original developments, analytical
kernels with specified geometric domains are considered which readily determine the
regions of admissible and inadmissible blocks. In this work, we do not assume any
predefined geometric domain for the kernel; we endow the hierarchical structure in
a user-defined fashion, and resort to a simple aggregation strategy for permutation
of degrees of freedom to promote the low-rank structure of the off-diagonal blocks.
Another key consideration in our construction which involves matrix inversion without
factorizing a large matrix (or matrix-matrix multiplications), is the ability to “gather”
the decomposed pieces on which a recursive procedure can be applied. In other words,
we outline a hierarchical decomposition which is consistent with the assembling of the
decomposed pieces into a workable, matrix-free, and recursive inversion algorithm.

Remark 7.4. Section 2: The execution of perm generator cf. Algorithm 10.2
on the set of all nodes, once, results in a permutation index set for the entire matrix.
Alternatively, one can use only the permute Algorithm 10.1 within the main recursive
procedure of e.g. the linear solve, in an on-the-fly manner. Such consideration requires
assignment of degrees of freedom into proper places in the resulting vectors within
a recursive procedure (i.e. the assignment is performed several times within the
recursion). We have found with experience that performing permutation computation
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once at the beginning of the linear solve results in faster execution overall. In other
words, within the linear solve algorithm, first the global permutation indices are found,
then the list of nodes and vector y is permuted (permuting list of nodes effectively
permutes degrees of freedom in the matrix A; however, no large matrix is directly
factorized), and finally, when the solution x is obtained, it is reverted back to the
original indices.

Remark 7.5. Section 3: The oversampling parameter is introduced such that
for a given target rank k, the matrix Q yields sufficiently small error in (3.1) with
high probability. The significance of p is mainly realized in theoretical analysis and
further numerical investigation of analytical estimates. Our implementation works
with a user-defined parameter k. Obviously, if a certain k does not yield the satis-
factory approximation, the user has the choice to increase k. This is mainly because
the target rank of the matrices is not known a priori in our setting (or often in prac-
tical situations), and an appropriate parameter k can be specified only with testing
and investigating the error on a smaller scale problem for which the true solution is
available. We present such results in our numerical studies in Section 5.

Remark 7.6. Section 3: In Section 4.6 of [23], the complexity issue of Y has
been discussed and particular structured random matrices, namely subsampled ran-
dom Fourier transform (SRFT) is introduced to remedy the issue. The SRFT is the
simpler version of notable/significant algorithms in [38] for solving overdetermined
linear systems and Section 3.3 and Lemma 3.12 of [50] for computing an accelerated
Fourier transform. The actual implementation of these approaches; however, decreases
the complexity of O(mnk) to only O(mn log(k)) by exploiting the fundamental sav-
ings afforded by Fast Fourier Transform (FFT) and the fact that the orthonormal
matrix Q can also be computed from the Fourier transformed version of A, i.e. when
each row (or column) of A is Fourier transformed.

Remark 7.7. Section 3: There is a subtle implementation detail in Algorithm 3.1
which we think is not immediately apparent from Algorithm 5.2 in [23]. In step
6 of Algorithm 3.1, we compute the QR factorization of the transpose of A(IID, :
). This is done to ensure that the W ∈ Rn2×k matrix is an orthonormal matrix.
Given that W is orthonormal, Γr (in step 9) will be orthonormal since Γ̃r is also
orthonormal. Using A(IID, :) (instead of A(IID, :)T ) in step 6 and modifying the
next steps accordingly (i.e. Z = XW in step 7 and Γr = RT Γ̃r in step 9 where
W ∈ Rk×k and R ∈ Rk×n2) will result in a non-orthonormal Γr since R will not
be orthonormal. The orthonormality of Γl and Γr is important mainly because 1)
singular vectors in SVD analysis are expected to be orthonormal (they can be used
to invert the input matrix easily if needed), and more importantly, 2) the derivation
of singular vector sensitivities, cf. Section 4 and 13, is based on this orthonormality
property. Nonorthonormal singular vectors will result in erroneous sensitivity analysis.

Remark 7.8. Section 3: To compute the sensitivity of the SVD factorization
(with respect to the kernel hyperaprameter), we need to compute the SVD of the
derivative of the matrix which is done by slight modifications to Algorithm 3.1. The
modified algorithm is presented in Algorithm 10.10. Note that in this pseudocode,
the derivative is shown for a scalar hyperparameter case. Indeed, in our sensitivity
derivations in Section 4, we always show the derivative for one hyperparameter for
more clarity. Generalizing to larger number of hyperparameters is trivial by imple-
menting these algorithms via for loop running on multiple hyperparameters which is
done in our computer implementation.
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Remark 7.9. Section 4: In SMW computations, the variable xDi involves the
solution associated with the diagonal blocks (hence using .D). Note that the second
dimension is not always 1 as the right-hand side is concatenated in the recursive
procedure. The variable qli , is a quantity (denoted by q) that is obtained from a
linear solve with the singular vectors as the right-hand side. The subscript l is used
because these terms appear on the left side of the correction matrix Csmw in the SMW
formula. Analogously, the variable qlri is associated with V A−1

D U , which includes
both U and V in both sides of A−1

D . The last term, qryi is associated with V A−1
D y,

which appears on the right side of the correction matrix and also includes y. Finally,
the variable sqryi is the solution (hence using s) to the linear solve with the right-hand
side qryi .

Remark 7.10. Section 4: As seen in Algorithm 10.6 (and also Algorithm 10.9),
in the step that we call the solver function (or likelihood estimation function), we
concatenate right-hand side y with the matrix of singular vectors Γ. The concatena-
tion is straightforward; however, one computational bottleneck is the changing size
of the right-hand side [y Γ] as well as the size of the solution to this right-hand side
xD ql throughout the recursion. The corresponding solutions to individual y and Γ
are also sliced from xD ql, which itself can be memory intensive. To accommodate the
recursive computation, there have to be memory allocations for both concatenation
and further slicing from xD ql. This memory issue deteriorates the scalability of the
code; this can be inspected with a useful tool, the MATLAB profile function. We find
that using cell structure (while less optimal in terms of basic matrix operations) can
significantly improve timing as concatenation and slicing in cell structures are much
faster (perhaps due to the smaller size of the matrices within a cell structure). We also
emphasize that, the memory issue is not completely resolved even with employing cell
structure as it appears in our empirical scalability results for large k and n. Having
considered the memory issue, we report the fastest implementation/best scalability
we could obtain from the code in this paper.

