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a b s t r a c t

We present a machine learning framework for predicting the optimized structural topology designs
using multiresolution data. Our approach primarily uses optimized designs from inexpensive coarse
mesh finite element simulations for model training and generates high resolution images associated
with simulation parameters that are not previously used. Our cost-efficient approach enables the
designers to effectively search through possible candidate designs in situations where the design
requirements rapidly change. The underlying neural network framework is based on a deep disjunctive
normal shape model (DDNSM) which learns the mapping between the simulation parameters and
segments of multi resolution images. Using this image-based analysis we provide a practical algorithm
which enhances the predictability of the learning machine by determining a limited number of
important parametric samples (i.e. samples of the simulation parameters) on which the high resolution
training data is generated. We demonstrate our approach on benchmark compliance minimization
problems including the 3D topology optimization where we show that the high-fidelity designs from
the learning machine are close to optimal designs and can be used as effective initial guesses for the
large-scale optimization problem.

© 2020 Elsevier Ltd. All rights reserved.
1. Introduction

1.1. Background

Topology optimization has been extensively used as a popu-
ar computational design tool for generating optimal structural
ayouts. This powerful tool enables the creation of innovative
tructures with complex geometry that may not be realizable
ith traditional approaches such as shape or size optimization
1,2]. This approach however suffers from significant computa-
ional cost especially when a detailed structural design is sought.
n such cases, typically, many large scale finite element anal-
ses need to be performed to reach to a satisfactory design
hich poses a significant challenge in terms of computational
ost. Finding such high resolution designs in scenarios where the
imulation parameters are variable is even more onerous.
In this paper, we adopt a scientific visualization/machine lear-

ing (ML) approach to overcome the computational challenges
or large scale topology optimization, especially when optimal
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high-fidelity designs are required for variable simulation param-
eters. In particular, our approach utilizes multifidelity designs
where mainly inexpensive low-fidelity designs in addition to ju-
diciously chosen high-fidelity designs are used for training. Using
the learning machine which encodes the relationship between
the simulation parameters and the shape space we approximate
optimized designs on parameters that are not previously consid-
ered in the simulations. This approach will enable the designers
to efficiently traverse the simulation parameters and find the best
solutions which satisfy the design objectives and criteria.

The result of this work contributes to the development of an
efficient visualization tool for exploring optimized designs with
variable parameters. Ideally the visualization tool is a platform
that provides high resolution optimized designs interactively and
this work is one stepping stone toward this objective. With such a
tool, a designer could navigate through the design space interac-
tively, assessing multiple designs qualitatively (i.e. visually) and
quantitatively (through various evaluation metrics build into the
tool).

In the context of engineering design, similar efforts have been
devoted to embed the high-dimensional design space into seman-
tic compact subspaces [3,4] using a manifold clustering proce-
dure and deep generative models. The idea of visual parameter
space analysis has also been explored [5,6] where visual intera-
ctive tools are introduced to navigate the data spaces or the space

of quantities of interest as a function of reduced-dimensional
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arameter space. Similar to these efforts, several researchers
ave introduced visual analysis techniques for exploration of
arameter-data space map in multi-criteria decision making [7],
edical image analysis [8,9], geoscientific simulation models [10],
ecision support in flood management [11,12], inspection of
astening bolts on freight trains [13], etc. Our work in this paper
an be viewed as a visual analysis technique which adopts a
owerful function approximator, i.e. deep neural network to
ap the simulation parameters to the high-dimensional space of

opology optimized designs.
Deep learning (DL) is known as a subset of ML. A large number

f layers in the architecture of DL models enable them to estimate
omplex functions. However, there is a need for large datasets
o train such complex models. In other words, DL fundamentally
s neural networks that learn from large amounts of data with
he use of various layers. An important class of DL, convolutional
eural networks introduced in [14], are widely used in image
rocessing. DL has also been employed in many different areas
uch as video processing, speech recognition, natural language
rocessing, and computer vision [15–18].
In this paper, we present a novel deep learning approach in

onjunction with the disjunctive normal shape model (DNSM)
or the generic topology optimization problem. We refer to this
pproach as Deep DNSM which is abbreviated as DDNSM. The
NSM is a shape model that first was introduced by Ramesh
t al. [19] and reformulated by Mesadi et al. [20] to be used in
Bayesian framework for image segmentation tasks. The DNSM
as also been used in conjunction with a convolutional neural
etwork by Javanmardi et al. [21] for segmenting shapes with
ow quality and low signal-to-noise ratio. The main idea of DNSM
s to model shapes as the disjunction of convex polytopes with
ach polytope as a conjunction of half-spaces. Inspired by [21]
e have designed a new framework that uses the DNSM on top
f a fully connected deep neural network as a multiresolution
etwork with both low resolution and high resolution designs to
e trained jointly. We provide more details on both DNSM and
DNSM in Section 3.

.2. Related work

Structural topology optimization has evolved significantly
ince the time it first introduced. A comprehensive review of
urrent and future trends in this field has recently been pub-
ished [22]. Among these works many researchers have addressed
he problem of parametric topology optimization and topology
ptimization under uncertainty where the main focus is to gen-
rate robust and reliable designs [23–28]. Such problems pose
similar challenge to the one in this paper where the simula-

ion parameters are variable. In the same vein, several research
orks have also attempted to tackle the problem of data-driven
opology optimization and proposed novel approaches for pre-
iction improvement in such data-driven approximations [29,30].
number of researchers have proposed to use computational

apabilities of a Graphics Processing Units (GPU) for large scale
opology optimization where the main goal is to achieve optimal
igh resolution structures with minimal process time [31–33].
hese efforts are in line with approaches which use machine
earning techniques for large scale problems where powerful
omputational resources are required.
Machine learning techniques have achieved compelling re-

ults in data-based approximations such as image processing,
attern recognition, finance, etc. [34–36]. Complementing these
fforts, novel techniques have been proposed for prediction/
pproximation with physics-based or simulation-based learning
achines. The main goal in these works is to predict physics-
ased simulations which are typically governed by partial dif-
erential equations (PDE) [37,38]. This type of approaches has
2

close connection to the topology optimization problem where
the solution of the optimization problem is sought for a physical
systems described with PDEs.

Topology optimization using machine learning is a relatively
new research direction. As examples, authors in [39–41] use
generative modeling techniques for topology optimization where
they use variational auto encoders (VAE) and generative adversar-
ial networks (GANs) to predict the optimized topology designs.
A similar work [30] proposes the use of Principal Component
Analysis (PCA) and a fully connected neural network to learn the
mapping between loading configurations and optimal topologies.
Authors in [42] use convolutional encoder–decoder architecture
to solve the topology optimization problem by posing it as an
image segmentation task. Finally authors in [43] introduce a
theory-driven learning mechanism based on the optimality cri-
teria in topology optimization for generation of near-optimal
topology designs.

It is also noteworthy to mention approaches based on mul-
tiresolution analysis in the context of shape and topology op-
timization [44–52]. The main theme among these works is to
leverage the computational efficiency of low resolution models
to obtain more expensive high resolution designs. Our multires-
olution approach in this paper is indeed similarly motivated by
reducing the computational cost; however unlike the aforemen-
tioned references which consider a deterministic setting, our
strategy is devised to incorporate parametric variations in design
such as variations in load and boundary conditions [28,53]. An-
other important line of research which is relevant to this paper is
the incorporation/representation of geometric features in topol-
ogy optimization which is done via combining free-form topology
optimization with embedded components/holes or representing
the structure via union of geometric primitives, e.g. rectangles
with straight or semicircular ends [54–69]. We however remark
that our approach in this paper, DDNSM which is an effective
way to represent binary images is solely used to learn from
and subsequently approximate the topology optimized designs
as binary images. We note that we do not use this approach for
the task of topology optimization (or representing the geometry)
itself; we instead use a well-known density-based approach to
generate the optimized designs [70].

In this paper, we mainly focus on the computational chal-
lenges associated with the high resolution designs with variable
parameters. To this end we propose an algorithm which uti-
lizes a limited number of high resolution images corresponding
to previously found optimized designs in conjunction with a
large number of inexpensive low resolution optimized topology
images for network training and generate a learning machine
which predicts the near-optimal high resolution images for pre-
viously unseen simulation parameters. Our work contributes to
the existing literature on topology optimization using machine
learning by providing a novel approach which connects topology
optimization with scientific visualization. In particular our work
can be considered among the few recent studies which leverage
deep learning for predicting near optimal designs [41,43]. These
approaches are particularly useful when there is variation in
design parameters and could be effective for fast exploration
of optimal design manifold. We remark that in this paper we
provide a systematic computational cost analysis which serves
as a practical guideline to assess the learning cost in comparison
with the cost of direct high resolution designs. We also remark
that our deep learning approach is, in essence, different from
the zero-order optimization approaches (or population-based ap-
proaches) such as genetic programming. Our approach similarly
to any deep learning approach is based on the minimization of a
loss function which is performed via a gradient-descent approach.
As mentioned earlier we also use a gradient-based approach to
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enerate the training data which renders our approach entirely
radient-based [71].
The organization of this paper is as follows. In Section 2 we

riefly discuss the topology optimization problem, in particular
he compliance minimization. We also discuss the details of data
eneration for network training in this section. Section 3 dis-
usses the details of DNSM and DDNSM approach in conjunction
ith an algorithm for selection of important high resolution
amples. Section 4 presents numerical results on topology design
f an L-bracket elastic structure, a heat sink structure, and a 3D
inear elastic structure. Finally Section 5 discusses the concluding
emarks.

