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Summary
Many kinds of neuroscience data are being acquired regarding the dynamic behaviour and phenotypic
diversity of nerve cells. But as the size, complexity and numbers of 3D neuroanatomical datasets
grow ever larger, the need for automated detection and analysis of individual neurons takes on greater
importance. We describe here a method that detects and identifies neurons within confocal image
stacks acquired from the zebrafish brainstem. The first step is to create a template that incorporates
the location of all known neurons within a population – in this case the population of reticulospinal
cells. Once created, the template is used in conjunction with a sequence of algorithms to determine
the 3D location and identity of all fluorescent neurons in each confocal dataset. After an image
registration step, neurons are segmented within the confocal image stack and subsequently localized
to specific locations within the brainstem template – in many instances identifying neurons as
specific, individual reticulospinal cells. This image-processing sequence is fully automated except
for the initial selection of three registration points on a maximum projection image. In analysing
confocal image stacks that ranged considerably in image quality, we found that this method correctly
identified on average ~80% of the neurons (if we assume that manual detection by experts constitutes
‘ground truth’). Because this identification can be generated approximately 100 times faster than
manual identification, it offers a considerable time savings for the investigation of zebrafish
reticulospinal neurons. In addition to its cell identification function, this protocol might also be
integrated with stereological techniques to enhance quantification of neurons in larger databases.
Our focus has been on zebrafish brainstem systems, but the methods described should be applicable
to diverse neural architectures including retina, hippocampus and cerebral cortex.
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Introduction
Vertebrate central nervous systems contain hundreds or thousands of distinct nerve cell types
with specialized morphologies and functions. Because neural systems are disrupted in diverse
situations including neurodegenerative diseases, stroke and spinal cord injury, it is important
to understand the organization of these systems. But neuroscience researchers face major
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technical obstacles in terms of identifying individual nerve cells. For example, one cannot yet
say with certainty how many types of nerve cells there are in the central nervous system (CNS)
of different mammals (MacNeil & Masland, 1998; Stevens, 1998; Masland, 2001; Maccaferri
& Lacaille, 2003; Nelson et al., 2006a,b) or even in lower vertebrate nervous systems (Davis
& McClellan, 1994; Buchanan et al., 2001; Deliagina et al., 2002; Baez et al., 2003; Benito-
Gutierrez, 2006). This situation hinders our understanding of how neuronal populations process
sensory information, make decisions and execute motor programs. More robust and efficient
identification schemes would enhance our knowledge base and would facilitate efforts to repair
and reconstruct damaged neural systems.

Diverse kinds of neuron-specific information are used and needed by researchers. For example,
morphological information and synaptic connectivity provide clues concerning the integrative
capacity of nerve cells and their specific role within a given neural network. The activity
patterns of neurons, including electrical and chemical activities, as well as slower changing
patterns of gene expression, provide further information about neural operations. There are
voluminous data of these sorts (see, e.g. Herdegen & Leah, 1998; Li, 2001; Gong et al.,
2003; Hochheiser & Yanowitz, 2007), but it is often difficult to relate data obtained in one
experiment (e.g. in an electrophysiology experiment) to data obtained in other experiments
(e.g. morphological or gene expression experiments) (Yen & Jones, 1983; Okazaki et al.,
2001; De Filipe, 2004; Gal et al., 2006; Jinno et al., 2007; Marmigere & Ernfors, 2007; Schulz
et al., 2007). This is because of the vast numbers of neurons in the CNS (numbering in the
billions in some mammals) and the great complexity of the neural architectures containing
these cells. It becomes an overwhelming problem to manually examine large neural datasets,
extract relevant information and relate data obtained in different kinds of experiments – or even
in replicates of the same experiment.