Remark 7.11. Section 4: One alternative for computation of the derivative of
energy term xT (∂A/∂`)x is to reduce the matrix ∂A/∂` and perform (∂A/∂`)x.
Forward computation (∂A/∂`)x can be done outside the recursive loop i.e. after
finding x in an straightforward manner; we call this computation non-intrusive. The
non-intrusive and intrusive approaches in this paper (cf. Section 4 where we compute
derivatives and solutions x within the recursion) are equally efficient for finding the
derivative of the energy term. However, the efficient computation of log determi-
nant with a non-intrusive approach seems non-trivial as it requires computation of
A−1(∂A/∂`) i.e. linear solve with a large number of right-hand side vectors. One
naive approach is to perform fast SVD (e.g. cf. Algorithm 3.1) on the large square
matrix ∂A/∂` and perform a much smaller number of linear solves however that can
significantly impact the accuracy. On the other hand, performing the derivative of
SVD (as it is required for intrusive computation) and recursive implementation of
(∂A/∂`)x yield both derivatives of the energy term and the log determinant in a
monolithic and efficient way as shown in Section 4.

8. Maximal independent set. In this section, we provide the details of
a generic node aggregation strategy that is often used in algebraic multigrid [49,
6, 48]. The aggregation procedure is based on the maximal independent set (MIS)
algorithm [6] which we present in detail in Algorithm 8.1. The main ingredient of the
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procedure is the strength matrix S defined by

(8.1) Sij =

{
1 if |Aij | ≥ θ

√
|AiiAjj |

0 othewise.

where |Aij | denotes the manitude of Aij entry and θ is a tunable aggregation param-
eter. In kernel matrices, usually Aii = 1,∀i; therefore the above inequality simplifies
to Aij ≥ θ (See Step 7 in Algorithm 8.1).

Algorithm 8.1 Distance-1 maximal independent set: MIS1(A, θ)

Input: Sparse matrix A ∈ Rn×n, Aggregation parameter θ
Output: Set of root nodes (or MIS nodes) R & Set of permutation index sets P

1: I = {1, . . . , n} . Initial candidate index set
2: R← 0× I, c = 1 . Initially R is set of zeros with length n
3: for i ∈ I do
4: if Ri = 0 then
5: Ri = 1, Pc = {} . The unaggregated node i is assigned as a root
6: Pc ← Pc ∪ {i} . i added to Pc
7: for {j | Aij ≥ θ} do
8: Rj = −1, Pc ← Pc ∪ {j} . Node j is not a root Rj = −1; j added to
Pc

9: for {k | Ajk ≥ θ} do . MIS2 entails an added for-loop on neighbors
indices j

10: Rk = −1, Pc ← Pc ∪ {k}
11: end for
12: end for
13: c← c+ 1
14: end if
15: end for
16: R = {i | Ri = 1}
17: P = {Pi | i ∈ (1, 2, . . . , c− 1)}

9. Interpolative decomposition. The interpolative decomposition (ID) is an
effective approach for the compression of rank deficient matrices, which was initially
introduced in [21] and later elucidated via a computational procedure in [14]. ID iden-
tifies a collection of k columns or rows from a matrixA ∈ Rm×n with rank k that cover
the span of the range of A. In particular, from the ID procedure the index set IID =
{i1, . . . , ik} is computed, which yields A ' XA(IID, :) where X ∈ Rm×k is the ID
matrix with the condition that X(IID, :) = Ik ∈ Rk×k is an identity matrix. To find
the important rows, a QR factorization is performed on the transpose of the matrix
i.e. [QA,RA,Pmat]← qr(AT , ‘matrix’) where ATPmat ' QARA and Pmat ∈ Rm×m
is a permutation matrix. Equivalently, one can use [QA,RA,Pvec]← qr(AT , ‘vector’)
to find the permutation indices stored in the vector Pvec. Subsequently, the ID in-
dices are found from the first k indices in Pvec, i.e. IID = Pvec(1 : k). To find the ID
matrix, first the upper-triangular matrix R ∈ Rk×m is decomposed into two matrices,
RA = [RA1

RA2
] where RA1

∈ Rk×k and RA2
∈ Rk×(m−k). The above equation can

be equivalently written as RA = RA1
[I T ] where T = (RA1

)−1RA2
∈ Rk×(m−k) is

one building block of the ID matrix. Using the relation QRA1
[I T ]P T

mat ' AT where
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I ∈ Rk×k, it then follows that

(9.1)
AT ' QRA1

[I T ]P T
mat = AT (:, IID)[I T ]P T

mat

AT ' AT (:, IID)XT , A 'XA(IID, :)

where X = ([I T ]P T
mat)

T . The ID matrix X can also be obtained by using the

information in the permutation vector by X =
(

[I T ](:, P̃vec)
)T

where P̃vec =

sort(Pvec, ‘ascend’) yields the permutations indices associated with the transpose of
the permutation matrix. It should be noted that the computations with permutation
vector are appreciably faster than computations with the permutation matrix.

Apparently applying ID procedure to the full matrix A ∈ Rm×n is significantly
costly. To arrive at A ' XA(IID, :) with the X matrix obtained from Q, consider
Q = XQ(IID, :). It follows that

(9.2) A ' QQTA = XQ(IID, :)QTA.

Since X(IID, :) = Ik, the above equation implies that A(IID, :) ' Q(IID, :)QTA.
Therefore, as a proxy to A we compute XA(IID, :) where X is computed from Q.