. Problem statement

.1. Notation

The following notations are frequently used in this article:

• Bold faced characters denote vectors and matrices e.g. U
denotes the vector of displacements.
• We use superscript to denote the resolution e.g. SL denotes

low resolution shape, and use subscripts to denote paramet-
ric samples e.g. SL

i is a low resolution shape with sample
index i. We also use subscripts to denote the dimension
in the parameter space e.g. p1 is the first parametric vari-
able. Different uses of subscripts are clear from the context
throughout the text.
• Structural topology optimization typically focuses on the

response of linear elastic structures which is characterized
by the following governing equation:⎧⎨⎩
∇ · σ (x)+ b(x) = 0 ∀x ∈ D
σ (x) · n = n(x) ∀x ∈ ΓN

u(x) = 0 ∀x ∈ ΓD

(1)

where ∇ is the gradient operator, σ is the Cauchy stress
tensor, b(x) is the body force, n(x) is the tractive force and
the physical domain D ⊂ Rd, d = 2, 3 is a bounded and
Lipschitz continuous domain with two sets of Dirichlet ΓD
and Neumann ΓN boundary conditions where ΓN ∩ ΓD = ∅.
• The above governing equations are presented in the form of

a linear elliptic partial differential equation{
−∇.(C(x)∇u(x)) = f (x) ∀x ∈ D
u(x) = 0 ∀x ∈ ∂D

(2)

where C is the elasticity matrix. The spatial domain is den-
oted by D, and ∂D denotes the Dirichlet boundary condition.
We generate data for the training purpose by parameteriz-
ing e.g. the force function f (x) or boundary conditions ΓD in
our examples i.e. f (x)→ f (x, p), or u(x)→ u(x, p) ∀x ∈ ΓD
where p denotes the parameter.
• We demonstrate our approach on three examples: design of

a linear elastic structure in 2D and 3D and design of a heat
sink. All examples involve solving a similar linear elliptic
partial differential equation mentioned above. We solve a
deterministic PDE-constrained optimization for generating
each image. We use the multiresolution images correspond-
ing to different mesh sizes to predict the highest resolution
designs.
• The multiresolution analysis is indeed a biresolution proce-

dure in this paper. In most examples we have three reso-
lutions i.e. high, medium and low denoted by H, M and L;
however the procedure and the way the loss function in
deep learning is computed entail two resolutions, i.e. we
consider training with either H + M dataset or H + L dataset.
3

2.2. Compliance minimization

A standard topology optimization problem is a constrained op-
timization problem which minimizes compliance subject to a vol-
ume constraint. The computational complexity lies in (1) finding
the compliance which typically requires a finite element analysis
and (2) the number of optimization iterations which is normally
larger for larger scale problems i.e. high resolution designs. We
consider density based topology optimization in which the de-
sign space is characterized with element volume fractions. The
optimization problem after finite element discretization reads

min
ρ

C(ρ) = U TF

subject to V (ρ) ≤ V̄
K (ρ)U (ρ) = F (ρ)
ρmin ≤ ρ ≤ 1,

where K , U and F are the global finite element stiffness matrix,
the displacement vector, and the force vector, respectively; ρ is
the vector of element volume fractions, C is the compliance, V is
the volume, and 0 < ρmin ≪ 1 is the lower bound for the volume
fractions.

In this work we only use the filter to impose a minimum
length scale. The filtered volume fractions ρ̂ are expressed via the
cone kernel KF ,

ρ̂(xi) =

∑n
j=1 KF (xi, xj)ρ(xj)∑n

j=1 KF (xi, xj)
, i = 1, . . . , n, (3)

where

KF (xi, xj) =
{
rmin − |xi − xj| if |xi − xj| ≤ rmin

0 if |xi − xj| > rmin.
(4)

In these expressions rmin and xi denote the filter radius and the
element i centroid [72].

We use the Solid Isotropic Material with Penalization (SIMP)
method to penalize intermediate volume fractions [73,74]. To
this end, we compute the global stiffness matrix K by using the
processed (filtered) volume fractions ρ̂ as

K =
n∑

i=1

ρ̂ι
iK i, (5)

where n is the number of elements, ι = 3 is the penalization
parameter and K i is the nominal element i stiffness matrix.

In our first numerical experiment, we consider the loading as
the parameter space i.e. we consider variation in these quantities
in our deterministic topology optimization statement. To this end,
we introduce the parameter p in loading F (p), p ∈ P where
the parameters are treated as random variables. In this example
the parameters are the location of the point load p1 and the
angle of the point load p2. To realize these variables we use
the random number generator from MATLAB that we describe
in the next section. We then generate a number of optimized
deterministic designs associated with parametric values. We use
the well-known 88-line MATLAB code for generating optimized
designs [70]. In the second numerical example we consider vari-
ation in the Dirichlet boundary condition which is parameterized
with two variables (associated with the coordinates of the heat
sink) similarly to the first example.

2.3. Data generation

We generate three sets of data associated with the low L,
medium M and high H resolutions. We use the standard square
finite elements in this work and we consider the lower resolution
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Fig. 1. Parameterized force on multiresolution finite element models.
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ize of the elements i.e. L and M to be 4 and 2 times of the
igh resolution H structure. The parameterized force F (p) for an

example of medium and low resolution structures is shown in
Fig. 1.

As shown in this schematic picture the load location in the
high resolution structure can be simply determined from the
lower resolution structure. For example in this case where the
size of the coarse mesh is the double of the fine mesh, the load
location in the high resolution model is the double of the low
resolution model i.e. pH1 = 2pM1 . We note that the load angle
emains the same between two models and we use individual
ixed values for the filter radius in two structures. In one of our
umerical examples where we consider the heat sink design, the
arameter is the location of the heat sink. We use the same
trategy as shown in Fig. 1 to determine the location of the heat
ink for different resolutions. We also note that we generate
ptimized designs for different resolutions independently i.e. we
o not use any information from each model to inform the other
odel during data generation.
The following steps summarize data generation for machine

earning training:

– Generate three mesh sizes for low, medium and high reso-
lutions with e.g. the size of the low resolution mesh double
of the medium resolution mesh and the medium resolution
mesh double of the high resolution mesh.

– Generate random parameters for load location and angle
for the low resolution model. The load location for higher
resolutions is determined based on its size with respect to
the low resolution model. For example for a mesh with half
size of the low resolution the load location is doubled as
shown in Fig. 1. Assign individual filter values for each res-
olution. For the heat sink design use the same strategy to
determine the location of the heat sink in higher resolution
designs.

– For each parameter perform compliance minimization for
three resolutions and find the optimal design and optimal
compliance.

Our main goal in this paper is to build a predictive model
hich approximates the high resolution optimized design given
ultiresolution training data. In other words our neural net-
ork generates optimized designs for unknown parameters by

earning from the images associated with pre-optimized designs
n different resolutions. In the next section, we discuss the de-
ails of neural network construction as well as an algorithm for
hoosing informative high resolution designs which enhances the
redictability of the learning machine.

. Deep disjunctive normal shape model

In this section, we explain the Disjunctive Normal Shape
odel (DNSM) and its incorporation on top of a fully connected
eep neural network, termed as Deep Disjunctive Normal Shape
odel (DDNSM). We also discuss details of our importance sam-
ling strategy in this section.
 a

4

3.1. DNSM representation

The DNSM [19,21] represents shapes as disjunctions of N
convex polytopes, with each polytope as a conjunction of M
half-spaces. Consider the characteristic function of shapes to be
f : Rd

→ B where B = {0, 1}. The foreground of the shape is
Ωf = {x ∈ Rd

: f (x) = 1} and can be approximated as union of
N polytopes, i.e.

⋃N
i=1 Pi in which Pi represents the i’th polytope

that can be obtained as an intersection ofM half-spaces,
⋂M

j=1 Hij.
alf-spaces are represented using the perceptron function:

ij =

{
1, if

∑d
k=1(wijkxk + bij) ≥ 0

0, otherwise
(6)

where wijk, bij, and d correspond to the weights, biases, and the
input dimension. We denote Wij = (wijk, bij) as the coefficients of
the DNSM model that are associated with the half-space Hij and
denote W as the entire set of coefficients for the DNSM model
i.e. Wij ∈ W cf. Fig. 2.

In Boolean logic, any function can be represented as a disjunc-
tion of conjunctions, which is called disjunctive normal form [75].
The disjunctive normal form of Ωf is

f̃ (x) = ∨N
i=1

(
∧

M
j=1Hij(x)

)
. (7)

In order to convert the disjunctive normal form into a differen-
tiable functional form, the conjunction of binary variables is first
approximated as their products, i.e.

di(x) = ∧M
j=1Hij(x) ∼

M∏
j=1

Hij(x). (8)

Based on De Morgan’s law, the disjunctions are expressed as
negation of conjunctions i.e. ∨N

i=1di(x) ≡ ¬ ∧
N
i=1 ¬di(x). In the

context of binary variables the negation is expressed as ¬Φ =

1−Φ . Therefore ∨N
i=1di(x) = 1−

∏N
j=1(1− di(x)).

The binary perceptron Hij is then relaxed using the logistic
sigmoid function:

Ĥij(x) =
1

1+ exp
(∑d

k=1(wijkxk + bij)
) . (9)

Subsequently, the final form of the approximated characteristic
function reads

f̃ (x) = 1−
N∏
i=1

(1−
M∏
j=1

Ĥij(x)) (10)

hich is a differentiable function and can be utilized in gradient
ased optimization algorithms.

emark 3.1. We note that the above representation allows ap-
roximation of binary valued images which makes it suitable for
pproximating topology optimized designs. We also note that we



V. Keshavarzzadeh, M. Alirezaei, T. Tasdizen et al. Computer-Aided Design 130 (2021) 102947

a
s

b
c
a

o
i
o
l
f
a
o
l
w

3

n
n
h

p
W
a
a
p
d

E

Fig. 2. Different spaces and their relationships to reconstruct a shape from the given input parameters D. Here m corresponds to the input parameters dimension. N
nd M identify the number of polytopes and half-spaces, and F is the number of parameters for identifying a half-space in an arbitrary dimension. The (rasterized)
hape S is represented with n = H ×W pixels where H is the height, and W is the width of the shape.
Fig. 3. Example of reconstructing a shape in two different resolutions using DNSM. In this example, N = 1, M = 4 where N is the number of polytopes (denoted
y di cf. Eq. (8)) and M is the number of halfspaces (denoted by Hij cf. Eq. (6)) . The neural network takes the design parameters, Di ’s, as input and produces the
oefficients of the half-spaces. Subsequently, DNSM takes the output of the neural network and reconstructs the shape in two resolutions. Black, white, and gray
reas correspond to pixels with 0, 1, and between 0–1 values, respectively.
nly use the DNSMmodel to represent the images, and this model
s not used within the topology optimization (or the generation
f datasets). The DNSM model however is used within a deep
earning framework which is based on minimization of a loss
unction. This minimization is performed via a gradient-descent
pproach which requires the sensitivity of functions such as the
ne in Eq. (10). Notably the sensitivity computation for deep
earning tasks is performed via automatic differentiation [76]
hich is embedded in the deep learning machinery.

