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Abstract. Semantic segmentation is a critical step in automated image
interpretation and analysis where pixels are classified into one or more
predefined semantically meaningful classes. Deep learning approaches for
semantic segmentation rely on harnessing the power of annotated images
to learn features indicative of these semantic classes. Nonetheless, they
often fail to generalize when there is a significant domain (i.e., distribu-
tional) shift between the training (i.e., source) data and the dataset(s)
encountered when deployed (i.e., target), necessitating manual annota-
tions for the target data to achieve acceptable performance. This is espe-
cially important in medical imaging because different image modalities
have significant intra- and inter-site variations due to protocol and ven-
dor variability. Current techniques are sensitive to hyperparameter tun-
ing and target dataset size. This paper presents an unsupervised domain
adaptation approach for semantic segmentation that alleviates the need
for annotating target data. Using kernel density estimation, we match
the target data distribution to the source data in the feature space. We
demonstrate that our results are comparable or superior on multiple-site
prostate MRI and histopathology images, which mitigates the need for
annotating target data.

Keywords: Domain Adaptation · Semantic Segmentation · Density and
Matching.

1 Introduction

Semantic segmentation is one of the fundamental tasks in computer vision. Hu-
man visual systems classify and delineate every object present in their envi-
ronment. This is especially important in medical imaging because of the highly
specific domain knowledge required to outline the relevant objects (e.g., tumor,
disease tissue, cancer). Accurately identifying the exact boundaries of these ob-
jects (or the size of the tumor) is necessary for reliable and interpretable automa-
tion of disease diagnosis, analysis, and treatment planning [1]. Wrong predictions
can have disastrous consequences for the patient’s health under test.

Deep learning models, when trained with a representative and sufficient
amount of training data, do give consistently better predictions. However, be-
cause these models are pattern-seeking machines, they can focus on learning spu-
rious signals [2] rather than features of actual disease pathology. Deep learning
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models learn low-level texture features more than high-level shape/morphological
features [10]. This impacts the performance of the learned model (trained on
source dataset) when new data with different low-level data statistics (target
dataset) is introduced during inference. This is called a distributional (or do-
main) shift in the input dataset. Such a shift results in a loss of precision and
trust in the model’s predictions based on the new data. Even minor distribu-
tional shifts where input images are sketches of the same objects have shown
significant drops in performance [3]. This domain shift is problematic in medical
imaging [14] because not every site has access to large amounts of training data,
hence sites have to rely on models trained from other sites. If the model’s predic-
tion cannot be relied upon for a new site, then the applicability of the method
is significantly limited.

Domain adaptation [4,5] has been proposed to curb the degradation in the
performance of the model. Both supervised and unsupervised domain adaptation
(UDA) techniques have been proposed [6,7], depending on whether the model
has access to target domain annotations. Because pixel-wise annotation for seg-
mentation tasks, especially in medical images, can be extremely expensive due
to the need for specialized knowledge. UDA techniques tend to be more helpful.

Unsupervised domain adaptation approaches for semantic segmentation can
be broadly categorized into three classes. First is adversarial domain adaptation
[4,20], which aims to learn domain-independent backbone features by maximiz-
ing the domain classification loss using source and target features and passing
a negative gradient to the feature extraction backbone via a gradient reverse
layer. Second is Fourier domain adaptation [18,21], which uses Fourier domain
transformations for domain adaptation. The assumption being that phase in-
formation between domains does not change, so adaptation of frequency am-
plitude can help alleviate the degradation. Third is density matching, where
the source and target densities of either input space [8], output space [16], or
feature space [17] are matched. [8] used conditional GANs (generative adversar-
ial networks) to transform images of source dataset to look like target dataset.
Whereas [16] and [17] only use discriminator for density matching between source
and target features. Density matching with other penalties, such as Maximum
Mean Discrepancy (MMD) [15,19] or Wasserstein GAN [19], has also been tried.
Adverserial-based approaches are highly sensitive to hyperparameter selection
[4,20]. Fourier domain adaptation frameworks are sensitive to frequency space
selection and mixing ratio. But a similar phase assumption might not be true
for all domain adaptation applications (e.g., MRI vs CT). Density-matching ap-
proaches are highly sensitive to hyperparameters [15,19], and are difficult to train
because of minimax games. They also require large amounts of data to converge.