10. Pseudocodes. In this section, we provide pseudocodes associated with
the hierarchical decomposition in Section 2.2, the linear solve and likelihood evalu-
ation algorithms denoted by back solve and lkl eval, as well as their associated
pseudocodes, discussed in Section 4.

Algorithm 10.1 Node Permutation Based on Size: [I1, I2]←permute(N , I, s)
Input: A Set of nodes N ∈ Rd×n with index set I = {1, . . . , n}, aggregation size s
Output: Two sets of indices I1 and I2 with sizes s and n− s

1: Compute the set A1 = {A11, . . . , A1n} (with respect to the first node in N(:, I))
2: [Ã1,P ]← sort(A1, ‘descend’)
3: I1 ← {Pi}si=1 and I2 ← {Pi}ni=s+1

Algorithm 10.2 Recursive Permutation Generator: Ĩ ←perm generator(N , I, η)

Input: A Set of nodes N ∈ Rd×n with index set I = {1, . . . , n}, η
Output: A set of permuted nodes Ĩ

1: Compute ν based on #I cf. Equation (2.1)
2: [I1, I2]← permute(N , I, ν) . See Algorithm 10.1
3: Ĩ1 ← perm cutoff(N , I1, η) . See Algorithm 10.3
4: Ĩ2 ← perm cutoff(N , I2, η)
5: Ĩ ← Ĩ1 ∪ Ĩ2

11. Theoretical analysis.

A. Error estimate. In what follows, we first list some relevant basic linear
algebra results. Unless otherwise stated, all matrix norms are written with respect to
the Frobenius norm.

• ‖AB‖ ≤ ‖A‖‖B‖ and ‖A + B‖ ≤ ‖A‖ + ‖B‖. These rules can be easily
generalized to n > 2 matrices.
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Algorithm 10.3 Permutation Generation Based on η: Ĩ ← perm cutoff(N , I, η)

Input: A Set of nodes N ∈ Rd×n with index set I = {1, . . . , n}, η
Output: A set of permuted nodes Ĩ

1: if #I ≤ η then
2: Ĩ ← I
3: else
4: Ĩ ← perm generator(N , I, η ) . See Algorithm 10.2; note that this is a

recursive step.
5: end if

Algorithm 10.4 Hierarchical Matrix Inversion: x←back solve(N ,y, [η, k])

Input: List of nodes N ∈ Rd×n, right hand side y ∈ Rn×dy , η and k
Output: Solution x

1: if dy = 1 then
2: Find the global permutation index, P ← perm generator({i}ni=1, η)
3: Permute indices in N and y, i.e. N ←N(:,P ), y ← y(P , :)
4: end if
5: Compute ν and form two sets of indices I1 = {i}νi=1 and I2 = {i}ni=ν+1

6: [Γl,Γm,Γr]← rsvd id(N , [I1, I2], k) . See Algorithm 3.1
7: x← smw(N , [I1, I2], [Γl,Γm,Γr],y, [η, k]) . See Algorithm 10.5
8: if dy = 1 then
9: xnew(P , :)← x

10: x← xnew
11: end if

• Error in product: ‖AB − ÂB̂‖ ≤ ‖A− Â‖‖B‖+ ‖B − B̂‖‖A‖.
• ‖A‖F ≤

√
r‖A‖2 where r is the rank of the matrix A. We assume that A−1

exists, e.g. via Moore–Penrose inverse and has equivalent rank to A, i.e. r.
Then ‖A−1‖F ≤

√
r‖A−1‖2 =

√
r/σmin(A) where σmin(A) is the smallest

singular value of A.
• ‖A‖2 ≤ ‖A‖F . Using A − Â instead of A and given ‖A − Â‖F ≤ ε yield

‖A− Â‖2 ≤ ε. The `2 norm error of inverse is ‖A−1 − Â−1‖2 ≤ ε/σmin(A).
Using the result in the previous item, gives the Frobenius norm of error
‖A−1 − Â−1‖F ≤

√
rε/σmin(A).

A.1. Lemma 4.1.

Proof. We show this for a product of two matrices, e.g. AB. We know ‖AB −
ÂB̂‖ = ‖A(B − B̂) + (A − Â)B̂‖ ≤ ε. In the worst case, the norm ‖B − B̂‖ is

bounded by ε/β when ‖A − Â‖ = 0. Similarly, ‖A − Â‖ ≤ ε/β. To find ε/β2, we
replace B with BC in the joint product AB and follow the same reasoning for ABC.
It is easy to see that the bound is ε/β2 in this case.

A.2. Lemma 4.2.

Proof. We start with the SMW formula:

‖(AD +UCV )−1‖ ≤ ‖A−1
D ‖+ ‖A−1

D U(C−1 + V A−1
D U)−1V A−1

D ‖

≤ ‖A−1
D ‖+ β2‖A−1

D ‖2‖C−1
smw‖.
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Algorithm 10.5 Main SMW computation for linear solve:
smw(N , [I1, I2], [Γl,Γm,Γr],y, [η, k])

Input: List of nodes N ∈ Rd×n, right-hand side y ∈ Rn×dy , two sets of indices I1

and I2, the SVD factorization of the off-diagonal block associated with I1 and I2, η
and k
Output: Solution x

1: Form two lists of nodes N1 ∈ Rd×n1 ,N2 ∈ Rd×n2 and two right-hand side
vectors (matrices) y1 ∈ Rn1×dy , y2 ∈ Rn2×dy

2: [xD1 , ql1, qlr1, qry1]← smw ing(N1, I1,Γl,y1, [η, k]) . See Algorithm 10.6
3: [xD2 , ql2, qlr2, qry2]← smw ing(N2, I2,Γr,y2, [η, k])

4: Form the SMW correction matrix, Csmw ←
[

Γ−1
m qlr2
qlr1 Γ−Tm

]
5: Compute x using Equation 4.4

Algorithm 10.6 Ingredients of SMW computations: smw ing(N , I,Γ,y, [η, k])