.2. DDNSM representation

The DDNSM structure is composed of the DNSM on top of a
eural network as depicted in Fig. 3. Consider g : Rm

→ Rn where
≫ m as a function that maps low-dimension parameters to a
igh-dimensional shape cf. Fig. 2.
This mapping can be done in two steps. The first step is map-

ing the given low-dimension parameters D to the coefficients
of the DNSM using a neural network. Given a pair of (Di, Si)

s a training data point, where Di indicates the input parameters
nd Si indicates the shape, the network takes Di as input and
roduces coefficients of the DNSM as outputs (W in Fig. 2). The
imensionality of W is N ×M×F .2 In the next step, the output

2 N is the number of polytopes cf. Eq. (8), M is the number of half-spaces cf.
q. (6), and F is number of parameters for identifying a half-space in an arbitrary

dimension. F is equivalent to the number of coefficients in Eq. (6). For example,
in our 2D problems for a half-space H the coefficients are (w , w , b ) which
ij ij1 ij2 ij

5

of the network is passed through the DNSM and the shape can
be approximated uniquely, i.e., F̃i. Since this method maps the
representative parameters into weights of half-spaces, the model
is capable of generating approximately piece-wise binary images
corresponding to embedding of shapes into images.

3.3. Multiresolution network

In addition to the fundamental network previously discussed,
a major advantage of the proposed method is reconstructing
shapes at arbitrary resolutions. The neural network produces the
half-space coefficients, and then the same shape can be recon-
structed at arbitrary resolutions by the DNSM. Fig. 3 shows an
example of reconstructing a shape at two different resolutions.

The network is trained in an end-to-end manner which means
that the training procedure does not consider the DNSM coeffi-
cients as target; it instead uses the optimized topology shapes as
target. In other words, the DNSM coefficients for topologically op-
timal shapes are computed within the DDNSM procedure (which
can be construed as latent variables), and the shapes themselves
are used for end-to-end learning. The mean squared error of the
difference between the reconstructed and target shapes is used
to train the network. Since the network produces outputs at two
different resolutions, the loss functions corresponding to each

are associated with (x, y, 1); therefore F = 3. Similarly for 3D problems F = 4
since there are four coefficients associated with (x, y, z, 1).
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l =
1
|Ωl|

∑
i∈Ωl

(Si
L
− S̃i

L)2 (11)

h =
1
|Ωh|

∑
i∈Ωh

(Si
H
− S̃i

H )2 (12)

here Ωl and Ωh are the sets of low resolution and high reso-
ution training examples, respectively. SL

i and S̃i
L correspond to

the low resolution target and reconstructed shapes, and SH
i and

S̃i
H correspond to the high resolution target and reconstructed

shapes. The combination of both losses is the total loss function
to be minimized:

ltotal = ll + λlh (13)

where λ is a coefficient balancing two losses.

3.4. DDNSM ingredients

In this section we provide a more detailed description of main
ingredients of our deep learning framework for approximating
the high-resolution designs:

– Specifying the number of polytopes N , halfplanes M cf.
Eq. (10) and the weight parameter λ cf. Eq. (13) in the
loss function: These parameters, in general, can be treated
as hyperparameters/learning parameters; however, they
are user-defined in the present paper. The value of each
parameter is provided in Section 4.

– Specifying the deep neural network architecture: The deep
neural network (DNN) in this paper is a fully-connected
feedforward network. The DNN maps simulation parame-
ters to the coefficients of the DNSM. The numerical details
of DNN, i.e. number of layers, nodes, the learning rate
and the number of epochs (number of iterations in the
gradient-descent approach) are provided for each numeri-
cal example in Section 4. These numerical details similarly
to the previously mentioned set of parameters are user-
defined and are determined such that they yield compu-
tationally efficient yet sufficiently accurate predictions.

– Providing the simulation parameters i.e. loads, boundary
conditions and volume fractions as inputs to the DNN: The
output of DNN is the DNSM coefficients wijk, bij cf. Eq. (9) as
shown in Fig. 3. The spatial values denoted by xk in Eq. (9)
are also specified in different resolutions i.e. xL, xM and xH .
These values are discretized in the range [−1, 1]2 similarly
to the approach for parameterizing the load location cf.
Section 2.3.

– The output of the DDNSM model (i.e. union of deep neural
network and DNSM): The output is an image that can be
approximated in all three resolutions. The loss function is
computed according to Eqs. (11), (12), (13) i.e. the loss
function is the difference between the approximated im-
ages and the actual images. It is noted that the sensitivity
of the loss function with respect to the DNSM coefficients,
and the sensitivity of the DNSM coefficients with respect to
DNN parameters are automatically calculated via automatic
differentiation.

– Once the DDNSM is trained i.e. the DNN parameters are
identified, high-resolution images on unseen simulation
parameters are approximated by inputting those unseen
simulation parameters to DNN (which subsequently ap-
proximates the DNSM coefficients) and the high-resolution

spatial values to DNSM model.

6

To better illustrate the manner in which images are approximated
from polytopes, we show two different approximated topology
optimized designs and their associated polytopes in Figs. 4 and 5.
To generate these plots we have considered M = 8 halfplanes
and have varied the number of polytopes N = 5, 15, 30. It is
shown that increasing the number of polytopes, reveals more
detailed features in the images; however, we have empirically
found that larger N does not necessarily improve the quality of
approximation in our datasets (i.e. does not yield better initial
guesses). We provide a detailed numerical study in Section 4.2 to
illustrate this point.

Generation of training samples associated with high resolution
designs is costly. In the next section, we will discuss details of an
algorithm which selects a set of high resolution samples Ωh (with
small size) for training.

3.5. Importance sampling for training

Reconstructing an image using the union of its polytopes
enables us to identify complex shapes. Given two shapes with
the same number of polytopes, the simpler shape has more
polytope overlap than the more complex shape, because it is not
necessary for the network to find distinct polytopes when similar
ones are enough to minimize the loss. The smaller overlap in
image analysis is the key idea behind our sample selection. This
idea is in accordance with the sample selection strategy in the
parametric space in [28] where the authors use the Euclidean
distance between parametric structure responses as a measure
to choose important samples.

The similarity between two polytopes, Pi,Pj ∈ RH×W can be
calculated using the intersection over union (IoU) ratio which is
expressed as

IoU =
Pi ∩ Pj

Pi ∪ Pj
(14)

where Pi ∩ Pj and Pi ∪ Pj are obtained as

Pi ∩ Pj =

H∑
k=1

W∑
l=1

P (kl)
i P (kl)

j ,

Pi ∪ Pj =

H∑
k=1

W∑
l=1

(P (kl)
i + P (kl)

j )−
H∑

k=1

W∑
l=1

P (kl)
i P (kl)

j .

(15)

Therefore, for a shape with N number of polytopes, the total
overlap value is proportionate to

IoUtot =
1
2

N∑
i=1

N∑
j=1,j̸=i

Pi ∩ Pj

Pi ∪ Pj
. (16)

Fig. 6 shows an example of polytope overlap of two shapes.
The simpler shape (i.e., the square) has more polytopes overlap-
ping it than the other one.

In order to choose where in the simulation parameter space
to sample the high resolution training examples Ωh using this
method, first, the network is trained just using the low resolution
shapes Ωl to obtain the polytopes of each training sample. Then
using the polytopes of training examples derived at the previ-
ous step, the IoUtot ratio is computed for all training samples.
Finally, the parametric samples associated with the lowest ratio
are determined and high resolution designs associated with these
samples are selected for training.

4. Numerical studies

4.1. L-Bracket

The L-shape structure is frequently used as a benchmark ex-
ample in the structural topology optimization studies [77,78].
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Fig. 4. (a) Reconstructed high resolution designs using N = 5, 15, 30 polytopes (first three images) and the actual high resolution design (last image), (b) its N = 5
associated polytopes, (c) its N = 15 associated polytopes and (d) its N = 30 associated polytopes obtained via DDNSM approach.
In this example, we use this type of structure to generate an
image dataset. Fig. 7 shows the geometry, boundary conditions
and the loading parameters that are used in this example. The
domain is discretized using 64 × 64, 32 × 32 and 16 × 16
standard square finite elements for high, medium and low res-
olution optimizations. We assume a plane stress condition for
the structural analysis and consider the location of load p1 as an
integer number in the range [0, 32] for high resolution simula-
tions and the angle of load p2 in the range [0, π]. Accordingly
the range of p1 for medium and low resolution are p1 ∈ [0, 16]
and p1 ∈ [0, 8] and the range for p2 is unchanged. We use fixed
filter sizes rmin = 1.5, 2.5, 4.5 and volume fraction of v = 0.4
for generating n = 2000 designs from low to high resolution for
all samples in the datasets. Fig. 8 shows 5 different samples of
high, medium and low resolution topology designs. As expected
7

lower resolution images are not capable of exhibiting fine details
however they still exhibit the main building blocks of the image
or structure. We take advantage of their inexpensiveness and
use them in conjunction with higher resolution images which
contain fine details in the design to train the learning machine.
It is also important to point out the scenarios where the lower
resolution designs are less informative e.g. the fourth design in
Fig. 8. It is apparent that the lower resolution designs do not
exhibit fine details and learning from these particular instances
does not necessarily result in improvement of the predictive
model. However we note that our learning machine learns from
a set of data points which contains more informative instances
across resolutions; hence in an average sense we expect that our
deep learning model can produce near optimal high resolution
designs. This is confirmed by the reduction in the average number
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Fig. 5. (a) Reconstructed high resolution designs using N = 5, 15, 30 polytopes (first three images) and the actual high resolution design (last image), (b) its N = 5
associated polytopes, (c) its N = 15 associated polytopes and (d) its N = 30 associated polytopes obtained via DDNSM approach.
Fig. 6. Examples of two reconstructed shapes with the same number of polytopes and half-spaces, i.e. N = 2, M = 4. It is noted we only show the polytopes in
a), (c) that generate the reconstructed shapes in (b), (d) and the half-spaces are not shown. The shaded area shows the amount of polytope overlap. The amount
f overlap of the square shape, which corresponds to the simpler shape, is larger than that of the plus sign shape.
f iterations as reported in e.g. Table 1. We also note that the
mportance sampling approach introduced in this paper could
8

alleviate this issue. With importance sampling it is expected
that more complex topologies are included (as high-resolution
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Algorithm 1 Importance Sampling for High Resolution Shape
Selection
1: Pk

← Train the DDNSM network using (Dk, SL
k); k ∈

(1, ..., |Ωl|) to obtain the polytopes Pk of each shape SL
k .