One step towards solving this problem has been the creation of neuronal databases. A cell-
centred database has been created that organizes electron- and light-microscopic information
and encourages annotation of both subcellular and multicellular structures, including, e.g.
dendritic-branching patterns and the organization of the node of Ranvier (Martone et al.,
2003, 2008). Another database called the brain architecture knowledge management system
provides an easy means of making neuroanatomical queries within a framework that includes
both physical descriptions and computational models (Bota et al., 2005; Bota & Swanson,
2007). The CoCoDat database (collation of cortical data) focuses on morphological data,
connectivity and physiological data pertaining to mammalian neocortical neurons (Dyhrfjeld-
Johnsen et al., 2005). The impact of neuronal heterogeneity on the information carrying
capacity of such systems has recently been investigated (Shamir & Sompolinsky, 2006). With
regard to unique, individually identifiable neurons, Calin-Jageman et al. (2007) have attempted
to codify diverse experimental data from invertebrate animals. Studies of individually
identified neurons have led to major insights into the operations of neural circuits in marine
snails, crustaceans, leeches and insects (see, e.g. Kupfermann & Kandel, 1969; Friesen et al.,
1978; Cazalets et al., 1990; Katz & Harris-Warrick, 1990; Boyan et al., 1995; Urban &
Technau, 1997; Schulz et al., 2007). Systematic analysis becomes more essential in the case
of vertebrate animals, whose neurons can number in the billions, but current techniques do not
allow for the automated identification of vertebrate neurons.

Individually identified vertebrate neurons have traditionally been recognized by manually
identifying them in light micrographs or inside living animals. This has been done most
extensively in the brainstem and spinal cord of lamprey (Rovainen, 1967; Mackler & Selzer,
1987; Swain et al., 1995; Buchanan, 2001) and zebrafish (Kimmel et al., 1982; Bernhardt et
al., 1990; Fetcho & O’Malley, 1995; Fetcho et al., 1998; Gahtan et al., 2002; Lewis & Eisen,
2003). Most prominent among the vertebrate identified neurons are the Mauthner cells, of
which there are just two in the entire brain (Furukawa & Furshpan, 1963; Eaton & Farley,
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1975; Korn & Faber, 1975). The Mauthner cell and its segmental homologues have been
examined by a wide variety of methods (Zottoli, 1977; Metcalfe et al., 1986; O’Malley et al.,
1996; Liu & Fetcho, 1999; Eaton et al., 2001; Gahtan & O’Malley, 2003; Nakayama & Oda,
2004). The foregoing examples are part of a larger body of work on identified vertebrate
neurons (see, e.g. Bernhardt et al., 1990; Friedrich & Korsching, 1997; Drapeau et al., 1999;
Hale et al., 2001; Gahtan & O’Malley, 2001; Deliagina et al., 2002; Gahtan et al., 2005; Niell
& Smith, 2005; Severi et al., 2007; Orger et al., 2008).

We focus here on an array of descending neurons in the 7-day-old larval zebrafish. The spinal-
projecting neurons of these larvae number approximately 300 in total – 150 on each side of the
brainstem. Large-scale analysis of this neuronal population (referred to as the descending motor
control system) is hindered by the difficulty of recognizing specific individual neurons across
datasets. We address this issue in the context of labelled-lesion experiments (Gahtan &
O’Malley, 2001) where large numbers of descending neurons are axotomized and fluorescently
labelled. The sets of neurons labelled, however, are highly variable and their identities are
unknown in the absence of expert identification. Because maximum intensity projections
(MIPs) do not provide sufficient information for cell identification, one must, in most cases,
manually and repeatedly navigate through a number of confocal image stacks (or ‘z-stacks’)
to identify the neurons present in each fish. Performing this same procedure for many confocal
datasets is time consuming and mentally fatiguing, given the many dozens or even hundreds
of neurons that must be identified. Having a computer algorithm that could systematically carry
out such tasks by mimicking the manual identification procedure should increase both
experimental throughput and accuracy. Although we are focusing on the zebrafish brainstem
as a test-bed for this cell identification protocol, this approach is potentially adaptable to nerve
cell identification in a variety of neural systems.