Input: List of nodes N , an index set associated with the list of nodes I, singular
vectors Γ, right-hand side y, η and k
Output: [xDi , qli , qlri , qryi ]

1: if #I ≤ η then
2: Compute full Aii using the nodes in N . For GP computations add the fixed

regularization parameter σ2
n to the diagonal entries. See Section 4.5

3: Form the right-hand side by concatenating y and Γ i.e. [y Γ]
4: xD ql ← Aii\[y Γ]
5: xD ← xD ql(:, {1, . . . , dy}), ql ← xD ql(:, {dy + 1, . . . , dy + dΓ})
6: qlr ← ΓTql, qry ← ΓTxD
7: else
8: Form the right-hand side by concatenating y and Γ i.e. [y Γ]
9: xD ql← back solve(N , [y Γ], [η, k] ) . This is a recursive step. See

Algorithm 10.4
10: xD ← xD ql(:, {1, . . . , dy}), ql ← xD ql(:, {dy + 1, . . . , dy + dΓ})
11: qlr ← ΓTql, qry ← ΓTxD
12: end if

Assuming ‖A−1
D ‖ > 1 which is almost always true in our numerical computations, we

neglect the first term on the right-hand side which is smaller than the second term,
and write the Frobenius norm of the inverse at level L− 1 as

αL−1 = ‖A(L−1)−1

D ‖ ≤ β2
L‖A

(L)−1

D ‖2(
√

2k/σCmin)

≤ β2
Lα

2
Lκ.

Note that every term in the right-hand side of the inequality is computable. In
particular, for a case when the small block within a larger block is of size nmin,
αL is computed using one diagonal block with size nmin. One simple estimate for
αL in that case is obtained by noting that the matrices are all regularized with a
constant σn in our GP regression. Therefore, the matrix and the minimum singular
value can be considered as full rank and σn, respectively. These considerations yield
αL =

√
nmin/σn. Similarly, we can write the Frobenius norm of the inverse for the
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Algorithm 10.7 Hierarchical likelihood evaluation: lkl eval(N ,y, [η, k])

Input: List of nodes N ∈ Rd×n, right-hand side y ∈ Rn×dy , η and k
Output: [Π, ∂Π/∂`,Λ, ∂Λ/∂`,x,Adx]

1: if dy = 1 then
2: Find the global permutation index, P ← perm generator({i}ni=1, η)
3: Permute indices in N and y, i.e. N ←N(:,P ), y ← y(P , :)
4: end if
5: Compute ν and form two sets of indices I1 = {i}νi=1 and I2 = {i}ni=ν+1

6: [Γl,Γm,Γr], [Γld ,Γmd ,Γrd ], [∂Γl/∂`, ∂Γm/∂`, ∂Γr/∂`]← svd d(N , [I1, I2], k) .
See Algorithm 13.1

7: [Π, ∂Π/∂`,Λ, ∂Λ/∂`,x,Adx]←
smw lkl(N , [I1, I2], [Γl,Γm,Γr], [Γld ,Γmd ,Γrd ], [∂Γl/∂`, ∂Γm/∂`, ∂Γr/∂`],y, [η, k])
. See Algorithm 10.8

8: if dy = 1 then
9: xnew(P , :)← x, Adxnew(P , :)← Adx

10: x← xnew, Adx← Adxnew
11: end if

Algorithm 10.8 Main SMW computations for likelihood and its derivative:
smw lkl(N , [I1, I2], [Γl,Γm,Γr], [Γld ,Γmd ,Γrd ], [∂Γl/∂`, ∂Γm/∂`, ∂Γr/∂`],y, [η, k])

Input: List of nodes N ∈ Rd×n, right-hand side y ∈ Rn×dy , two sets of indices I1

and I2, SVD, SVD of derivative and derivative of SVD of the off-diagonal block
associated with I1 and I2, η and k
Output: [Π, ∂Π/∂`,Λ, ∂Λ/∂`,x,Adx]

1: Form two lists of nodes N1 ∈ Rd×n1 ,N2 ∈ Rd×n2 and two right-hand side
vectors (matrices) y1 ∈ Rn1×dy , y2 ∈ Rn2×dy

2: [xD1
, ql1, qlr1, qry1,Π1, ∂Π1/∂`,Λ1, ∂Λ1/∂`,AdxD1

,Adql1 ]←
smw lkl ing(N1, I1,Γl,y1, [η, k])

3: [xD2 , ql2, qlr2, qry2,Π2, ∂Π2/∂`,Λ2, ∂Λ2/∂`,AdxD2 ,Adql2 ]←
smw lkl ing(N2, I2,Γr,y2, [η, k])

4: Form the SMW correction matrix, Csmw
5: Compute x using Equation 4.4
6: Compute energy Π and sum of the log of eigenvalues Λ using Equation 4.13
7: Compute ∂Π/∂` and ∂Λ/∂` using Equations (4.15), (12.1) and (12.2)
8: Compute the multiplication of hierarchical matrix derivative to the solution of

the linear system i.e. Adx using Equation (12.4) . This is a critical part of
hierarchical derivative computation. Within recursion, x mostly is a matrix, not
a vector.

subsequent levels as

αL−2 ≤ β2
L−1αL−1κ

≤ β2
L−1β

4
Lα

4
Lκ

3

...
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Algorithm 10.9 Ingredients of SMW computations for likelihood and its derivative:
smw lkl ing(N , I,Γ,y, [η, k])

Input: List of nodes N , an index set associated with the list of nodes I, singular
vectors Γ, right-hand side y, η and k
Output: [xDi , qli , qlri , qryi ,Π, ∂Π/∂`,Λi, ∂Λi/∂`,AdxDi ,Adqli ]