2: for k = 1 to |Ωl| do

3: IoUk
tot ← compute

1
2

N∑
i=1

N∑
j=1,j̸=i

Pk
i ∩ Pk

j

Pk
i ∪ Pk

j

4: end for
5: Ωh = Select the first |Ωh| indices of IoUtot that correspond to

the lowest ratio values.
6: Return Ωh

Fig. 7. Geometry, boundary conditions and load parameters for the L-Bracket
structure.

Table 1
L-bracket design: Rate of success in number of iterations and compliance
estimation, and average number of iterations for four datasets cf. Eq. (17).
Case RoS in iterations % RoS in compliance % Average no. of Iters.

1 95.5 98.25 16.53
2 96.25 100 15.60
3 95.5 99.25 15.99
4 95.75 100 15.01

training data points) in the training dataset which subsequently
improves the prediction capability of the deep network model.

Remark 4.1. We note that in our deep learning approach, lower
resolution designs provide information about the general out-
line of the optimized structures. The fine features are captured
by the high resolution images in the training set. If the mini-
mum length scale required in the problem is relatively small, the
lower resolution datasets should be generated with the smallest
possible filter size (which imposes minimum length scale) such
that the optimized designs show the general outline or large
scale features of the structure. This may also require successive
decrease of the largest mesh size until the lowest resolution
designs exhibit the general outline of the structure. At the end
of this section, we provide a numerical experiment which gives
a quantitate estimate on the performance of the multiresolution
DDNSM compared to a single high resolution DDNSM. In light of
this experiment, we quantitatively assess the computational gain
as well as degradation in the high resolution prediction using the
multiresolution DDNSM.
9

Fig. 8. Different samples of L-Bracket design in three resolutions: low 16 × 16
(top row), medium 32 × 32 (middle row) and high 64 × 64 (bottom row).

The DDNSM consists of 8 fully connected layers which takes
the design parameters p1, p2 as input and produces the coeffi-
cients of DNSM as output. The number of nodes for 7 inner layers
are {32, 256, 512, 1024, 2048, 2048, 1024}. For L-Bracket dataset,
the number of DNSM coefficients (equivalent to the number of
nodes in the last layer) is 15 × 8 × 3 where 15 corresponds
to the number of polytopes, 8 corresponds to the number of
discriminants (half-spaces), and 3 corresponds to the number
of parameters that identify a half-space in 2D. The number of
polytopes and discriminants have been selected using the cross
validation method such that the network is trained for different
number of polytopes and discriminants and the ones that resulted
in better reconstructions were selected. The learning rate is set
to 1e−4 and the number of gradient-descent iterations (epochs)
is set to 250. Furthermore, λ cf. Eq. (13) is set to 0.1 for both
L-Bracket and Heatsink datasets (cf. Section 4.2). We consider
total of ntrain = 1600 samples for training and ntest = 400 samples
or testing the network model. We however vary the number of
raining samples to investigate the performance of the machine
earning with respect to training size. To this end, we base our
raining on low resolution L and medium resolution M samples
n addition to 20% of their size with high resolution images. In
articular we consider the following scenarios:

ase 1 : 1600 low resolution samples + 320 high resolution samples
ase 2 : 320 medium resolution samples + 64 high resolution samples
ase 3 : 800 medium resolution samples + 160 high resolution samples
ase 4 : 1600 medium resolution samples + 320 high resolution samples

(17)

t should be noted that in the first part of the experiment we
elect the high resolution samples randomly. Fig. 9 shows the
ctual high resolution (top row) and reconstructed structures
ssociated with Cases 1 (middle row) and 4 (bottom row). It is
isually apparent that the Case 4 which mainly uses the medium
esolution training samples performs better compared to Case 1
hich mainly uses the low resolution training samples.
To numerically investigate the performance of these cases

e use the reconstructed structures as initial guesses and use
he optimizer (based on the optimality criteria) [70] to find the
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Fig. 9. Samples of L-Bracket design: actual high resolution (top row), recon-
structed designs with dataset of Case 1 (middle row), and Case 4 (bottom
row).

final structure. We count the number of iterations that each
initial guess takes to generate optimal structure and we also
compute the discrepancy between the final compliance and the
initial compliance against the actual structure’s compliance. In
particular we use normalized errors eCini = |Cini − Cexc |/Cexc and
Cfin = |Cfin − Cexc |/Cexc to assess the performance of the initial
uesses where Cini, Cfin and Cexc denote the compliance associated
ith the initial guess (reconstructed structure), final structure
from the initial reconstructed structure) and the actual structure.

Fig. 10 shows the number of iteration and the relative errors
or Cases 1 and 4. We also consider the rate of success based
n the number of iterations and proximity of compliance to the
ctual structure’s compliance. More specifically to define the rate
f success we count the number of samples that yield smaller
terations than the actual optimizer and count the number of
amples that yields more accurate compliance values out of all
00 training samples. Table 1 lists the rate of success in all cases
n terms of the above mentioned measures as well as the average
umber of iterations. The average number of iterations for the
est samples with uniform initial guess is 30.1975. We observe
hat the Case 4 with the highest number of high resolution data
oints yields the lowest average number of iterations.
To investigate the applicability of this approach to other pa-

ameterizations, we generate additional datasets considering vari-
tion in the boundary condition and volume fraction in addition
o the existing parametric loads. For the case of variation in vol-
me fraction and boundary condition we consider p3 ∈ [0.3, 0.5]
nd p3 ∈ [0, 64] (associated with the high resolution mesh)
espectively. The parameterized boundary condition (p3) is illus-
rated in Fig. 11. Similarly to the previous case we generate four
ifferent datasets as follows:

C-L-Low : 1600 low resolution samples + 320 high resolution samples
BC-L-Medium : 1600 medium resolution samples + 320 high resolution samples
VF-L-Low : 1600 low resolution samples + 320 high resolution samples
VF-L-Medium : 1600 medium resolution samples + 320 high resolution samples
(18)

10
Table 2
L-bracket design: Rate of success in number of iterations and compliance
estimation, and average number of iterations for four datasets associated with
parameterized boundary conditions and volume fractions.
Case RoS in

iterations %
RoS in
compliance %

Average no.
of Iters.

BC-L-Low 78.75 99.00 20.05
BC-L-Medium 88.25 99.5 14.81
VF-L-Low 80.0 99.25 24.56
VF-L-Medium 89.0 99.5 17.78

Table 3
L-bracket design: Rate of success in number of iterations and compliance
estimation, and average number of iterations for two cases of low and medium
resolution initial guesses.
Case RoS in

iterations %
RoS in
compliance %

Average no.
of Iters.

L Res. Ini. Guess 85.75 97.25 22.01
M Res. Ini. Guess 96.75 98.75 10.44

where BC-L-Low and BC-L-Medium correspond to the datasets
with variation in boundary condition and load, and consist of
mainly low and medium resolution samples respectively. Sim-
ilarly VF-L-Low and VF-L-Medium correspond to the datasets
with variation in volume fraction and load. Fig. 12 shows the
reconstructed images using the above four datasets. It is also
visually apparent that the reconstructed image associated with
the medium resolution training data is closer to the actual im-
age compared to the reconstructed image with low resolution
training data.

To assess the performance of these training datasets quanti-
tatively, similarly to the previous experiment we use the recon-
structed images as initial guess for topology optimization. Fig. 13
shows the iteration counts and relative errors in compliance
associated with BC-L-Medium and VF-L-Medium. Table 2 pro-
vides quantitative performance measures in terms of number of
iterations and compliance estimation for four datasets. It is again
noticeable that the training datasets associated with medium
resolution designs perform better than the datasets associated
with low resolution designs. It should be noted that the average
number of iterations for direct high-resolution design in the
cases of variations in boundary condition and volume fraction is
26.2675 and 33.7375 respectively.

To further investigate the effect of initial guess and its compu-
tational cost impact on final design we repeat the above exper-
iment with low and medium resolution initial guesses. In other
words, we generate high resolution designs by using the low and
medium resolution layouts. For example if there is a solid pixel
(with value 1) in the medium resolution we consider a mesh with
the size of 2 × 2 pixels (with values 1) in the same location in
high resolution. We perform this experiment for ntest = 400 test
data points associated with datasets 1 and 4. The comparisons
for number of iterations and compliance estimation are shown
in Fig. 14 and Table 3. It is observed that the average number
of iterations is reduced once the medium resolution data is used
(10.44 in Table 3 versus 15.01 in Table 1) however it is the
opposite for the low resolution data (22.01 in Table 3 versus 16.53
in Table 1). It should however be noted that to use the medium
resolution data as initial guess, we need to generate such medium
resolution designs via direct optimization. This will impact the
computational cost analysis which will be discussed in detail at
the end of this section.