Here, we propose a novel technique for unsupervised domain adaptation for
semantic segmentation, where we leverage nonparameteric density matching in
the feature space induced by the segmentation networks. Kernel density estima-
tion (KDE) [11,22] has been shown to perform better for generative modeling
for smaller datasets [9]. Hence, KDE offers a more stable solution for matching
source and target feature densities, compared to adversarial learning, in low-



UDA for Semantic Segmentation via Feature-space Density Matching 3

sample size scenarios, which is typical in medical imaging. The nonparameteric
nature of KDE provides a rich training signal for domain adaptation compared
with MMD [15] where only moments are used to match density. Furthermore,
KDE allows for batch-wise density matching during training, where the full
density in the feature space is being matched through the batch samples. The
kernel bandwidth is estimated by randomly drawing training samples and map-
ping them to the feature space. The estimated densities of the source and target
datasets are matched using Jenson Shannon divergence (JSD). This regulariza-
tion does not let the model wander very far from the features of the target dataset
making the model learn more generic features which are domain independent.

We compare our results with density matching using MMD [15], but instead
of using constant bandwidth as done in other proposed techniques, we estimate
the bandwidth of MMD using the same proposed estimation for KDE for a fair
comparison. We also compare our results with adversarial training [4,20] and
density matching using discriminator in feature space [17] as well as output
space [16]. Our method is closely related to feature space [17] and output space
[16] density matching but instead of using a discriminator for density matching,
we use JSD for divergence and KDE for the underlying probability distribution.
We follow the methods listed in the respective papers to implement our own
versions for comparison. Our results show that density matching using MMD
and JSD performs statistically similarly but better than the other three on both
the datasets. The contributions of this paper are as follows:-

– Proposed a novel approach for unsupervised domain adaptation for semantic
segmentation that is based on rich (non-parameteric) representation of the
underlying feature distribution.

– Demonstrate the efficacy of the proposed approach on different datasets
(histopathology[12,13] and multi-site MRI[14]), supported by several abla-
tion experiments to assess the impact of feature space choice, frequency of
bandwidth estimation, and target data sample size.

2 Methodology

2.1 Problem Setup

Most deep learning architectures for semantic segmentation follow an encoder-
decoder configuration as depicted in Figure 1. Let fθ(.) be the encoder and gφ(.)
be the decoder. For an input image I, the model does the following operations,
x = fθ(I) and y = gφ(x), where x is the encoded features in the learned feature
space. For segmentation networks, we can have multiple deep feature encoding
and decoding spaces, but for the sake of simplicity, we assume the deepest feature
space as x (one with the lowest spatial resolution and highest channel resolution).

Deep learning models fail to generalize when there is a domain shift in the
input space. We hypothesize that this domain shift causes a density shift in the
feature space of the learned model, causing it to fail for unseen data. We propose
that if the model is regularized by a density-matching loss between feature space
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Fig. 1. Block Diagram. The model is assumed to be a standard encoder-decoder
configuration with skip connections. It is trained using annotations only from the source
dataset. Deep Features are extracted from both the source and the target, KDE is
estimated, and JSD is subsequently utilized for matching.

distributions of the two domains, the feature space will not suffer from the same
domain shift on seeing the new domain. There are two main aspects to address
the feature space density matching (1) the representation of density and (2) the
density matching loss.

Representation of density. Density in feature space can be represented by
moments (mean, variance) where factorized Gaussian is assumed as the default
distribution of the feature space. However, this implies a limiting assumption of
a unimodal, distentangled distribution in the feature space. We can also assume
parametric densities following certain characteristics of multivariate Gaussian or
mixture of Gaussians. But both of these make strong assumptions on distribution
of sample points. Non-parametric methods such as KDE, on the other hand,
do not make such strong assumptions and are more suited to be learned from
data. Hence, these methods have better chance of providing a rich and flexible
description of the feature space density. These methods can also be scaled with
large number of data points.