1: if #I ≤ η then
2: Compute full Aii and ∂Aii/∂` using the nodes in N
3: Form the right-hand side by concatenating y and Γ i.e. [y Γ]
4: xD ql ← Aii\[y Γ]
5: xDi ← xD ql(:, {1, . . . , dy}), qli ← xD ql(:, {dy + 1, . . . , dy + dΓ})
6: Πi ← yT0 xD0i

, Λi ← fΛ(Aii) . y0 is the first column of y.
7: AdxDi ← (∂Aii/∂`)xDi , Adqli ← (∂Aii/∂`)qli
8: ∂Πi/∂`← xTD0i

AdxD0i , ∂Λi/∂`← Tr (Aii\(∂Aii/∂`))

9: qlri ← ΓTqli , qryi ← ΓTxDi
10: else
11: Form the right-hand side by concatenating y and Γ i.e. [y Γ]
12: [Πi, ∂Πi/∂`,Λi, ∂Λi/∂`, xD ql,Ad xD ql]← lkl eval(N , [y Γ], [η, k] ) . See

Algorithm 10.7
13: xDi ← xD ql(:, {1, . . . , dy}), qli ← xD ql(:, {dy + 1, . . . , dy + dΓ})
14: AdxDi ← Ad xD ql(:, {1, . . . , dy}), Adqli ←

Ad xD ql(:, {dy + 1, . . . , dy + dΓ})
15: qlri ← ΓTqli , qryi ← ΓTxDi
16: end if

Algorithm 10.10 Randomized SVD with ID including derivative:
rsvd id d(N , [I1, I2], k)

Input: List of nodes N ∈ Rd×n, two sets of indices I1 and I2 with #I1 = n1 and
#I2 = n2 and the rank parameter k
Output: A ' ΓlΓmΓTr , ∂A/∂` ' ΓldΓmdΓ

T
rd

1: Compute the matrix Ã ∈ Rn1×ninnprod and ∂Ã/∂` ∈ Rn1×ninnprod from the
kernel function using ninnprod cf. Equation (3.2)

2: Follow the steps 2-9 in Algorithm 3.1 for both A and ∂A/∂` individually with a
fixed common Ω

which results in αL−i ≤ α2i

L κ
2i−1

i−1∏
j=0

β2i−j−1

L−j .

A.3. Proposition 4.3.

Proof. The estimate is again achieved by analyzing the SMW formula. We know
that A−1

D U and V A−1
D has identical submatrices; therefore, fα(A−1

D U) = fα(V A−1
D )

and fε(A
−1
D U) = fε(V A

−1
D ). We are looking for the estimate

fε(A
−1) = fε

(
(AD +UCV )−1

)
, which is written by applying the triangular inequal-

ity and basic properties of the combination of matrix norms (presented earlier in this
section) to the SMW formula, as

fε
(
(AD +UCV )−1

)
≤ fε(A

−1
D ) + 2fε(A

−1
D U)fα(C−1

smw) + fε(C
−1
smw)f2

α(A−1
D U)

To analyze the right-hand side of the above inequality, we expand only the second
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and third terms. At the end of the proof, we will have terms associated with fε(A
−1
D )

which have much larger constants compared to 1 in the above inequality, i.e. the
constant 1 is absorbed in the larger coefficient, which will be derived shortly. Using
the variable κ = fα(C−1

smw) defined in Lemma 4.2, and considering the relation for
the error of inverse κfε(Csmw) = fε(C

−1
smw), yields

(11.1) fε(A
−1) ≤ 2κfε(A

−1
D U) + κfε(Csmw)f2

α(A−1
D U).

Having Csmw = C−1 + V A−1
D U , assuming the error in C−1 is negligible compared

to error in V A−1
D U , and considering fα(U) = fα(V ), fε(U) = fε(V ), yields

(11.2) fε(Csmw) ≤ fε(U)fα(A−1
D U) + fα(U)fε(A

−1
D U).

Plugging in the estimate in (11.2) into (11.1), we find:
(11.3)
fε(A

−1) ≤ 2κfε(A
−1
D U) + κf3

α(A−1
D U)fε(U) + κf2

α(A−1
D U)fα(U)fε(A

−1
D U).

We note that the first term in the right-hand side can be absorbed in the last term
as typically 2 � f2

α(A−1
D U)fα(U). Focusing on the third term, we bound the error

term fε(A
−1
D U) via fε(A

−1
D U) ≤ fε(A−1

D )fα(U)+fα(A−1
D )fε(U). Using this estimate

in (11.3) and simple manipulations yield

(11.4) fε(A
−1) ≤ κf2

α(A−1
D )f4

α(U)fε(A
−1
D ) + 2κf3

α(A−1
D )f3

α(U)fε(U)

We are now ready to write the hierarchical error using the notation for the Frobenius
norm ofA−1

D and U and their errors at level i, i.e. αi, βi, εD,i and εOD,i. The estimate
for hierarchical levels is written via the following recursive formula:

(11.5) εD,i−1 ≤ aiεD,i + bi

where ai = κα2
iβ

4
i and bi = 2κα3

iβ
3
i εOD,i. Note that εD,L = 0 at the deepest level

L for a case when the larger block consists of blocks with size nmin as there is no
approximation for the diagonal block at that size. For larger block size matrices we
use ε and write the chain of errors as

εD,L−1 ≤ aLε+ bL

εD,L−2 ≤ aL−1aLε+ aL−1bL + bL−1

...

Manipulating the indices, the following direct formula for the error is obtained:

(11.6) εD,L−i ≤

 k∏
j=L−i+1

aj

 ε+ bL−i+1 +

L∑
k=L−i+2

 k−1∏
j=L−i+1

aj

 bk.

To utilize the error estimate in practice, the formula in (4.7) is applied once and
the formula in (4.6) is applied several times, from bottom (lower right corner) to top
(upper left corner) of the matrix, until the error for the original matrix is found. For
instance, considering n = 106, the computation of error for the original matrix takes
one time application of (4.7) (for computing the error from nmin = 100 blocks to a
n = 103 block) and three times application of (4.6) (with updated ε each time, for
computing the error for n = 103 → 104, n = 104 → 105 and n = 105 → 106 blocks).
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A.4. Lemma 4.6.