Next, we test the performance of the importance sampling. To
this end we consider two scenarios: Case 1 which is the last case
in the previous experiment i.e. 1600 M + 320 H where the high
resolution samples are selected randomly and Case 2 with 1600 M
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Fig. 10. L-bracket design: Iteration counts (left) and relative errors in compliance eCini , eCfin (right) for two cases: Case 1 (top row) and Case 4 (bottom row).
Fig. 11. Geometry and parameterized load and boundary condition for the L-
racket structure. In this case a node with varying location along the left side
f the structure is fixed in both x and y directions.
11
Fig. 12. Different samples of L-Bracket design associated with BC-L (top) and
VF-L (bottom) datasets: reconstructed high resolution design using mostly low
resolution training data (left), medium resolution training data (middle) and
original high resolution design (right).
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Fig. 13. L-bracket design: Iteration counts (left) and relative errors in compliance eCini , eCfin (right) for two cases: parametric boundary conditions and loading (top
row) and parametric loading and volume fractions (bottom row).
c
C

+ 320 H where the high resolution samples are selected based on
the strategy described in Section 3.5. More precisely, the DDNSM
is first trained on medium resolution images (images with res-
olution 32 × 32). After the training, we obtain the polytopes of
each training sample using the DNSM coefficients. Subsequently
we select the high resolution samples using the ratio described
in Section 3.5.

To illustrate the overlap ratio we show two example of the
optimal structures in addition to their underlying polytopes in
Fig. 15. Each shape consists of 15 polytopes. Based on importance
sampling method, the more complex shape yields the less poly-
tope overlap ratio. As seen, the simpler shape shown in (a) has
larger ratio value than the more complex shape shown in (c).

Fig. 16 shows the number of iterations and the relative errors
for the dataset generated using the importance sampling and
Table 4 lists the rate of success in iteration and compliance
prediction for two datasets i.e. random selection and important
sample selection. As seen, the rate of success in iteration counts
and the average number of iterations improve appreciably in the
dataset which is associated with important sample selection.

Analysis of Computational Cost
It is beneficial to assess the computational savings by the

machine learning approach quantitatively. To this end we assign
a computational cost to each finite element analysis based on its
12
Table 4
L-bracket design: Rate of success in number of iterations and compliance
estimation, and average number of iterations for datasets generated using the
random and importance sampling.
Case RoS in

iterations %
RoS in
compliance %

Average no.
of Iters.

Random 95.75 100 15.01
Importance sampling 97.25 100 14.25

mesh size. For a 2D finite element we consider the computational
cost as CFE = (1/h)2 where h is the mesh size. We assume
hL = 1, hM = 0.5 and hH = 0.25; therefore the computational
ost for each finite element analysis for different resolutions is
FE = 1, 4, 16.
As an example the computational cost Cc for generating the

dataset in Case 4 is Cc = (1600 × 4 + 320 × 16) × 30.1975 =
3.478e5 where we note that 30.1975 is the average number of
iterations and is assumed to be the same for medium resolution
optimizations. It is expected that the medium resolution opti-
mization takes slightly fewer number of iteration compared to the
high resolution optimization however with the aforementioned
assumption we estimate the computational cost of training more
conservatively i.e. the training cost is smaller in practice. Since
the ultimate goal is to generate the high resolution designs we
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Fig. 14. L-bracket design: Iteration counts (left) and relative errors in compliance eCini , eCfin (right) for two cases of low and medium resolution initial guesses: Case
1 (top row) and Case 4 (bottom row).

Fig. 15. (a) An optimized structure and (b) its associated polytopes with the ratio value IoUtot = 11.13; (c) another optimized structure and (d) its associated
polytopes with the ratio value IoUtot = 3.92. In this example N = 15, W = 32 and H = 32. As seen, the ratio value for the simpler shape shown in (a) is greater
than the ratio value for the more complex shape (c).

13
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Fig. 16. L-bracket design: Iteration counts (left) and relative errors in compliance eCini , eCfin (right) for the dataset generated using the importance sampling.
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solve the following equation to find the number of high resolution
samples which yields the same computational cost for designing
via machine learning and direct optimization:

3.478e5+ (14.25× 16)n = (30.1975× 16)n (19)

The number of high resolution samples is obtained as n = 1363
which indicates that in the occasions when we need to find a
large number of high resolution structures i.e. n > 1363 the pro-
posed machine learning approach will be more cost efficient. Such
situations include when the task of optimization is performed in a
nested fashion i.e. the optimized topology is explored in a broader
scale optimization or when human designers need to explore
the space of optimal designs [43]. We perform the same analysis
similarly to Eq. (19) to find the number of high resolution designs
associated with different datasets that we used for training in this
example. Table 5 lists these numbers of high resolution designs
for different datasets. It is observed that the dataset of Case
2 yields the smallest number of high-resolution designs. This
indeed implies that the cost of training data generation relative
to the cost of direct high-resolution optimization, in this case is
the lowest among all datasets.

It is also beneficial to assess the computational cost when us-
ing the medium and low resolution designs as shown in Table 3.
Based on the results, the cost of generating a high resolution
sample from these initial guesses is Cc = 16 × 10.44 and Cc =

16 × 22.01. On the other hand, the cost of generating these
designs for each sample is Cc = 4 × 30.19 and Cc = 1 × 30.19
(assuming low and medium resolution designs take the same
number of iterations as high resolution designs). However in both
cases the total computational cost CC = 288, 382 is smaller
than generating a high resolution design from a uniform density
distribution Cc = 16× 30.19 = 483. This simple analysis indeed
shows that using such low and medium resolution designs can be
another viable option for initial guesses as they reduce the overall
computational cost for generating high resolution designs in this
example. However it is noted that the presented computational
results for the number of iterations are solely relevant to this
particular example. In general, there might be situations where
the decrease in the number of iterations is negligible e.g. using
medium resolution initial guess would result in 450 iterations
instead of 500 iterations. In those situations, starting from a
medium resolution design does not justify the overall cost.
14
Table 5
Computational cost analysis for L-bracket design: The number of high resolution
designs for which the cost of building deep learning surrogate is equal to
direct optimization, associated with different datasets used for training. In the
situations where a larger number of high resolution designs are needed, the
deep learning surrogate will be more cost efficient.
Case Number of Hi. Res.

designs
Case Number of Hi. Res.

designs

1 928 BC-L-Low 1776
2 297 BC-L-Medium 1651
3 765 VF-L-Low 1544
4 1431 VF-L-Medium 1522

We now investigate the actual computational time and assess
the computational savings afforded by DDNSM. Our experiments
in this paper are performed on two computers, one for data gen-
eration and performing convergence studies and the other one for
performing the deep learning including training and testing. The
specifications for the computational units for these two comput-
ers are (a) Intel 12 Core i7−5930K @ 3.5 GHz CPU with 32 GB of
AM and (b) 2x Intel 8 Core E5−2660 @ 2.20 GHz processor with
4 GB of RAM and 2x Nvidia K20 GPUs. We note that these two
omputers are similar in terms of computational power; there-
ore to estimate the total time of generating optimized design
mages we simply add different components of computational
ime i.e. generating the dataset, training the network, generat-
ng images from the trained network and topology optimization
sing DDNSM-generated initial guesses. Another important point
s that, as the problem size increases, generating the training
ataset takes more time compared to network training. Therefore,
symptotically, the cost of network training will be negligible
ompared to the cost of generating datasets. Nevertheless for
he sake of completeness, we include the cost of training and
valuating in our computational time analysis.
It is also noted that the data generation or topology optimiza-

ion with SIMP is done via sequential CPU processing while the
eep learning is performed on a GPU in this paper. In the follow-
ng, we will compare the time associated with direct optimization
ith SIMP and the DDNSM approach. It should be noted that the
DNSM approach also includes the time that is associated with
opology optimization using sequential CPU processing. In other
ords, both computational times i.e. SIMP and DDNSM times de-
end on the sequential CPU processing. Based on our experiments
hich will be reported in the following, we have found that
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Fig. 17. L-bracket design: High (top) and low (bottom) resolution designs with 200 × 200 and 50 × 50 elements. Fine features are apparent in the high resolution
designs.
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the total time for SIMP is larger than DDNSM, sometimes with
significant margin. Using parallel processing (i.e. converting CPU
processing to GPU processing) decreases the gap between total
computational times in these approaches; however the DDNSM
approach remains more efficient so long as the number of test
samples increases with higher rate than the number of parallel
CPUs.

As an example, we provide the computational time breakdown
for the dataset associated with Case 2. Different components of
the computational time are as follows:

• Generating the dataset: 260.31 s
• Training the network: 1639.25 s
• Evaluating the network: 19.30 s
• Topology optimization with DDNSM initial guess: 9534.39 s

Note that the cost for evaluating the network corresponds to
generating images for 10 000 high resolution designs which we
use for comparison with the standard SIMP method (for the same
number of 10 000 designs). Also note that the computational
time for generating the dataset is rather small since it mainly
consists of lower resolution designs which is the main advantage
of our approach. The computational time for generating 10 000
low, medium and high resolution designs are 1103.91, 4094.16
and 20203.75 s respectively. In Table 6 we provide the compu-
tational time for generating 10 000 high resolution designs using
both methods: DDNSM and SIMP. We report two computational
times, one considering every component that contributes to the
total time in DDNSM and the other one considering the time for
only evaluating the network and topology optimization with the
DDNSM initial guesses. We also note that in a similar work [41],
authors report only the evaluation time from the network which
is significantly smaller compared to other components of time. As
seen in this example, it takes only 19.3 s to evaluate the network
10 000 times. In other words it takes 0.002 s to generate one
design with DDNSM after training while direct optimization takes
2 s. However, in this paper the setting for our method is different
as we use the generated images as initial guesses to a subsequent
topology optimization process. Nevertheless, from the results in
Table 6, it is evident that the DDNSM approach outperforms SIMP
in both cases when a large number of optimized design is needed,
even for this rather small scale problem.