Density matching loss. KL divergence is asymmetric property so may not be
suitable for domain adaptation application. JSD, on the other hand, is symmet-
ric, which helps the model to learn the features on source dataset but also stay
close to the target feature space. This loss acts as a regularizer to the network
by not letting the model learn source dataset biases.

2.2 Unsupervised Domain Adaptation via KDE

Block diagram of our proposed methodology is shown in Figure 1. Segmentation
Model is trained using annotations from only the source dataset. In our setting,
no annotations are used from the target dataset. But this methodology can be
used for semi-supervised domain adaptation as well, where we can have access to
some annotated samples from the target dataset. Density matching loss acts as
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a regularizer, making sure that the feature distribution of the source and target
datasets do not diverge from each other. The network is thus trained with loss
given by

L = L(seg,source) + λJSD[ps, pt] (1)

where L(seg,source) is the supervised segmentation loss on the source dataset, and
λ is a hyper parameter that defines the contribution of the density matching loss,
and ps and pt are density estimates for source and target dataset, respectively.

Kernal density estimation. Let x1,x2,x3, ...,xN be the number of sampled
points from the encoded feature space. The Kernel Density Estimate pest(x) can
be written as :

pest(x) =
1

N

N∑
n=1

K

(
‖x− xn‖2

σ

)
(2)

where K is assumed to be a Gaussian kernel in our experiments. The bandwidth
parameter (σ) is estimated to be the mean of the distance between the nearest
neighbors in the feature space.

σ =
1

N

N∑
n=1

‖xn − γ(xn)‖22 (3)

where γ(xn) returns the nearest neighbour of xn. Using Eq. 2, we estimate the
density of the source (ps) and target (pt) datasets using the same kernel but
different bandwidth parameters obtained from their respective feature spaces.
JSD density matching loss is calculated as :

JSD[ps, pt] =
1

2

{
KL[ps,M ] +KL[pt,M ]

}
,M =

ps + pt
2

(4)

where KL is the KL-divergence between the two distributions. We tested two
scenarios for density matching loss (1) source and target densities are matched
with each other and (2) source and target densities are matched to a standard
normal. Matching source and target densities performed better than matching
both to a standard normal distribution.

3 Results and Discussion

3.1 Experimental Setup

Datasets. We used datasets for gland segmentation in histopathology images
and prostate segmentation in a multi-site MRI dataset. Two datasets CRAG [12]
and GlaS [13] are used for gland segmentation in the colon histology dataset.
CRAG has higher number of samples compared with GlaS, so we are able to test
domain adaptation when the source has greater variability than the target and
vice versa. A multi-site MRI dataset [14] from six different sites, with different
field strengths (3 and 1.5 Tesla) and different vendors, was used with different



6 T. Kataria et al.

source and target configurations. This enabled us to test multi-source, multi-
target, as well as held out target settings.

Training setup and hyperparameters. Networks are trained for 5 differ-
ent train/validation data splits and respective performance(using dice scores
[13]) mean and standard deviations are reported when trained from scratch with
gaussian initialization. For density estimation, the number of samples for KDE
is set to 20. KDE points are sampled every 5 epochs for bandwidth estimation.
λ is set to 0.01 for the histopathology dataset and 0.001 for the MRI dataset
based on performance on the validation set.

3.2 Results

We report the average result of 5 different splits of the dataset, eliminating the
stochasticity that may be caused due to training and validation data used for
source training and density estimations. Hyperparameters are optimized using
validation metrics and the test set is only used at the end for evaluation.