Materials and methods
There are many approaches to segmentation and transformation of neural structures, especially
in the area of human brain mapping (Brown, 1992; van den Elsen et al., 1993; Davatzikos et
al., 1996; Joshi & Miller, 2000). Such approaches as elastic warping (Gee & Bajcsy, 1998;
Machado & Gee, 2003) and the use of linear elastic and viscous models (Christensen et al.,
1994) play an important role in the analysis of macroscopic neuroanatomical datasets. In some
cases, the segmentation and registration functions may be combined using a Bayesian approach
(Fischl et al., 2002), whereas artificial networks have been used to segment cell layers (Ruggeri
& Pajaro, 2002). A distinct family of ‘stereological’ techniques aims to quantify neuronal
densities via specialized sampling methods (Popken & Farel, 1997; Howard & Reed, 1998;
Geuna, 2000, 2005; Ma et al., 2003), but generally these techniques are not automated. For
our purposes, automation at the level of neural circuits and individual nerve cells is essential.
The dynamic behaviours of neurons can be quantified by selecting appropriate Bayesian
models (Al-Kofahi et al., 2006). It is also possible to trace neuronal processes in noisy confocal
datasets (Al-Kofahi et al., 2003a,b). Other automated approaches to analysing 3D structures
included the tracking of vasculature using a Hough transform (Barber et al., 2003).
Segmentation of objects based upon user-defined constraints is also an effective automation
tool for fluorescence datasets (Raman et al., 2007). The neuronal identification protocol
described below incorporates some of these ideas in generating a fast and versatile approach
to nerve cell identification within defined neural systems. The programs used, along with a
readme file, are freely available at http://www.ece.neu.edu/groups/biomed/kamali_software.

Confocal datasets
Automated procedures were developed for identifying neurons in confocal image stacks
acquired from the brainstem of larval zebrafish. Figure 1 shows a lateral view of a larva along
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with the relative location of labelled brainstem neurons from a vertical perspective. Larvae
were anaesthetized, rolled onto their back, embedded in agar and viewed through their dorsal
surface (the optimal viewing angle for reticulospinal neurons) using an inverted fluorescence
microscope (Westerfield, 1995;O’Malley & Fetcho, 2000). Confocal datasets were acquired
using a BioRad MRC600 confocal imaging system (Hercules, CA, USA) with a Zeiss inverted
microscope stand (Thornwood, NY, USA). In these experiments, variable subsets of the 300
known descending neurons were retrogradely labelled by injecting a fluorescent tracer into the
spinal cord (see, e.g. O’Malley et al., 1996;Fetcho et al., 1998). The tracer then travels
retrogradely up the spinal axons and into the brainstem where we see varied populations of
labelled neuronal cell bodies. This labelling approach identifies these as descending neurons,
i.e. neurons that project into spinal cord. Collectively, the entire set of descending neurons
constitutes the Descending Motor Control System (DMCS). In a variant ‘labelled-lesion’
experiment, brainstem neurons are axotomized in rostral spinal cord, which leads to their
fluorescent labelling in brainstem (Gahtan & O’Malley, 2001), while also producing an
assortment of behavioural deficits mimicking spinal cord injury (Day et al., 2005). The primary
goal of the algorithms described here is to automatically recognize the labelled-lesioned
neurons and to assign them to specific zones in the brainstem. This would allow higher-
throughput processing of these and perhaps other neuronal datasets (such as those in Niell &
Smith, 2005;Orger et al., 2008).

Although images are acquired at relatively high magnification (40×), longer-working distance
objectives are necessitated by the need to focus through the roughly 300 μm thickness of the
intact larval brain. For most datasets a 40×, 0.75 NA water-immersion objective was used.
Inherently variable aspects of both the labelling procedure and the experimental preparation
lead to inconsistent image quality which poses varying degrees of challenge for automated cell
segmentation and identification (Tanaka et al., 2001; Pratt & Adams, 2007). Also, due to the
limited field of view at this magnification, we usually acquire multiple z-stacks in order to span
the labelled regions of the brainstem. Higher-magnification z-stacks (using the BioRad MRC
600’s optical-zoom feature) are also acquired from regions of interest when there are many
closely packed cells that we need to resolve. The data used for developing and testing our
algorithms came from 11 different anaesthetized larval zebrafish and included 50 confocal
image stacks or ‘z-stacks’ in total. The algorithms described below seek to automate both the
detection of neurons present in our confocal datasets and the assignment of each neuron to a
small brainstem zone that is usually comprised of just one or two defined cell types. These
algorithms depend upon the one-time construction of a brainstem template, which we describe
in the next section.