Comparison between single resolution and multiresolution
DDNSM

As a final experiment in this example, we consider the com-
parison between a single high resolution DDNSM and a mul-
tiresolution DDNSM. The goal of this experiment is to objectively
assess the trade-off between the accuracy and cost using both
15
Table 6
L-bracket design: Computational time (in hours) for generating 10000 high
resolution L-Bracket designs.
Case/Method DDNSM SIMP

Computational time (with training) 3.18 5.61
Computational time (without training) 2.65 5.61

networks. To this end we consider a much higher resolution as
the high resolution samples for training and testing the network.
In particular, the H and L datasets in this experiment consist
of 200 × 200 and 50 × 50 topology optimized designs. Three
different samples of each dataset are shown in Fig. 17. In this
example, we use small filter radii to allow the appearance of fine
features in the final design. In particular we use rmin = 2 and 1.5
or high and low resolutions. Fine features are apparent in the
esigns shown in the first row. To train the networks we consider
he following scenarios:

ingle Resolution : 800 high resolution samples
ultiresolution : 800 low resolution samples + 160 high resolution samples

(20)

t is noted that in the single resolution case, we do not have the
ontribution of low resolution loss and the balancing coefficient
n this case is λ = 1 cf. Eq. (13). The number of polytopes
nd discriminants is 35 and 8, the learning rate is set to 2.5e−4
nd the number of epochs is 650 and 250 for single resolution
nd multiresolution networks. We also use the importance sam-
ling strategy for choosing the high resolution samples in the
ultiresolution case.
For testing the network we consider 200 samples. Fig. 18

hows the prediction from two networks. The first row shows five
amples of the actual test dataset; second row shows the predic-
ions from single resolution scenario and the last row corresponds
o predictions from the multiresolution DDNSM.

It can be clearly seen that the single resolution net has been
ble to reveal more fine features. For example in the last image
the fifth image from left), the single resolution network has been
ble to recover the semi-circle in the image to some degree while
n the multiresolution case the details are less apparent. How-
ver this performance increase from multiresolution to single
esolution network comes with appreciable cost for training.

Before proceeding with the cost analysis, we introduce a new
traight-forward measure to assess the prediction accuracy. This
easure, e is similar to the loss function that has been used in
Img
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Fig. 18. L-bracket design: Actual high resolution images in the test dataset (top row), prediction from the single resolution DDNSM (middle row) and prediction
from the multiresolution DDNSM (bottom row).
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Table 7
L-bracket design: Rate of success in number of iterations and compliance
estimation, average number of iterations, eImg and Computational time (in hours)
or generating 1000 high resolution designs.
Case RoS in

Iter. %
RoS in
Comp. %

Avg. no.
of Iters.

eImg Comp.
Time

Single resolution 98.00 100 27.30 0.1814 24.68
Multiresolution 96.5 100 42.33 0.3566 13.09

training:

eImg =
∥Ŝ − S∥F
∥S∥F

(21)

here S is the actual image (shape), Ŝ is the predicted image
nd ∥.∥F is the Frobenius norm. From Fig. 19 it is observed
hat single resolution network can almost always (except two
amples) generate closer images to the actual ones. To further
nvestigate the performance of the two networks, we repeat the
ame experiment similarly to previous examples and investigate
he rate of success in compliance, iteration and average number
f iterations. These results in addition to average of normalized
rrors in image prediction eImg and computational time for gen-
rating 1000 samples are shown in Table 7. The average number
f iterations for designing a 200 × 200 mesh is 123.61. The
omputational time breakdown i.e. dataset generation, training
he network, evaluating the network and subsequent topology
ptimization for 1000 samples for two networks are as follows:
ingle resolution (58 640, 14 023.9, 5.11, 16 188.7) s and mul-
iresolution (12 680, 9340, 5.17, 25 101.4) s. We emphasize
hat after training the network, generating 1000 high resolution
mages takes 5.11 and 5.17 s. This means that generating one
pproximate design from the neural net effectively takes a small
raction of a second, i.e. 0.005 s while direct optimization of
00 × 200 mesh takes 73 s.
From these results, it is deduced that the single resolution

etwork outperforms the multiresolution network in terms of
ccuracy measures. However there is a significant difference in
erms of the total computational time for these two networks. The
raining time i.e. the time associated with both dataset generation
nd training the network itself is significantly smaller (almost
hree times smaller) in the case of the multiresolution network.
herefore, in this case where 1000 test samples are sought the
ultiresolution network is significantly more efficient. It should
lso be noted that the single resolution network in this example
as been able to appreciably decrease the number of iterations
 i

16
Fig. 19. L-bracket design: The normalized error in prediction of images.

123.61 → 27.30). This implies that, according to our computa-
tional time analysis there is a breakeven point at which the total
time of both networks is equal. A similar analysis to (19) for total
time:

7.266e4+ 16.194× n  
Signle resolution time

= 2.202e4+ 25.106× n  
Multiresolution time

(22)

ields n = 5683. This means that for predicting less than 5683 op-
imized designs, the multiresolution network is more economical
ut as the number of test samples increases the single resolution
etwork will be more efficient. In other words, if more cost
s spent at the beginning for training, it would result in more
fficient predictions for a large number of optimized designs
> 5683 which is expectable. However, if a smaller number

f predictions n < 5683 is desired the multiresolution approach
ould be more suitable as it involves much smaller training cost.

.2. Heat sink

The objective in this example is to use the multiresolution
mages to find the high resolution designs for a heat sink. The
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Fig. 20. Geometry and parameterized boundary conditions for the heat sink
esign. The temperature is zero at the boundary ΓD .

bjective in these designs is to minimize the thermal compli-
nce [2]. The design domain shown in Fig. 20 is subject to a
niform heat and includes one heat sink with varying location.
he varying location in this example is considered as the simu-
ation parameter. Therefore the parameter space in this example
ncludes two variables (location in x and y directions). It is noted
hat we consider only one nodal location as the heat sink through-
ut different resolutions. In other words, a point location in the
ow resolution domain is mapped to a point in the high resolution
omain. The governing equation and boundary conditions for a
teady state heat conduction problem are{
∇.q(x)+ b(x) = 0 ∀x ∈ D
T (x) = 0 ∀x ∈ ΓD,

(23)

here q(x) is the thermal flux and T is the temperature. The
lliptic PDE associated with Eq. (23) is expressed as{
−∇.(K(x)∇T (x)) = f (x) ∀x ∈ D
T (x) = 0 ∀x ∈ ∂D,

(24)

here K is the thermal conductivity matrix and f (x) is the force
unction which is constant in all nodes in our example: f = 0.01.
fter finite element discretization, the temperature T ≡ T (x) is
btained from KT = F where

=

∫
D
BTKBdD, F =

∫
D
NT fdD (25)

re the thermal stiffness matrix and thermal load vector, respec-
ively, with N and B shape function matrix and its corresponding
erivative matrix respectively. The thermal conductivity matrix
in this case is given by

= K(ρ)I2, (26)

here I2 is a 2 × 2 identity matrix and K(ρ) is the thermal
conductance parameterized with respect to density ρ.

Similarly to the previous examples we generate n = 1000
data points associated with low, medium and high resolutions.
The DDNSM consists of 8 fully connected layers same as pre-
vious experiment where in this case inputs are the location in
x and y directions. The number of polytopes and discriminants
for this case are N = 25 and M = 8 respectively. We use
17
Table 8
Heat sink design: Rate of success in number of iterations and compliance
estimation, and average number of iterations for four datasets.
Case RoS in iterations % RoS in compliance % Average no. of Iters.

1 57.0 100 240.93
2 80.0 100 190.20
3 94.0 100 152.43
4 95.5 100 132.32

ntrain = 800 samples for training and ntest = 200 for testing the
etwork. Different resolutions in this examples i.e. H ,M and L are
28 × 128, 64 × 64 and 32 × 32 meshes respectively where we
gain use standard square finite elements. Fig. 21 shows different
amples of optimal designs in three resolutions. We consider
imilar scenarios to the previous example to test the performance
f the machine learning algorithm. In particular we consider the
ollowing four datasets:

ase 1 : 800 low resolution samples + 160 high resolution samples
ase 2 : 160 medium resolution samples + 32 high resolution samples
ase 3 : 400 medium resolution samples + 80 high resolution samples
ase 4 : 800 medium resolution samples + 160 high resolution samples

(27)

he reconstructed images for three arbitrary samples are shown
n Fig. 22. It is apparent that the reconstructed images in bottom
ow associated with Case 4 exhibit more details compared to the
iddle row associated with Case 1. The performance of these

wo datasets are tested via the number of iterations and relative
rror in compliance. Fig. 23 shows these metrics for two datasets.
gain it is apparent that the dataset of Case 4 which uses 100%
f the medium resolution data outperforms the Case 1 dataset
hich uses low resolution data. Table 8 lists the performance of
he above mentioned four datasets. As expected as the number
r resolution of training data points increases the performance
mproves. Also the average number of iterations without using
he image-based machine learning is 243.32 and using e.g. the
ataset of Case 4 reduces this time to almost half i.e. 132.32
terations. To be more precise we perform the same calculations
or computational cost as previous example. The computational
ost for generating the dataset of Case 4 is Cc = (800×4+160×
6)× 243.32 = 1.4015e6. Using the following equation

.4015e6+ (132.32× 16)n = (243.32× 16)n (28)

we find n = 789 which again indicates that it is beneficial to
use the machine learning strategy when finding n > 789 high
esolution heat sink designs is desired.