Domain adaptation results. In Table 1, "No Adapt" refers to the generic case
where a model is trained on the source dataset and tested on the target dataset
without any finetuning. We treat this as a baseline because we are targeting
UDA, where we cannot access target dataset annotations. For other baselines,
here "Adver" refers to [4,20] and "DiscF" refers to discriminator in feature space
[17] and "DiscO" refers to discriminator in output space [16].

We can observe from Table 1 that there is a significant drop in performance
without any domain adaptation. Using adversarial domain adaptation and dis-
criminator in output space, we do not see any benefit for the source or target
datasets, but we observe an improvement in the target accuracy using discrim-
inator in the feature space. Feature space density matching using the proposed
bandwidth estimation and density matching loss outperforms other techniques.
The performance gain is higher when the source dataset is CRAG compared
to GlaS. This is possibly due to the difference in the number of samples. The
CRAG dataset has more samples, which can result in the model getting more
biased toward the source dataset. But the proposed method successfully helps
overcome that bias resulting in a higher gain. Qualitative results are shown in
Figure 2.

For the multi-site MRI data, prostate segmentation data is available for
6 different sites. Hence, we modified the testing methodology to have out-of-
distribution (held-out) domain that is not shown to any network during training
or UDA. This setup helps in gauging whether the proposed UDA methodol-
ogy can improve the model’s prediction for an unseen dataset. We club these 6
datasets in multiple training, domain adaptation, and held-out test sets. Tables
2,3(4,5 in supplementary) show results for different settings mentioned above.
From Table 2, we can observe that the proposed technique outperforms or is
competitive in all target datasets and performs better for the held-out dataset.
Table 3 shows results of multi-source, multi-target, and held-out dataset set-
tings. The proposed technique outperforms all others in 4 out of 6 datasets.
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Fig. 2. Qualitative results for Gland Segmentation Results on Target
dataset(CRAG) when model is trained using GlaS dataset as source.

Table 1. Mean and standard deviations of Dice Scores when GlaS the is source dataset
and CRAG the is target dataset and vice-versa.

GlaS Source CRAG Source
Source Target Source Target

No Adapt 0.874 ± 0.013 0.765 ± 0.043 0.863 ± 0.003 0.834 ± 0.043
Adver [20] 0.767 ±0.028 0.691 ±0.027 0.634 ±0.018 0.58 ±0.04
DiscF [17] 0.888 ± 0.002 0.805 ± 0.012 0.867 ±0.004 0.845 ± 0.038
DiscO [16] 0.88 ± 0.002 0.751 ±0.01 0.865 ±0.003 0.816 ±0.065
MMD 0.89 ± 0.008 0.817 ±0.025 0.872 ±0.003 0.876 ±0.003
JSD 0.895 ±0.003 0.81 ±0.012 0.87 ±0.004 0.879 ±0.005

Similar results are observed for vendor-grouped results reported in Table 4 and
5 in supplementary. Using more sites for training models results in better per-
formance of target and held-out datasets. The proposed technique is not able
to improve results on the "BIDMC" dataset when used as a target or held-out
dataset. BIDMC is the only GE data cohort in the multi-site MRI dataset. So
this approach works well for the multi-site same vendor, but may not work well
for multi-vendor datasets.

Target dataset size ablation. Here, we assess the impact of changing the
number of target samples for feature density matching. We trained with three
different ratios of target datasets 3%, 30%, and 100% of the target data. The
results are shown in Supplementary Table 6. We can observe that there is no
significant change in domain adaptation results. This shows that once the model
has converged, the distance between densities for each dataset may be constant
and unaffected by the sample size used for density estimation and matching.
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Table 2. Mean(standard deviations) of Dice Scores when source and target datasets
are chosen from 6 sites MRI cohort.