Construction of a template encoding the larval DMCS
An example confocal, labelled-lesion dataset is shown in Fig. 2. The lesion is illustrated as a
montage of MIPs of three confocal z-stacks (Fig. 2A). There are approximately 200 neurons
labelled in this particular larva, but in other instances, far fewer neurons may be labelled. To
illustrate the 3D distribution of neurons in this dataset, we show in Fig. 2B four individual
slices from the middle image stack (which overlaps the rostral and caudal stacks, as indicated
by the dotted line). The prominent Mauthner cells (asterisks) are identified in several sections
as well as in the MIP montage. Other neurons can be located relative to the Mauthner neurons
and to the larval midline (Fig. 2A, dashed line) which separates right and left brainstem.
Additional morphological features are used for manual cell identification including cell size,
somal shape, axonal trajectory and dendritic form (Kimmel et al., 1982). The first step in
creating a template for automated identification was to register the location of our manually
identified neurons in relation to a set of landmarks in a working template. An example
identification scheme for one confocal image stack is shown in Fig. 3A where different
identified neurons are hand-coded by different colours. If we had larval zebrafish in which all
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300 of the known descending neurons were labelled, we could directly construct a template
accounting for every single neuron, but due to the stochastic nature of labelling, there are no
such confocal datasets. We instead used a collection of confocal datasets to construct a template
that included all known reticulospinal neurons and that would allow automatically detected
neurons to be assigned to a geometrically organized set of brainstem zones.

We repeated the manual identification and colour coding shown in Fig. 3A for all confocal
image stacks acquired from 11 different larval zebrafish. By transforming the collected data
into a working template it was possible to establish a set of zone boundaries into which a large
fraction of the manually identified neurons should correctly fall. This is illustrated in Fig. 3B
as a projection of the accumulated data. To construct this projection, each larva was encoded
in Adobe Photoshop as a separate layer with each neuron represented as a rectangle at its
observed location in the transformed space. The neurons were colour coded as in Fig. 3A and
in the projection of the 11 annotated MIP images, the colour intensity represents the density
of the corresponding cell type at that location in the collected dataset (see Fig. 3 legend for
further details). This provided the basis for creating a template in which the entire brainstem
is divided into a series of ‘zones’ and ‘sub-zones’. The agreement of this transformation and
zone identification with the original manual identification is indicated by the relatively few
instances of coloured neurons falling outside of their appropriate colour zone. Note for example
the few ‘orange’ RoL2/R2 cells that are not in their correct row (row #2), but are instead
displaced into the top row (which contains rhombomere 1 cells such as RoL1 and RoR1). Given
the relatively few errors, this provides a fairly reliable means for identifying reticulospinal
neurons, thus forming the basis for constructing the DMCS template.

The DMCS template (Fig. 4) represents, in a single plane, ~260 of the 300 neurons known to
descend from the larval zebrafish brain into the spinal cord (a lateral and functionally distinct
group of vestibulospinal neurons is not included in the template). This template was patterned
after a graphical representation of these neurons (O’Malley et al., 2003), which was itself based
upon much earlier work by Kimmel and coworkers (Kimmel et al., 1982,1985;Metcalfe et
al., 1986). Each square represents a single nerve cell that is either individually identified (e.g.
cells MeLm and MeLr in the top right region of the template) or that belongs to a small discrete
cluster or array of neurons (as, e.g. the two MeLc cells in the same part of the template). Based
on the procedure described above, the DMCS template has been organized into 28 zones – 14
on each side of the brainstem. Each zone is surrounded by a solid line and incorporates some
combination of individually identified nerve cells and/or clusters of nerve cells. For example,
going down to the sixth row in the template, two zones are highlighted in red. The outer zone
contains just two identified cells, MiD2cm and MiD2cl. The inner zone in this row is further
divided (by dashed lines) into two sub-zones. The rostral sub-zone includes two distinct cells,
whereas the caudal sub-zone includes a cluster of five MiV2 cells. In some instances cells and
clusters overlap in the z-dimension of the brainstem but for display purposes they are shown
side by side in a 2D arrangement. This completes the construction of the template that we will
use for our subsequent analyses of the DMCS. Note that template construction must be done
just once for each distinct neural system that is to be analysed.