Proof.

(11.7)

CH,St(T , k) =
∑

r×s∈L−(T )

CF,st(#r,#s) +
∑

r×s∈L+(T )

CR,st(#r,#s, k)

≤
∑

r×s∈L−(T )

n2
min +

∑
r×s∈L+(T )

k(#r + #s)

≤
∑

r×s∈L(T )

nmin(#r + #s)
Def (4.4)

≤
∑
i∈L

∑
r∈T (i)
I

2Cspnmin#r

≤
∑
i∈L

Cspnmin#I ≤ 2#LCspnmin#I

≤ C1n log(n)

A.5. Lemma 4.7.

Proof. In full blocks, the storage requirements are #r#s. The matvec operation
for full blocks involves 2#r#s − #r multiplications and #r additions. In reduced
blocks, the storage requirements are k(#r + #s) and the matvec operation involves
2k(#r + #s)−#r − k multiplications and #r additions.

A.6. Lemma 4.8.

Proof. The proof of this lemma follows from the fact that the cost is bounded
by the cost of truncation (or SVD analysis) in large leaves, which is in the form of
k2(n+m):

CH,Trunc ≤ k
∑

r×s∈L+(T )

k(#r + #s) ≤ kCH,St.

For the second inequality, see the second line in (4.9).

12. Log likelihood gradients. To compute the sensitivities for Π and Λ cf.
Equations (4.13) and (4.15), we need to compute the following derivative terms,

(12.1)

∂T1

∂`
= −xTD01

∂A11

∂`
xD01

− xTD02

∂A22

∂`
xD02

,
∂T22

∂`
= −T22

∂Csmw
∂`

T22

∂T21

∂`
=

[
xTD01

∂Γl
∂`
− xTD01

∂A11

∂`
ql1 xTD02

∂Γr
∂`
− xTD02

∂A22

∂`
ql2

]
∂T23

∂`
=

[
xTD02

∂Γr
∂`
− xTD02

∂A22

∂`
ql2 xTD01

∂Γl
∂`
− xTD01

∂A11

∂`
ql1

]
Note that there are terms that appear in the form of T22T23 and T21T22 in the above
expressions, which are small size linear solves (involve Csmw ∈ R2k×2k inversion). The
above derivations are not complete as we still need to find ∂Csmw/∂`, i.e. the sensi-
tivity of the SMW correction matrix. Such matrix sensitivity computation requires

This manuscript is for review purposes only.



HIERARCHICAL LOW-RANK MATRICES FOR GP REGRESSION 33

the sensitivity of each term in the matrix, i.e.

(12.2)

∂qlr1
∂`

= 2qTl1
∂Γl
∂`
− qTl1

∂A11

∂`
ql1 ,

∂qlr2
∂`

= 2qTl2
∂Γr
∂`
− qTl2

∂A22

∂`
ql2 ,

∂Γ−1
m

∂`
= −diag

(
diag(∂Γm/∂`)� diag(Γm)◦2

)
.

where .◦2 denotes Hadamard power 2. In the above derivations, the sensitivities of
the SVD factorization of off-diagonal matrix i.e. ∂Γl/∂`, ∂Γm/∂` and ∂Γm/∂` are
needed. Computing the SVD derivative is relatively straightforward; its details are
provided in Appendix 13. From the above derivations, it is also apparent that the
crucial part of the sensitivity analysis (and less intuitive part) is the hierarchical com-
putation of (∂Aii/∂`)xDi and (∂Aii/∂`)qli . These two terms are obtained by mul-
tiplying the sensitivity of the hierarchical matrix ∂A/∂`, which includes ∂A11/∂`,
∂A22/∂` and their associated off-diagonal matrix sensitivity to the back of equa-
tion (4.4) (which yields x). To clarify the sensitivity computation further, we first
show the sensitivity of the hierarchical matrix A (in the matrix form):

(12.3)
∂A

∂`
=

[
∂A11/∂` ΓldΓmdΓ

T
rd

ΓrdΓ
T
md

ΓTld ∂A22/∂`

]
where Γld ,Γmd ,Γrd are obtained from the SVD of the off-diagonal matrix sensitivity.
It is important to note the difference between the sensitivity of the SVD of the off-
diagonal block and the SVD of the off-diagonal matrix sensitivity cf. Appendix 13.

We also define the following notations: Adx :=
∂A

∂`
x, AdxDi :=

∂Aii

∂`
xDi , Adqli :=

∂Aii

∂`
qli .

Using the definitions above and multiplying (12.3) to the left of (4.4) yields:
(12.4)

Adx =

[
∂A11/∂` ΓldΓmdΓ

T
rd

ΓrdΓ
T
md

ΓTld ∂A22/∂`

]([
xD1

xD2

]
−
[
ql1sqry1
ql2sqry2

])

=

[
AdxD1 + ΓldΓmdΓ

T
rd
xD2

ΓrdΓ
T
md

ΓTldxD1
+AdxD2

]
−
[
Adql1sqry1 + ΓldΓmdΓ

T
rd
ql2sqry2

ΓrdΓ
T
md

ΓTldql1sqry1 +Adql2sqry2

]
.

The result of above matrix computation in a hierarchical fashion yields key sensitivity
terms AdxD1

,AdxD2
,Adql1 , and Adql2 . The algorithmic computation of these terms

is shown in Algorithm 10.9.