Similar to our previous example, we also perform the compu-
ational time analysis. In this example, the computational time for
enerating 10 000 low, medium and high resolution designs are
906.3, 20 526.05, 121 968.54 s respectively. The computational

time for generating the dataset of Case 4, the network training,
network evaluation and topology optimization with DDNSM ini-
tial guesses for 10 000 samples are 3593.58, 6068.00, 32.70 and
66327.78 s. Table 9 lists the computational time for both meth-
ods. As expected, DDNSM outperforms standard SIMP. It is also
apparent that, in this example which involves a larger scale prob-
lem compared to previous one, the difference in computational
time is more significant. We also again emphasize that generating
a heat sink topology optimized design with 128 × 128 elements
takes 12.2 s using SIMP while generating an approximate design
takes only 0.003 s with the trained network.

In this example we also repeat the experiment for importance
sampling. To this end, we consider the dataset of Case 2 and
perform network learning by using the high resolution training
data selected randomly and via the proposed algorithm. Fig. 24
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Fig. 21. Different samples of heat sink design in three resolutions: low 32 × 32 (top row), medium 64 × 64 (middle row) and high 128 × 128 (bottom row).
able 9
-bracket design: Computational time (in hours) for generating 10000 high
esolution heat sink designs.
Case/Method DDNSM SIMP

Computational time (with training) 21.11 33.88
Computational time (without training) 18.43 33.88

Table 10
Heat sink design: rate of success in number of iterations and compliance
estimation, and average number of iterations for datasets generated using the
random and importance sampling.
Case RoS in

iterations %
RoS in
compliance %

Average no.
of Iters.

Random 80.0 100 190.20
Importance sampling 88.0 100 186.62

shows the reconstructed images using two datasets and Fig. 25
shows the performance of these datasets in terms of iteration
counts and compliance relative errors. It is observed that the
performance of the selected samples in this example is slightly
improved since the initial guesses are almost similar in both
cases. We also expect that the prediction in this example is more
challenging compared to the previous example as the optimal
topologies in this case exhibit more details. This is evident from
the number of polytopes used in these two examples: the first
example uses N = 15 polytopes while the second examples uses
N = 25 polytopes. The improvement in prediction is shown via
numerics in Table 10 where the average number of iterations is
improved from 190 to 186.
18
Fig. 22. Samples of heat sink design: actual high resolution (top row), recon-
structed designs with dataset of Case 1 (middle row), and Case 4 (bottom
row).

To investigate the effect of number of polytopes on the ap-
proximation more precisely we increase the number of polytopes
in the DDNSM framework. In particular, we reconstruct the de-
signs associated with Case 3 with N = 50, 100, 200. Fig. 26
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Fig. 23. Heat sink design: Iteration counts (left) and relative errors in compliance eCini , eCfin (right) for two cases: Case 1 (top row) and Case 4 (bottom row).
Table 11
Heat sink design: rate of success in number of iterations and compliance
estimation, and average number of iterations for datasets generated using
different number of polytopes: N = 25, 50, 100, 200.
N RoS in iterations % RoS in compliance % Average no. of Iters.

25 94.0 100 152.43
50 93.5 100 158.95
100 92.0 100 157.29
200 86.0 100 179.36

shows an example of reconstructed high resolution designs cor-
responding to different number of polytopes and Table 11 lists the
performance of different reconstructions in terms of the number
of iterations and compliance estimation. From this experiment, it
is observed that higher number of polytopes does not necessarily
result in improved approximation. In particular we observe that
increasing the number of polytopes does not improve the recon-
struction of fine details of the heat sink design as it is evident
from Fig. 26. We thus deem N = 25 to be sufficient for our
DNSM approximation.

.3. 3D topology optimization

In this section we consider the problem of 3D topology op-
imization to show the effectiveness of our approach. It is well-
nown that there is a significant difference between 2D and 3D
19
Fig. 24. Samples of heat sink design: actual high resolution (top row), recon-
structed designs with dataset of Case 2 with random sampling (middle row),
and Case 2 with importance sampling (bottom row).

topology optimization problems in terms of cost. However, our
DDNSM approach can be easily and systematically generalized to
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Fig. 25. Heat sink design: Iteration counts (left) and relative errors in compliance eCini , eCfin (right) for the dataset generated using the random (top) and importance
sampling (bottom).
Fig. 26. An arbitrary reconstructed sample of heat sink design associated with number of polytopes N = 25, 50, 100, 200 (from left to right).
3D images, and hence we use it as an effective tool to predict 3D
optimized designs.

The design domain, boundary conditions and loading param-
eters are shown in Fig. 27. We make changes to the underlying
code [79] for 3D topology optimization with varying parameters
and use the visualization tool inside this code to visualize the
optimized designs as well as the polytopes which are parts of
our DDNSM approach. To generate training datasets, we con-
sider two resolutions in this example: high and low resolutions.
The high and low resolution FEAs consist of 40 × 20 × 4 and
20 × 10 × 2 brick elements with 12 915 and 2079 degrees of
freedom, respectively. Similar to the first example, we set the
Poisson’s ratio ν to 0.3. We also consider the location of load p1
as an integer number p1 ∈ [0, 20] for high resolution (similarly
p1 ∈ [0, 10] for low resolution) and the angle of load as a
uniformly distributed continuous variable p2 ∈ [0, π/2]. The filter
size for both resolutions are fixed rmin = 1.3, 2.6 and the volume
20
Fig. 27. Geometry, boundary conditions and load parameters for the 3D
cantilever beam.



V. Keshavarzzadeh, M. Alirezaei, T. Tasdizen et al. Computer-Aided Design 130 (2021) 102947

n
t
a

d
n
{

Fig. 28. 3D design: Different samples of 3D design in two resolutions: high 40 × 20 × 4 (top row), and low 20 × 10 × 2 (bottom row).
Fig. 29. Samples of 3D design: actual high resolution (top row), reconstructed designs with dataset of Case 3 (middle row), and Case 6 (bottom row).
fraction is v = 0.35. Similarly to the second example, we generate
= 1000 optimized designs for both resolutions and use 20% of

he dataset for testing. Fig. 28 shows different samples of high
nd low resolutions.
In this example, we use the same DDNSM parameters and

eep net architecture. I.e. the deep net consists of 8 fully con-
ected layers with the number of nodes for 7 inner layers as
32, 256, 512, 1024, 2048, 2048, 1024}. There is a difference in
the number of DNSM coefficients since the problem is 3D, there-
fore the number of nodes in the last layer is 15 × 8 × 4. The
learning rate is again set to 1e−4, the number of gradient-descent
iterations (epochs) is set to 250 and we set λ = 1 cf. Eq. (13).

We consider three cases associated with different training
sizes as follows:

Case 1 : 800 low resolution samples + 80 high resolution samples
Case 2 : 800 low resolution samples + 160 high resolution samples
Case 3 : 800 low resolution samples + 240 high resolution samples

(29)
21
The first three cases above are experimented with random sam-
pling. We consider additional three cases, Cases 4,5 and 6, with
importance sampling. Before proceeding with numerical conver-
gence study, it is beneficial to see the prediction of DDNSM
visually. Fig. 29 shows three different optimized designs (within
the test set) and their DDNSM predictions using datasets with
random and importance sampling. It is interesting to see that
the DDNSM approach in this case, i.e. the 3D designs, generates
images that are appreciably close to the actual design. Indeed, the
predicted designs are very close to the actual design such that
they could be used without further processing. This statement is
verified in the numerical results shown in Fig. 31 (right pane).
As can be seen in this dataset, the initial guesses yield very
close compliances to the actual compliances as the quantities for
convergence of compliance with initial guesses are eCini ≤ 0.1
almost consistently throughout the test cases.

In this example, we also show the polytopes as the building
block of images for better illustration of the approach. Fig. 30
shows an arbitrary optimized design and its N = 5 and N = 15
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Fig. 30. 3D design: (a) Reconstructed design using N = 5 and N = 15 polytopes (left and middle) and the actual design (right), (b) N = 5 and (c) N = 15 associated
polytopes obtained via DDNSM approach. Note that 4 out of 15 polytopes are obtained extremely small, hence they do not appear as images.
Table 12
3D design: rate of success in number of iterations and compliance estimation,
and average number of iterations for different cases.
Case RoS in iterations % RoS in compliance % Average no. of Iters.

1 85.5 92.0 81.82
2 87.5 95.0 77.64
3 87.0 88.0 79.65
5 84.5 83.5 79.44
4 85.5 84.0 78.55
6 83.5 83.0 76.28

polytopes. In some cases the identified polytopes are extremely
small which are shown as blank. Nevertheless the union of the
polytopes results in the reconstructed image. It is also observed
that N = 5 is not sufficient for reconstructing the actual design
s the reconstructed image exhibits disconnected areas in the
tructure but N = 15 results in almost identical image to the
actual design.

Similar to previous examples, we numerically investigate the
performance of each training case in terms of number of iter-
ations and compliance estimation. Convergence results for six
cases are listed in Table 12. The convergence results are shown via
Fig. 31 for Cases 3 and 6, associated with random and importance
22
sampling. Based on the results in Table 12, it is observed that
the datasets with importance sampling perform slightly better in
terms of number of iterations, however in both cases of random
and importance sampling the DDNSM can noticeably reduce the
iteration count which has significant impact on computational
cost. As mentioned earlier, it is also observed that the initial
guesses obtained with DDNSM in this 3D example, are very close
to the actual optimized designs both visually and numerically (for
compliance estimation).

In the next part we provide analysis of computational cost
both in terms of function evaluation and computation time which
again demonstrates the appreciable improvement provided by
DDNSM in comparison with the standard topology optimization
approach.