Image processing
With the DMCS template completed, we proceed to a three-step process in which neurons are
detected and assigned to specific zones within the DMCS template. After an initial user-assisted
image registration step, the remainder of the algorithm is fully automated. The three distinct
stages of our processing pipeline are: (1) image registration, (2) neuronal segmentation and (3)
cell assignment. In the image registration step a MIP of the confocal image stack is transformed
into a normalized space. In the second stage we attempt to find the boundary locations of all
neurons within this normalized space. Finally, in the last stage, we use each neuron’s relative
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location to assign it to a specific zone/sub-zone of the template. This assignment is then
presented to the user as a representation of the entire confocal dataset. The goal in this particular
implementation is to facilitate the user’s investigations into how these neuronal populations
contribute to zebrafish locomotor behaviours.

Step 1: Image Registration—To register confocal z-stacks into a normalized space we
start with a MIP projection of each confocal z-stack. The operator uses the computer mouse to
identify pairs of corresponding points in the DMCS template and in the MIP image of the z-
stack that is to be processed (shown as green circles with cross-hairs in Fig. 5A and B). Three
such pairs of corresponding points are identified for each z-stack to be transformed (points are
numbered 1–3 in A and B). Using an affine transform (Brown, 1992), we perform a global
image transformation (Fig. 5C). Although in theory any three arbitrary pair of matched points
can be used for registration, we consistently tried to identify pairs of points on the boundary
between the neighbouring regions, which appear as distinct dark areas in the MIP projections
as in the example illustrated. These were found to provide good loci for directing the
transformation. After transforming the image stacks to template coordinates, we proceeded to
the cell-segmentation step.

Step 2: Segmentation of Neurons within Confocal Image Stacks—Since spatial
resolution is much higher in the transverse plane than in the z-direction, we apply a two-step
algorithm to find neurons in image planes after transformation of the image stacks into the
normalized template space. We first perform a 2D segmentation of each xy-plane image to find
a set of intensity contours with appropriate size and shape so as to reveal each neuronal cell
body present in the plane. Since a given neuron will normally be present in several images in
the confocal image stack (i.e. along the optical or z-axis), the next step in this algorithm
processes the identified contour sets in the z-direction to associate contours belonging to the
same neuron.

The basic assumption behind our ad hoc 2D segmentation is that neurons can be distinguished
from background and other objects such as axons and dendrites by a combination of intensity
and shape thresholds. We started by simply contouring a given intensity image with a
sufficiently small step between contours such that each neuron present in that image would be
represented by a set of approximately concentric contours. We then applied a series of shape-
thresholding criteria (based upon empirically determined parameters from our experimental
datasets) to each individual contour, as follows:

1. The area of the contour should be greater than 50 pixels in the normalized space (which
equates to an area of 3.1 μm2 at the magnification used).

2. The ratio of the area of each contour to the area of the enclosing rectangle should be
greater than 0.6 dimensionless units.

3. The aspect ratio of the enclosing rectangle should be greater than 0.7.

4. The ratio of the area of the contour to its perimeter should be greater than 2.2 μm.

5. A fifth criterion, which is not applied until the 3D cross-plane association step below,
is that a segmented object must be present in at least two adjacent optical sections to
be counted as a neuron.

The most difficult problem in this step was to find the boundary between adjacent or close-to-
adjacent neurons, as neurons may appear to ‘touch’ one another due to diffraction, crowding
in the xy-plane and/or overlap in the z-dimension. An example of this problem is shown in Fig.
6A. We addressed this apparent ‘merging’ of neurons by examining the locations of contour
centres as we lowered the contour intensity value (Fig. 6B). Our hypothesis was that when we
have adjacent neurons, the contours for each will be separate for higher contour intensities but
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will merge at lower contour values, and that this merging will cause a relatively large and
sudden shift in the location of the contour centre. Thus, once we identified such shifts (defined
in our algorithm as a change of more than 0.8 μm over a contour level intensity change of 4
pixel intensity units), we backed up one contour level and defined the pre-merged contours as
the ‘boundary contours’ of the neurons to which they belong. Figure 6(B) and (C) illustrate
this procedure by showing unmerged contours at higher pixel intensity levels (contours 1
through 4), which merge together as the intensity level is lowered (contour 5), producing a
large shift in ‘d’, the centroid of the contour. Identifying the lowest intensity unmerged
contours, i.e. the cell boundary contours is important, as they are the basis for the subsequent
cell assignment steps (see below). In the case of neurons that are well separated from one
another, when we lower the contour intensity values below a certain level, a sudden shift in
the location of the contour centre will occur when the neuron’s contour merges into the
background. In this case the boundary contour was taken as the cell’s contour at the
immediately higher intensity step.

