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Abstract. Annotating medical imaging datasets is costly, so fine-tuning
(or transfer learning) is the most effective method for digital pathology
vision applications such as disease classification and semantic segmen-
tation. However, due to texture bias in models trained on real-world
images, transfer learning for histopathology applications might result in
underperforming models, which necessitates the need for using unlabeled
histopathology data and self-supervised methods to discover domain-
specific characteristics. Here, we tested the premise that histopathology-
specific pretrained models provide better initializations for pathology vi-
sion tasks, i.e., gland and cell segmentation. In this study, we compare the
performance of gland and cell segmentation tasks with domain-specific
and non-domain-specific pretrained weights. Moreover, we investigate the
data size at which domain-specific pretraining produces a statistically sig-
nificant difference in performance. In addition, we investigated whether
domain-specific initialization improves the effectiveness of out-of-domain
testing on distinct datasets but the same task. The results indicate that
performance gain using domain-specific pretraining depends on both the
task and the size of the training dataset. In instances with limited dataset
sizes, a significant improvement in gland segmentation performance was
also observed, whereas models trained on cell segmentation datasets ex-
hibit no improvement.

Keywords: Domain Specific pretraining - Gland and Cell Segmentation
- Transfer Learning.

1 Introduction

Deep learning models typically require a substantial amount of data to effectively
learn generalized latent space representations [4]. However, acquiring large medi-
cal image datasets is more challenging compared to real-world image datasets for
three primary reasons. Firstly, the annotation process for medical images involves
domain-specific knowledge from pathologists [T6/TTII9] and radiologists to man-
ually outline anatomical structures. This is challenging given the global scarcity
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of pathology and radiology experts; Secondly, the image annotation interfaces
are inefficient generating labor-intensive workflows. Thirdly, inter-observer dis-
agreement among medical professionals necessitates the involvement of multiple
experts to repeat each annotation task [5]. Lastly, in addition to the annotation
challenges there are biases in medical data. Biases in histopathology images arise
from variations in tissue quality, staining protocols leading to difference in color
and texture [I0], scanning protocols and slide scanners [I0J14]. These biases are
often site-specific and can cause major domain shifts between different data sets,
which in term reduces the generalization of deep learning models. [T0JT4]. Other
forms of domain shifts in cancer cohorts include discrepancies between cancer
and normal tissue histology, the proportion of histologic cancer subtypes, grades
and stages, and variations in clinical, demographic, and race-related variables.
These variables generate data imbalances that can degrade the performance of
deep learning models during testing.
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Fig. 1. Do different weight initialization matter? The study is designed from the
perspective of an Al user who can choose between multiple pretrained model options
for a given task. The best pretrained model is the one that is least effected domain
shift. This study provides a framework to choose amongst pretrained models and select
the most advantageous for the task.

In medical image vision tasks, fine-tuning pretrained models (also known
as transfer learning) has become a common approach [6II5]. These tasks are
important for automated diagnosis, cancer grading and predictions of patients
outcomes across all cancer types. Using supervised or self-supervised methods,
deep learning models exhibit strong capabilities to learn effective latent repre-
sentations [3]. However, they may suffer from domain-specific texture bias [9],
which can impede their performance [I8]. Previous research indicates that if suf-
ficient data is available for training, a model trained de-novo (i.e., from scratch)
may outperform a fine-tuned model [I5/I8]. This suggests a potential benefit of
domain-specific pretraining [24I12] over transfer learning from ImageNet [g].

Because large, annotated data sets are difficult to obtain for pretraining on
histopathology images, self-supervised and annotation free methods (SSL) pro-
vide an alternative strategy for pretraining models to learn valid representa-
tion in the latent space [2I23/I]. Models can then be further fine-tuned with
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a few annotations to produce acceptable results on test datasets. However, no
studies systematically evaluated the impact of domain-specific pretaining for
histopathology models that are tasked to learn cell and gland segmentation.
The closest matching work to this study is an investigation of pretraining on
classification and instance segmentation tasks [12]

Because gland and cell segmentation differ from instance segmentation and
classification, the effect of pretraining on the analysis of out-of-distribution
(OOD) datasets also remains unknown. The contributions of this paper are as
follows:-

— Comparison of de-novo trained models with pretrained models on the Ima-
geNet dataset using class supervision [8] and self-supervision [23] for semantic
segmentation tasks in histopathology.