Analysis of Computational Cost
Similar to previous examples, we first investigate the perfor-

mance of our DDNSM approach with respect to function evalu-
ations. The average number of iterations for this 3D example is
152.08. Based on the results in Table 12 the number of iterations
is reduced to almost half by using the initial guesses generated
with DDNSM. In particular in Case 6, the average number of iter-
ations is obtained as 76.28. The computational cost for generating
this case is Cc = (800× 1+ 240× 8)× 152.08 = 4.1365e5. Note
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Fig. 31. 3D design: Iteration counts (left) and relative errors in compliance eCini , eCfin (right) for two cases: Case 3 (top row) and Case 6 (bottom row).
e

I

that in this case, performing one low resolution FEA is considered
as a unit cost and since the problem is 3D, the high resolution
cost (with mesh size halved) is 23

= 8 times larger. Solving the
following equation

4.1365e5+ (76.28× 8)n = (152.08× 8)n (30)

ields n = 85. Based on this result, it is beneficial to use DDNSM
trategy when one needs to find n > 85 high resolution 3D de-
igns. This low number indeed shows the significant advantage of
DNSM surrogate over standard topology optimization approach
SIMP) for finding a large number of optimized designs. Next,
e estimate the computational saving in terms of computational
ime.

In this example, the computational time for generating 10 000
ow and high resolution designs are 11091.35 and 331213.11 s
espectively. Note that generating a large number of high res-
lution designs in this case takes significant amount of time.
he computational time for generating the dataset of Case 6,
he network training, network evaluation and topology optimiza-
ion with DDNSM initial guess for 10 000 samples are 8836.42,
3237.20, 19.30 and 166129.24 s. Also note that in this example,
training the network takes significantly less time compared to
dataset generation. Once the network is trained, generating one
design takes 0.002 s while direct 3D optimization takes 33 s.
Table 13 lists the computational time for DDNSM and SIMP. Using
DDNSM, the computational time has been reduced to almost
half. It should be noted that, these estimations are obtained by
considering the DDNSM-generated images as initial guesses to a
23
Table 13
3D design: Computational time (in hours) for generating 10000 high resolution
3D topology optimized designs.
Case/Method DDNSM SIMP

Computational time (with training) 49.50 92.00
Computational time (without training) 46.15 92.00
Computational time (without post processing) 3.35 92.00

subsequent topology optimization process. While in this example
the predicted images are almost close to the optimized designs,
they could be used without further processing. In that case, the
computational time for finding 10 000 high resolution designs via
DDNSM is obtained by only considering training and evaluation
time. This amounts to 3.35 h as listed in the last row of the table
which is indeed a significant reduction compared to the SIMP
approach.

As an extension to this example, we consider a case where
the loading is varying in the z direction. To this end we increase
the number of elements in this direction to allow the topology
optimization solver generates 3D designs that are non-symmetric
in the z direction. In this way we can test the capability of
the DDNSM approach to capture the internal structures within
topology optimized designs. In particular, we consider high and
low resolution meshes with 40 × 20 × 10 and 20 × 10 × 5
lements. The loading in the z direction is shown in Fig. 32.
Fig. 33 shows three different high and low resolution designs.

t is apparent that there is considerable variation in the z direction



V. Keshavarzzadeh, M. Alirezaei, T. Tasdizen et al. Computer-Aided Design 130 (2021) 102947

i

i
w
i

i
i
w
s
i
s
i

m
T
n
D

f
d
T
a
t
w
n
1
f
m
u
o

p

Fig. 32. 3D design: Non-uniform load in the z direction. The load varies linearly
n the [0.5, 1.5] range.

n the optimized designs. Similarly to the previous experiment
e consider six cases cf. Eq. (29) including both random and

mportance sampling.
Fig. 34 shows the prediction of DDNSM for Cases 3 and 6. It

s observed that the DDNSM is capable of representing the 3D
mages and exhibiting internal structures in this experiment as
ell. We also notice the better performance of the importance
ampling compared to the random sampling in the first predicted
mage. A part of the image has not been recovered by the random
ampling however the importance sampling has yielded a close
mage to the actual one.

We also perform the iteration counts and compliance esti-
ation for the six datasets. The results are listed in Table 14.
he average number of iteration for this experiment (with larger
umber of elements) is 241.30. It is again observed that using
DNSM the number of iterations is considerably reduced.
To be precise, we again compute the total computational time

or DDNSM and SIMP for a large number of high resolution
esigns which we consider as 1000 designs in this experiment.
he computational time for generating the dataset with 1000 high
nd low resolution designs is 311950.65 and 7391.85 s respec-
ively. The required time for generating the dataset associated
ith e.g. Case 6 is 80781.63 s. The training time for the neural
etwork is 5628.81 and the time for evaluating the network for
000 designs is 3.206 s. Again note that evaluating one design
rom the trained network only takes 0.003 s (versus 312 s or 5
in with direct 3D optimization in this case) which enables the
tilization of this approach as an interactive tool for exploration
f optimized designs.
Finally performing the subsequent topology optimization for

redictions of Case 6 takes 115071.39 s. The total computational
24
Table 14
3D design: rate of success in number of iterations and compliance estimation,
and average number of iterations for the optimized designs with loading shown
in Fig. 32.
Case RoS in iterations % RoS in compliance % Average no. of Iters.

1 88.0 91.0 94.21
2 86.5 88.5 97.05
3 87.5 90.0 87.59
5 85.0 87.5 100.66
4 86.5 91.5 90.67
6 88.5 90.5 89.01

times for both approaches are listed in Table 15 which again
demonstrates the significant computational saving using DDNSM.

5. Conclusion

We presented a machine learning approach to generate high
resolution topology designs from multiresolution images. Our
approach used a novel scientific visualization method based on
deep disjunctive normal shape model (DDNSM). The learning pro-
cess involves simulation parameters and multiresolution images
associated with each simulation parameter. Learning the map
between the parameters and multiresolution images, the DDNSM
generates near optimal high resolution designs on unknown sim-
ulation parameters. To overcome the computational challenges in
training data we provided a systematic algorithm with an image-
based quantitative measure to choose important high resolution
designs which have more impact on the predictability of the
learning approach. We showed our approach on three numerical
examples associated with an L-shape elastic beam, a heat sink and
a 3D linear elastic structure. We showed that the predicted high
resolution designs can be effectively used as initial guesses for
design scenarios where the simulation parameters are varying.
In all cases we provided a computational cost analysis which
serves as a guideline to assess the effectiveness of our machine
learning approach compared to direct high resolution optimiza-
tion. Via the computationally-intensive 3D topology optimization
example, it is shown that the DDNSM predictive model reduces
the computational time to almost half when compared with the
standard topology optimization approach.

Some remarks on the limitations and advantages of our ap-
proach are in order:
Fig. 33. 3D design: Different samples of 3D design in two resolutions: high 40 × 20 × 10 (top row), and low 20 × 10 × 5 (bottom row).
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Fig. 34. Samples of 3D design with varying load in the z direction: actual high resolution (top row), reconstructed designs with dataset of Case 3 (middle row), and
Case 6 (bottom row).
Table 15
3D design: Computational time (in hours) for generating 1000 high resolution
3D topology optimized designs associated with the loading shown in Fig. 32.
Case/Method DDNSM SIMP

Computational time 55.96 86.65

- Limitation: The success of our multiresolution approach is
inherently dependent on the consistency of images across
resolutions. The DDNSM approach interpolates between im-
ages that are provided to the net and if a particular high res-
olution image is not provided to the net, most likely images
in the vicinity of that particular image cannot be success-
fully recovered. To alleviate this issue we have introduced
a quantifiable measure (as a part of DDNSM algorithm)
which effectively estimates the complexity of each image
cf. Eq. (16). Images with small total overlap value exhibit
finer features and are more likely to cover the entire high
dimensional space of high-resolution images and therefore
are suitable to be included in the training set.

- Limitation: The training cost is indeed significant in this
paper as the approach takes optimized designs which them-
selves are the result of an optimization problem. Based on
the results in the first numerical example where the single
resolution DDNSM is compared with the multiresolution
DDNSM, the single resolution DDNSM approach is more suc-
cessful in recovering the fine features as all training points
are high resolution images however that procedure is sig-
nificantly costly compared to the multiresolution approach.
The multiresolution approach is introduced to mitigate the
computational burden of the training process. While not
every fine feature is reproduced in multiresolution DDNSM,
we have empirically found that the predicted images could
be used as effective initial guesses to a subsequent topology
optimization process.

- Limitation: The formulation of the loss function is based
on the linear combination of losses in two resolutions with
a balancing coefficient cf. Eq. (13). In general, the balanc-
ing coefficient is obtained from a cross-validation study
similarly to many statistical analysis problems. We believe
this is one pragmatic way to formulate this multiresolu-
tion problem which has yielded reasonable results how-
ever this formulation might not be the only way or the
25
most mathematically appealing way to incorporate mul-
tiresolution data into the deep learning framework. Further
investigation into the formulation of loss function or the
architecture of DDNSM can potentially yield more improved
predictions.
• Advantage: The method and its associated formulation can

systematically accommodate multiresolution images. In
DDNSM each image is decomposed to its geometric prim-
itives (polytopes) and those geometric primitives can be
found/computed in any resolution. Such geometric decom-
position and multiresolution representation cannot be
achieved with popular convolutional neural networks [14]
which are extensively used in image processing.
• Advantage: The method can be equally effective in repre-

senting 3D images. The generalization from 2D to 3D (or
even higher if needed) is trivial for DDNSM however there
is a significant difference between 2D and 3D topology op-
timization problems in terms of both implementation and
computational cost. We believe DDNSM is significantly ad-
vantageous for representing 3D images especially those im-
ages that are obtained with significant cost such as topology
optimized designs.

Finally as future directions we plan to first develop a frame-
work for topology optimization with physics informed neural
networks (PINNs) [80] which could potentially address the fun-
damental issue of training cost in this paper. PINNs solve partial
differential equations which describe physics problems via neural
network machinery and can potentially be used for the topol-
ogy optimization problem. As a next step, the PINNs framework
for topology optimization can be integrated with DDNSM as a
monolithic framework for image-based parametric topology op-
timization. Such framework, if achieved, will be free from finite
element analysis and time consuming mesh generation. Another
extension to this work is the incorporation of well-established
geometric regularization steps in topology optimization such as
heaviside projection method [81] into the DDNSM formulation to
promote the recovery of sharp black–white designs.
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