13. SVD derivative. We follow the derivations in [47] and report the final
results using the same notation in [47].

The derivatives of SVD factorization are

(13.1)
dU = U(F ◦ [UT dAV S + SV T dATU ]) + (Im −UUT )dAV S−1

dS = Ik ◦ [UT dAV ]
dV = V (F ◦ [SUT dAV + V T dATUS]) + (In − V V T )dATUS−1

where Fij = δij/(s
2
jj − s2

ii) with sii, ◦ and Ik denoting singular values, Hadamard
(entry-wise) multiplication, and a k × k identity matrix respectively. The following
algorithm outlines the steps for computing the sensitivity of SVD factorization:
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Algorithm 13.1 Derivative of SVD: svd d(N , [I1, I2], k)

Input: List of nodes N ∈ Rd×n, two sets of indices I1 and I2 and the rank
parameter k
Output: [Γl,Γm,Γr], [Γld ,Γmd ,Γrd ], [∂Γl/∂`, ∂Γm/∂`, ∂Γr/∂`]

1: [Γl,Γm,Γr,Γld ,Γmd ,Γrd ]← rsvd id d(N , [I1, I2], k) . See Algorithm 10.10
2: Use Equation (13.1) in conjunction with the factorization dA ' ΓldΓmdΓrd to

find ∂Γl/∂`, ∂Γm/∂` and ∂Γr/∂`

14. Numerical Example I. In the following we provide more extensive com-
putational studies/discussions associated with the first numerical example:

A. Rank structure of kernel matrices. Similarly to the first experiment in
Section 5.1, we study the singular values of the resulting kernel matrices for both
exponential and squared exponential kernels to get an insight about rank structure of
these matrices. To this end, we consider different sizes of indices, n = #I, perform the
permute algorithm and generate the off-diagonal block A12 ∈ Rn1×n2 with n1 = 0.1n
and n2 = 0.9n. The distribution of nodes is similar to the aforementioned experiment.
The hyperparameters are fixed in both kernels, i.e. ` =

√
2, 1. We then consider

thresholds for the magnitude of singular values to find the number of effective rows
(or columns) in the low-rank factorization. In particular, we count the number of
singular values that satisfy σi > 10−3, σi > 10−8 and σi > 10−3, σi > 10−12 in
exponential and squared-exponential kernels (by performing direct SVD). The result
is shown in Figure 8. It is apparent that the squared-exponential kernel yields a lower
rank matrix. The rate of increase in the effective rank for the more stringent case of
σi > 10−12 is quite slow which is promising for low-rank factorization of large size
matrices. Extrapolating the curve with diamond markers in the right plot (visually)
for a large size, e.g. n = 106 yields effective rank in the order of 45 ∼ 50. This means
that a k = 50 SVD factorization of a large off-diagonal block, A12 ∈ R105 × 9×105

(with nodes N ∈ [0, 1]2 and ` = 1) is a plausible approximation.
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Fig. 8. The number of singular values that satisfies a magnitude threshold for the expo-
nential (left) and squared exponential (right) kernels.

B. Effect of subsampling on the range approximator. For this experi-
ment associated with the subsampling discussion in Section 3.1 cf. Equation (3.2),
we consider a relatively large rectangular matrix (for which we can perform direct
computations) with the total number of nodes #I = 15000. We again use permute

to generate #I1 and #I2 and subsequently A ← A12 ∈ R5000×10000. We also set
k = 45, p = 5, and therefore we consider rank k+ p = 50 factorization of the matrix.
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We study the effect of subsampling on 1) direct statistical computation of the error
‖A −QQTA‖F and 2) two main ingredients in the theoretical estimate of the error
(cf. Theorem 3.1), Ω1 and Ω2, explained briefly next.
1) Statistical computation of the error ‖A − QQTA‖F : We first statistically
study the error ‖A − QQTA‖F for different choices of ninnprod, i.e. ninnprod =
δ(k + p), δ = 2, 3, 4, 5 and full computation i.e. ninnprod = n = 104 by performing
100 runs for each choice. The probability distribution functions (PDFs; obtained
via kernel density estimation) of error are shown in the first pane of Figure 9. The
mean of error associated with the full computation, i.e. with ninnprod = n = 104, is
1.087× 10−4, and the mean corresponding to δ = 2 is one order of magnitude larger
i.e. 2.327 × 10−3. However, as we increase the number of samples slightly, the error
quickly converges to the full computation error; e.g. the case of only 5(k + p) = 250
samples yields 2.004 × 10−4, which is close to the full computation error. Also note
that this error is pertinent only to ‖A−QQTA‖F , and it does not have a significant
impact on the error in the computation of Ax = y. The overall framework for
linear solve (or likelihood evaluation) is more prone to inaccuracies due to the lack of
sufficient rank consideration k (see Figures 11 and 12) compared to a less significant
parameter ninnprod. Therefore, depending on the application of the overall framework
in different contexts, consideration of smaller ninnprod might be possible.
2) Building blocks of the proof of Theorem 3.1: The proof (explained in detail
in Section 10 of [23]) involves two random submatrices Ω1 = V T

1 Ω and Ω2 = V T
2 Ω

where V1 ∈ Rk×k and V2 ∈ Rk×n−k are two subblocks of the right singular vectors
of A ∈ Rm×n, denoted by V , i.e. V = [V1 V2]. Denoting the psuedo-inverse of Ω1

by Ω†1, the random submatrices admit E(‖Ω†1‖2F ) = k/(p− 1) and E(‖Ω2‖2F ) = 1 (by
applying two standard results cf. [23]). The choice of minimum 2k samples in our
subsampling strategy ensures that V2 has at least k columns. We again statistically
study the mean of the Frobenius norm of Ω†1 and Ω2 using similar choices of ninnprod
cf. second and third panes of Figure 9. In these results, the subsampling has even less
impact on two main ingredients of the theoretical estimate (as all choices of ninnprod
result in relatively similar distributions for ‖Ω†1‖2F and ‖Ω2‖2F ), i.e. the upper bound
in Theorem 3.1.
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Fig. 9. Effect of subsampling on the range approximator Q error and two main compu-
tational components ‖Ω†1‖F and ‖Ω2‖F in its theoretical estimate.