— Finetuning pretrained domain-specific models [12] for gland and cell segmen-
tation. These comparisons will indicate whether domain-specific pretraining
aids cell and gland segmentation in out-of-distribution data sets after fine-
tuning of models.

— Determining the effect of compute resources and data quantity on model
performance improvements.

— Investigating whether domain-specific training leads to a better generaliza-
tion of models.

2 Different pretraining Strategies

To investigate whether domain-specific pretraining leads to generalization in
gland and cell segmentation tasks, the study aims to address the following re-
search questions:

— Is domain pretraining, which involves initializing the weights with domain-
specific images, more effective for transfer learning compared to pretrained
weights from ImageNet?

— Do self-supervised outperform supervised weight initializations?

— Does domain-specific pretraining enhance the quality of features and improve
the model’s performance on datasets with domain shifts?

All initializations are compared against random initialization (i.e., training
from scratch), which serves as the baseline to identify initializations (mentioned
below) that outperform random. The flow diagram of the study is shown in
Figure

Models are trained with 3 different types of initializations: (1) pretrained
weights using class supervision on ImageNet data: default weights are
provided in Pytorch for ImageNetV1 and ImageNetV2. The top-1 accuracies in
the initialization amount to 76.13 and 80.85, respectively. These weights are ob-
tained by training a ResNet50 [8] model with class supervision. For two other
initialization, weights are obtained using a self-supervised technique called Bar-
low Twins [23]. (2) Pretrained weights with ImageNet data using SSL
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(SSLImage): Self-supervised weights were obtained after training on data from
ImageNet without using labels. (3) Domain-Specific pretraining using SSL
(SSLPathology): This model is released as part of the study in [I2] for domain-
specific pretraining on histopathology data. The model was pretrained using
more than three million histopathology image patches sampled from various
cancers at different magnifications. More details about the pretraining method
and the dataset can be found in [I2].

2.1 Dataset Details

We have experimented with gland and cell segmentation tasks on these five
histopathology datasets:

Gland Segmentation Datasets: Colon cancer datasets, GlaS and CRAG
[211[7], possess ground truth gland segmentation annotations for normal and colon
cancer glands. The GlaS dataset has 88 training & 80 testing images of size less
700x600 pixels, whereas the CRAG dataset has 160 training & 40 testing images
of size 1512x1512 pixels.

Cell Segmentation Datasets: Three cell segmentation datasets are used
for experimentation KUMAR [13], CPM17 [22] and TNBC [I7] possess ground
truth annotations of nuclear outlines.

Table 1. Cell Segmentation Dataset Details. Sample examples of the dataset are
shown in supplementary Figure [

Datasets ‘Train Imgs‘Test Imgs‘ Img Size ‘No. of Annotated Nuclei

KUMAR [13] 16 14 1000x1000 21623
CPM17 [22] 31 31 500x500 7570
TNBC [17] 34 16 512x512 4022

2.2 Implementation Details

A U-Net [20] model is used with Resnet50 [§] backbone for semantic segmen-
tation application(gland & cell both). The decoder is always the same for all
models. Models are trained using PyTorch and a data split of 80-20 for training
and validation. The best model possessing a minimum loss on validation data is
further evaluated on the test dataset. Testing data is only used for inference.

During training the patch size is 256x256, sampled randomly in the whole
image. At inference, predictions are averaged over a window size of 128 pixels.
The learning rate is fixed to 0.0001 and the number of epochs for all experi-
ments is set to 4000 for gland segmentation and 2000 for cell segmentation. The
models are trained five times and average metrics are reported, this ensures that
variations due to stochasticity caused by the dataset loader are factored out.
Data augmentation includes horizontal and vertical flips, random rotation, and
translation. All models are trained on NVIDIA V100 GPUs.