Cross-plane association: Once we identified the boundary contours for all neurons in each
image, we pruned all contours of lower fluorescent intensity than the identified boundary
contours and proceeded to the cross-plane association problem. Here our basic assumption was
that centres of contour sets of the same neuron in adjacent slices should be close to lying on a
line which was itself close to parallel to the optical axis. To find these collinear points, we
again applied an ad hoc algorithm, this one based on the Hough transform (Ballard, 1987;
Gonzalez & Woods, 1987; Gonzalez et al., 2004). The Hough transform, as used here, finds
points in a plane, which lie approximately along the same line by parameterizing the line and
then mapping each candidate point to a line in the parameter space. Sets of points which all lie
on or near the same line will correspond to lines which are mutually intersecting or are close
to intersecting in parameter space.

To apply this approach, we first transformed all retained contours (including boundary and
internal contours) in the entire z-stack into a new 3D space. In this transformation, the centre
of each contour was defined as the centre of a bounding rectangle oriented along the x- and y-
axes. The third coordinate in this new space, Z, is defined as:

where i denotes the contour intensity value, z is the index of the z-stack slice that the contour
belongs to, and M is a fixed number that adjusts the resolution along the new z-axis. Thus the
‘stack of contours’ shown in Fig. 6 will occupy an interval in the z-dimension that is above
that occupied by any contours of the same neuron in a lower image plane, and below any
contours of that neuron in the image plane above. In order to detect lines in this space, we
projected the centres of all contours in a given z-stack onto the yz and xz planes. We used the
2D Hough transform in both projections to associate centres belonging to the same neuron,
and then ‘back-projected’ these associations into 3D space to associate the contours as well as
the centres. The end result of this implementation of the Hough transform was to link all
contours from a single neuron across the z-planes. In the final cell assignment step, the
outermost boundary contours of a cell, occurring in different z-planes but associated with each
other, are used collectively to assign each cell to a specific location within the brainstem.

Step 3: Cell Identification – Assignment of Neurons to Zones and Sub-Zones: The template
described earlier was used in conjunction with the segmented boundary contours to assign
detected neurons to specific zones and sub-zones of the brainstem. The assignment algorithm
had two steps: (1) Associate the identified 3D neurons with the proper zones and (2) when
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applicable, associate neurons with the proper sub-zones within a zone. As noted earlier, sub-
zones are found in regions where groupings of neurons tend to overlap to some extent in an
xy projection, but can be differentiated in part based upon their medial-lateral location or their
distribution along the dorsal-ventral (z-)axis. We describe here our assignment procedure for
both the sub-divided and undivided zones.

Zone assignments: We used a simple rule to assign each segmented neuron to a particular
zone. An individual boundary contour was assigned to a zone if its area had more than 70%
overlap with a zone; otherwise it was labelled as unresolved. Given a set of boundary contours
for a neuron along the z-axis, we calculated the fraction that was associated to a particular zone.
If more than half of a cell’s boundary contours belonged to a specific zone, then it was assigned
to that zone; otherwise it was marked as unresolved.

Sub-divided zones: For zones comprised of sub-zones, the neuron was further categorized by
attempting to assign it to one of the two sub-zones. One of two rules was applied:

1. Some zones were subdivided based upon dorsal-ventral location, i.e. based on their
z-location within the z-stack. For these zones, neurons were assigned to either the
dorsal or ventral sub-zone, depending upon which sub-zone contained more of the
cell’s boundary contours.