C. Empirical error. In this example we empirically investigate the hierarchical
error for computation of Ax = y as discussed in Section 4.2. The matrix with size
is #I = 5000 and we set η = 105. First, we compute the probabilistic error in
Theorems 3.1 and 3.2 on the largest off-diagonal block A ← A12 ∈ R1000×4000. We
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again set k = 45, p = 5 and compute the error ‖A − QQTA‖, 100 times. We
also compute the right-hand sides in the estimates of Theorems 3.1 and 3.2 using
the parameters mentioned after Theorem 3.2, i.e. t = e, u =

√
2p, which results in

probability of failure 3e−p = 0.0202. The result for log10(‖A−QQTA‖F ) is shown in
Figure 10 (left pane). The mean of the log error and the threshold for probability of
failure associated with this plot is obtained as µε,emp = −2.6789 and ε̄emp = −2.473.
Taking the log from the right-hand side of estimates yields µε,theo = −1.5011 and
ε̄theo = −0.8754 which means that the empirical values are in agreement with the
theoretical estimates in 3.1 and 3.2; i.e. the actual error is within the bound provided
by the analytical estimates.

Using the estimates for the error in the off-diagonal blocks (by assuming a log
normal distribution for the error) and the hierarchical error estimate in Section 4.2
we compute the analytical errors in different levels within the n = 103 blocks and the
original matrix. The computation of hierarchical error depends on βi and κ estimates.
The actual evaluation of analytical estimates for these quantities can potentially re-
sult in very large values (as these involve Frobenius norm on large matrices). Instead,
we assign particular small values to these quantities and investigate the probabilistic
error for the inversion algorithm, i.e. we set βi = 1, κ = 1.02. The empirical proba-
bilistic errors for different levels are shown in the second and third panes. Finally, we
normalize the estimates for the inversion error in the original matrix in both analytical
and empirical scenarios with respect to their mean, and find the distribution of this
normalized error via kernel density estimation. The result is shown in the right pane
of Figure 10. The distribution of normalized errors (denoted by ε̃D,0 notation) in both
cases are almost in agreement; however, in terms of constant these two estimates are
far away from each other, i.e. µlog(ε),theo = 3.34 and µlog(ε),emp = −3.94.
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Fig. 10. A computational study on the results of Theorems 3.1 and 3.2 (first pane),
hierarchical errors in the block with 1000 nodes (second pane), hierarchical errors in the
block with 5000 nodes (third pane), and the distribution of normalized error (analytical and
empirical) in the original matrix with 5000 nodes (right pane).

D. Accuracy of likelihood terms. Results in this subsection are associated
with discussions in Sections 4.1 and 4.4. To study the accuracy of the likelihood
terms and their derivative, we consider a kernel matrix with size #I = 5000. The
scalar hyperparameter for two cases of squared exponential and exponential kernel is
set to ` = 1,

√
2. We also consider η = 105 in this case and set σ2

n = 10−3 to find
Ã = A+ σ2

nI. Figure 11 shows the results for the exponential (top row) and squared
exponential kernels (bottom row). The left and right columns in row show the results
for two scenarios: 1) no node permutation and 2) node permutation based on the
procedure in Section 2.2. As expected, the squared exponential kernel which has a
lower rank structure yields significantly better accuracies for the range of k considered
in this example. It is also apparent that the node permutation increases the accuracy
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Fig. 11. One realization of normalized error in computation of likelihood terms and
x with respect to k: exponential kernel (top row), squared exponential kernel (bottom row),
considering no node permutation (left column), considering node permutation (right column).

of the linear solve as well as the likelihood computation and its gradient.

E. Statistical study on the accuracy of energy term. To study the statis-
tical performance of the approach, for a kernel matrix with n = 5000 and η = 1050 cf.
Section 2.2, we run the code 100 times and find estimates for the mean (denoted by
µ) and standard deviation (denoted by σ) of energy for both exponential and squared
exponential kernels, cf. Figure 12. From these results, it is apparent that the normal-
ized errors associated with squared exponential kernel are smaller, which is due to the
lower rank structure of the resulting kernel matrix as shown in Figure 2. The small
variation in the error is also apparent, which means more certain (and more accurate)
approximations are obtained from the lower rank squared exponential kernel matrix.
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Fig. 12. Statistical normalized errors for the energy term associated with the exponential
kernel (left) and squared exponential kernel (right). Statistical results are obtained by 100
runs of the code for each k.

15. Numerical Example II. In this section, we provide further details on
the numerical example in Section 5.2. The geometry and boundary condition of
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the structure as well as the nominal distribution of von Mises stress are shown in
Figure 13. The structure is assumed to be comprised of two materials (hence double-
phase) shown via gray and darker gray regions within the structure. The nominal
elastic modulus in the darker region is double the one in the lighter region.

F

1

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

Fig. 13. Loading and boundary conditions for a triangular double-phase linear elastic
structure (left). Distribution of nominal von Mises stress (right).

The elastic modulus in the domain is represented via a Karhunen-Loéve expansion
in the form of:

(15.1) E(x, ξ) =

10∑
i=1

√
λiEi(x)ξi

where ξ = {ξi}10
i=1 are uniformly distributed random (parametric) variables, i.e. ξi ∼

U [0, 1]. The eigenvalues λi and eigenvectors Ei(x) are obtained from an eigen-analysis
on the exponential kernel in 2D. We refer the readers to [29, 45] for further details on
this eigen-analysis. We consider a relatively high-dimensional KL expansion, i.e. with
10 modes, to test the performance of the solver with the ARD kernel with multiple
hyperparameters.

Figure 14 shows the optimal hyperparameter values as the result of statistical
boosting. These results are shown for each dimension of data (which are in total 10
dimensions) and for all (statistical boosting) models, therefore total of 10 optimal
values. We compute the error in the test data in each case and select the one with
the smallest error. The third and fourth panes show the point-wise error for q1 and
q2 quantities for a test data set. The point-wise error is only shown with respect to
one dimension (feature) of the data, i.e. ξ5.
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Fig. 14. Optimal hyperparameter values with respect to data dimensions (first and second
panes), and the point-wise error of GP prediction (third and fourth panes) for both q1 and
q2.
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