Evaluation Metrics: Dice and Jaccard scores (also known as the intersec-
tion over union) serve as metrics for segmentation tasks [21120].
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3 Results

Gland Segmentation Results: The line plots (variation marked as shading) of
performance measures for different initialization are shown in Figure AEL We
trained models with different backbone initializations on an increasing amount of
data. The following observations emerged from these experiments:- (a) Increasing
the quantity of data improves performance for all initializations and decreases
variation. (b) At all levels of target domain training data, models with pretrained
weight initializations outperform those with random initializations, but the per-
formance gap between random initialization and pretraining decreases as the
quantity of data increases. (c¢) For small datasets, domain-specific pretraining
has a significant performance advantage over other initializations. However, as
the size of the dataset grows, the effect of domain-specific pretraining diminishes.
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Fig. 2. Gland Segmentation Results for Different Initializations on GlaS|21].
(A) Dice and Jaccard Score for different percentage of training data used. We can
clearly observe that increasing data increases model performance, but with more data
domain specific pretraining doesn’t have a significant effect on performance. (B) Aver-
age dice score variations with different amounts of training time, i.e., number of epochs.
We clearly see a difference in performance for different initialization for low dataset
size and lesser epochs. Results on CRAG dataset are shown in Supplementary Figure
(6]

Variation in performance due to different amounts of training epochs for all
datasets is shown in Figure B. For very small datasets(10% and 30% graph),
domain-specific pretraining outperforms all other initializations at all epochs.
However, for larger datasets(100% data), ImageNet supervised weights also out-
perform at lower epochs as well. This show that domain-specific pretraining is

4 All images are best viewed on a digital device following magnification.



6 T. Kataria et al.

dataset diversity dependent and not computational power. If a dataset is not
diverse or small in size, then domain-specific pretraining is beneficial, but other
initialization can be better for higher diversity and higher epochs. Qualitative
results are shown in supplementary Figure [8] domain-specific fine-tuned mod-
els have more accurate gland outlines and fewer false positive pixels than other
models.

Cell Segmentation Results : The performance of various initializations
is depicted in Figure [3] Even though some of the observations are similar to
those of previous experiments, novel observations emerge from cell segmenta-
tion results:- (a) Model performances with KUMAR [I3] data are an excep-
tion where random initialization is outperforming or competitive with other ini-
tializations. (b) Domain-specific pretraining is performing similar to or worse
than ImageNet initialization for most cases. Altogether our results demonstrate
that domain-specific pretraining does not improve the performance of the U-
Net/ResNet model for cell segmentation tasks. Qualitative results are shown in
supplementary Figure [0}
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Fig. 3. Cell Segmentation Results. Different initialization has similar patterns,
i.e., with increasing data variation in performance decreases and mean performance
increases. But for cell segmentation domain specific pretraining doesn’t seem to be
better than image-net pretrained weights for different data sizes.

UMAP Results: We sampled 300 random patches from the test sets of
GlaS and CRAG to generate projections for encoders and decoders shown in
Figure [l Feature values were extracted from the first encoder layer in U-Net,
the deepest encoder layer, and the last decoder layer.

In the network’s first layer, the projections of features from various initial-
izations form clouds that overlap. We interpret this observation to conclude that
the initial layers of deep neural networks capture low-level statistics and that all
initializations capture comparable attributes. As encoding depth increases, the
representations become more distinct and the overlap decreases, indicating that
networks pretrained in different ways may be learning different representations
of the same data. This is counterintuitive, as we would expect that each of the
pretrained models generates similar high-level representations when performing
identical tasks and using the same dataset. However, the distribution of features
in the UMAP projection of latent layer representations appears to have topo-
logical similarity across initializations which indicates that features for different
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initialization may be related via a rigid transformation in latent space. A sim-
ilar conclusion is valid for the decoder UMAP. Together, these results suggest
that distinct initializations, despite being clustered at different locations in the
UMAP, might learn similar relational feature characteristics between samples in
the dataset.
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Fig. 4. UMAP for different Gland Segmentation models for GlaS and CRAG
datasets. We generate UMAP with nearest neighbor=25, distance=0.1, and met-
ric=cosine. Comparing the latent representation of the initial encoder to that of the
deepest encoder, there is substantially less overlap between initializations, but the dis-
tribution of points is topologically similar.