Source Target Held Out
RUNMC BMC I2CVB UCL BIDMC HK

No Adapt 0.87(0.022) 0.79(0.01) 0.63(0.046) 0.74(0.026) 0.53(0.007) 0.649(0.035)
Adver [20] 0.65(0.034) 0.55(0.02) 0.55(0.032) 0.50(0.007) 0.47(0.004) 0.491(0.002)
DiscF [17] 0.89(0.009) 0.82(0.01)0.64(0.023)0.80(0.011) 0.53(0.014) 0.63(0.036)
DiscO [16] 0.87(0.013) 0.78(0.02) 0.63(0.023) 0.75(0.034) 0.53(0.025) 0.64(0.048)
MMD 0.90(0.007) 0.80(0.01) 0.65(0.01) 0.78(0.03) 0.53(0.02) 0.66(0.037)
JSD 0.90(0.007) 0.81(0.01) 0.67(0.01) 0.78(0.02) 0.54(0.012)0.66(0.036)

Table 3. Mean(standard deviations) of Dice Scores for multi-source and multi-target
datasets are choosen from 6 site MRI cohort.

Source Target Held Out
RUNMC I2CVB BMC BIDMC UCL HK

No Adapt 0.85(0.022) 0.89(0.08) 0.79(0.032) 0.50(0.02) 0.66(0.08) 0.51(0.037)
Adver[20] 0.628(0.02) 0.706(0.021) 0.54(0.013) 0.48(0.001) 0.50(0.008) 0.494(0.019)
DiscF[17] 0.89(0.009) 0.90(0.005) 0.81(0.013) 0.51(0.008) 0.70(0.049) 0.51(0.008)
DiscO [16] 0.86(0.027) 0.89(0.01) 0.80(0.016) 0.50(0.006) 0.70(0.03) 0.53(0.02)
MMD 0.89(0.007)0.91(0.004)0.81(0.025)0.50(0.008)0.72(0.039) 0.52(0.019)
JSD 0.90(0.007)0.91(0.004)0.83(0.019) 0.50(0.01) 0.72(0.038) 0.52(0.017)

Feature space ablation. We also tried different feature spaces for the segmen-
tation model. We observed the difference between the test metrics for source and
target datasets are not statistically different. Results are shown in Supplemen-
tary Table 7.

Frequency of bandwidth estimation. Changing the frequency of bandwidth
estimation from 1, 5, 25 , and 125 epochs does not show a significant change in
test set performance metrics. Results are shown in Table 8 in supplementary.

4 Conclusion and Future Work

We proposed a technique for unsupervised domain adaptation based on density
matching and non-parametric density estimate. We showed the efficacy of the
proposed approach on 2 different modalities datasets, histopathology and multi-
site MRI. The proposed technique not only improves results on target datasets
but also showed consistent improvement in source and held-out results. Eval-
uating whether performing density matching in more than one feature space
can help a model acquire a more accurate representation is a topic for future
research. Although the proposed method is not sensitive to hyperparameters,
it does require that number of KDE points and kernel bandwidth to be cor-
rectly chosen for the dataset. One future direction would be find these hyper
parameters automatically dependent on feature space diversity.
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5 Supplementary

Table 4. Multi-site source and target: The means (standard deviations) of Dice
Scores. For all experiments presented here and in the main paper, the learning rate,
batch size, and a number of epochs are set to 1e-4, 10, and 1000, respectively. All
models were trained using the PyTorch framework and the Adam optimizer with a
1e-4 weight decay on Nvidia A30(24 GB) GPUs. The optimal hyperparameters were
selected based on the performance of the validation set. 20 % of the training set was
fixed as the validation set. Testing is performed after hyperparameter optimization.

Source Target Held Out
RUNMC I2CVB BIDMC UCL BMC HK

No Adapt 0.86(0.021) 0.87(0.024) 0.70(0.048) 0.79(0.042) 0.83(0.007) 0.70(0.02)
DiscF [17] 0.9(0.004) 0.91(0.006) 0.71(0.021) 0.82(0.01) 0.86(0.007) 0.69(0.029)
DiscO[16] 0.87(0.027) 0.90(0.013) 0.71(0.015) 0.80(0.009) 0.84(0.007) 0.66(0.019)
MMD 0.90(0.009)0.91(0.008)0.75(0.012)0.83(0.021)0.87(0.007)0.72(0.019)
JSD 0.90(0.007)0.91(0.005)0.74(0.002)0.84(0.001)0.86(0.007)0.72(0.018)

Table 5. Multi-site Source Datasets for Single Vendor : Mean(standard devi-
ations) of Dice Scores for multi-source same vendor and multi-target(same or other
vendors) datasets are choosen from 6 sites MRI cohort. Overall there is a good perfor-
mance gain, more than 5% relative increase in performance, except when tested on the
BIDMC dataset (GE vendor).