3.1 Out Of Domain Testing Results

For OOD testing we use the pretrained models for out-of-box (without finetun-
ing) testing on other datasets. This analysis reveals the bias to the domain that
learned with various initializations.

Gland Segmentation Results The results for OOD testing for the gland
segmentation task are shown in[5] At a low amount of data, the domain-specific,
finetuned models perform best and using random initializations results in the
greatest relative performance drop compared to all other initializations.

Cell Segmentation Results: The results of OOD testing for different
datasets are shown in supplementary Figure[7] and lead to the following observa-
tions: (a) pretrained models are better than models with random initialization at
the same task on unseen datasets from KUMAR [I3] and CPM17 [22]). In con-
trast, models with random initialization and trained on TNBC [I7] outperform or



8 T. Kataria et al.

10% Data 30% Data 100% Data

0.90 i —— . e

0.85 # é i % % —

-%. e .%---j

== Random

Training Data Sets
Glas

. imageNetvl
£ ImageNetv2
0.60 mm ssUimage

mmm SsLPathology

CRAG

0.70 == Random
= imageNetvl
= ImageNetv2
0.60 = SsUimage
= sSLPathology

CRAG Glas CRAG Glas CRAG Glas

Fig. 5. Average dice score for OOD testing. Y-axis shows the dataset used for
training of the model. X-axis is the performance on the corresponding test sets without
any fine-tuning. A model trained on CRAG datasets transfers effectively to GlaS, but
not vice versa. Domain-specific pretrained models are generally better at out-of-domain
performance.

perform the same as the pretrained initialized model. (b) A drop in performance
exists on TNBC data for models trained on KUMAR [I3] and CPM17 [22] but
not for models trained on TNBC [17] or KUMAR [I3] and applied to CPM17.
(¢) Domain-specific pretrained models when tested on OODdata demonstrate a
lesser drop in performance compared to other pretraining approaches.

4 Conclusion and Future Work

In this study, we demonstrate that a domain-specific pretraining backbone can
be beneficial for gland and cell segmentation when data are limited or of low
diversity data for the task at hand. However, the need for domain-specific pre-
training decreased for gland and cell segmentation as the amount of training
data increases. The results of cell segmentation indicate that domain-specific
pretraining may not be advantageous for all types of tasks. The results of UMAP
projections indicate that the initial layers of domain-specific and non-domain-
specific models learn similar features, but that the deeper encoders are dis-
tinct. Although the topology of latent feature representations is similar for the
different initialization, models may be learning similar high-level characteris-
tics within the latent feature spaces. Lastly, during out-of-distribution testing,
domain-specific pretraining suffers the same performance degradation as other
initializations, i.e. domain-specific pretrained models may not be effective at
learning site-independent features. Our final conclusion from this study is that
domain-specific pretraining may be beneficial for specific tasks and datasets, but
benefits are not universal. Domain-specific pretraining suffers from the same is-
sues as pretraining on image-net. Lastly, we would like to make the reader aware
that this study did not cover medical vision tasks such as multi-class semantic
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segmentation and cell detection. We also did not utilize models pretrained using
vision-language models. Both these comparisons are left for future work.
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Fig.6. Gland Segmentation Results for Different Initializations on
CRAG](T7]. (A) Dice and Jaccard Score for different percentage of training data used.
(B) Average dice score variations with different amounts of training time, i.e., number
of epochs.
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Fig. 8. Qualitative results for Gland Segmentation Experiments. We can ob-
serve that pretrained models have better qualitative results than Random Initializa-
tions. Domain Specific pretraining models perform better for gland segmentation tasks.
These models are better at recognizing the outlines of the gland compared to other
initializations.
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Fig. 9. Qualitative results for Cell Segmentation Experiments. We can observe
that pretrained models have better qualitative results than Random Initializations. But
all of the pretrained models make similar mistakes in the outlines of cells, touching cells
and distinguishing between cell and background.
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