Source Target Held Out
HK UCL RUNMC BMC BIDMC I2CVB

No Adapt 0.87(0.028) 0.84(0.036) 0.78(0.03) 0.77(0.007) 0.56(0.007) 0.64(0.034)
Adver[20] 0.57(0.065) 0.49(0.018) 0.51(0.028) 0.53(0.021) 0.48(0.007) 0.52(0.029)
DiscF [17] 0.87(0.007) 0.86(0.019) 0.80(0.007) 0.76(0.008) 0.54(0.007) 0.65(0.011)
DiscO[16] 0.81(0.05) 0.77(0.044) 0.74(0.038) 0.71(0.025) 0.53(0.007) 0.63(0.033)
MMD 0.89(0.019)0.88(0.021)0.83(0.014)0.81(0.009)0.58(0.024)0.66(0.017)
JSD 0.88(0.006)0.89(0.021)0.83(0.013)0.81(0.021)0.57(0.032)0.67(0.027)
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Fig. 3. Qualitative results for MRI cohort Results on BMC target corresponding
to table 5

.

Table 6. Target Data size Ablation Mean Dice Score and standard deviations for
test metrics with different percentages of the target dataset.

GlaS Source CRAG Source
Source Target Source Target

No Adapt 0.874 ± 0.013 0.765 ± 0.043 0.863 ± 0.003 0.834 ± 0.043
JSD (100%) 0.895 ±0.003 0.81 ±0.012 0.87 ±0.004 0.879 ±0.004
JSD (30%) 0.893 ±0.005 0.80 ±0.015 0.872 ±0.004 0.866 ±0.001
JSD (3%) 0.893 ±0.004 0.81 ±0.013 0.875 ±0.004 0.8725 ±0.001

Table 7. Feature Space Ablation Mean and standard deviation of performance for
density matching for different encoder and decoder feature spaces. We used a U-Net
with skip connections with up to 5 decompositions for our experiments. The weights
were initialized using Pytorch default initialization. Encoders are assumed to be feature
spaces just before the skip connections in the encoding pipeline. Decoder feature spaces
are just before skip connections in the decoding pipeline.

CRAG Source
Feature Space Source Target
Deepest 0.87 ±0.003 0.876 ±0.012
ENC1 0.871 ±0.005 0.877 ±0.015
ENC2 0.874 ±0.001 0.876 ±0.009
ENC3 0.872 ±0.003 0.874 ±0.009
ENC4 0.871 ±0.001 0.877 ±0.004
DEC4 0.869 ±0.014 0.874 ±0.009
DEC3 0.870 ±0.007 0.876 ±0.011
DEC2 0.875 ±0.003 0.875 ±0.013
DEC1 0.866 ±0.013 0.868 ±0.016

Table 8. Bandwidth Estimation Frequency Ablation Mean Dice Score and stan-
dard deviations for test metrics with different frequency/epochs for bandwidth estima-
tion.

GlaS Source CRAG Source
Source Target Source Target

5 epochs 0.895 ±0.003 0.81 ±0.012 0.87 ±0.004 0.879 ±0.004
1 epoch 0.894 ±0.007 0.816 ±0.017 0.874 ±0.001 0.877 ±0.003
25 epoch 0.894 ±0.004 0.805 ±0.023 0.874 ±0.004 0.875 ±0.004
125 0.894 ± 0.002 0.821 ± 0.013 0.866 ± 0.003 0.863 ± 0.043
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