2. Other zones were subdivided in the xy plane along the medial-lateral axis. In this case
we calculated the Euclidean distance between the centroid of the neurons in the zone
and the brainstem midline and then assigned the neuron to the sub-zone in which its
centroid lay.

Results
To evaluate the utility of the cell-segmentation and cell-identification algorithms, we subjected
our experimental confocal dataset to a number of tests. Figure 7 illustrates a comparison
between our contour-based segmentation and a simple implementation of a popular watershed
segmentation algorithm (Beucher, 1992; and see Vincent & Soille, 1991). The raw dataset (Fig.
7A) contains a number of neurons in close proximity. With the watershed algorithm (Fig. 7B),
there can be an over-segmentation effect in which individual neurons are broken into multiple
pieces, as shown for neuron #29 (enclosed within a red box in all three panels), which has been
broken down into 3 pieces. Such over-segmentation was common with our datasets. By
contrast, our boundary contour method (described above) provided a more accurate means of
detecting and segmenting neurons (Fig. 7C), in terms of agreement with the ground truth data
as described below.

Figure 8 shows representative optical sections from three different zebrafish that illustrate the
algorithm’s ability to segment neuronal structures at different brainstem locations. The
automated segmentation results are illustrated by the grey contours surrounding the neurons.
Quite often in these in vivo datasets, the fluorescence signals from cells are overlapping – both
in the z-dimension and in the xy-plane – depending upon such factors as actual cell proximity,
the intensity of the fluorescence signal, diffraction, light scattering and instrument settings. In
such instances where cells have contours that are initially ‘touching’ in the confocal section,
they have been resolved or segmented based upon the boundary contour procedure described
above; four such instances of segmented ‘touching’ cell pairs (outlined in the red boxes) are
shown in Fig. 8.
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Quantitative performance of the algorithms
The ability of our algorithms to correctly detect and identify neurons is quantified in the next
two tables. To evaluate the performance of these protocols, we compared the algorithm’s output
with our prior ground-truth manual identification of these brainstem neurons. One caveat is
that this ‘ground truth’ identification by experts is not absolute, given such factors as image
quality and the complexity of the datasets. Although we currently consider manual
identification to rank highest in reliability, we should consider that algorithmic analysis may
enhance or improve upon manual identification. Table 1 summarizes the output of the cell-
segmentation and cell-identification components of this protocol.

The efficacy of cell segmentation was assessed by comparing the algorithm’s output with the
manual identification of neurons throughout a set of z-stacks encompassing the brainstem of
11 different zebrafish. Table 1 shows that the number of manually recognized neurons agrees
fairly well with the number of neurons detected by the algorithm (# segmented). The agreement
is best reflected by those neurons recognized in common by both methods – the ‘correctly
segmented’ neurons. The instances where the manual and automated methods diverge fall into
two categories. First, there are instances where the algorithm identified objects as neurons that
were not so identified manually – nominally ‘false positives’. Secondly, there are ‘false
negatives’ – instances where the algorithm missed objects that were manually recognized as
neurons. Although there were modest numbers of ‘errors’ in both categories, it should be noted
that this is a real-world dataset of 11 larvae that were chosen for experimental analysis (i.e.
that had sufficient neuronal labelling to warrant behavioural evaluation). Some of the datasets
were of poor optical quality, as e.g. Fish 203, where only 10 of 19 manually identified neurons
were recognized by the algorithm. But in the remainder of this database, the number of neurons
that were correctly segmented by the algorithm ranged from 67% to 100%, with a database-
wide agreement for segmentation of 454 of the 537 manually identified neurons or 84.5%. This
is sufficient to substantially speed up our labelled-lesion project.

For this same dataset, Table 1 also shows the number of neurons (taken from just the correctly
segmented neurons) that were ‘unresolved’ in that they did not meet criterion for inclusion in
a zone. Only a very small fraction of the correctly segmented neurons were not assigned to
zones. The final column shows a slightly larger number of instances in which neurons were
resolved but assigned to an incorrect zone. Overall, if we subtract both the unresolved and mis-
assigned neurons from those neurons that were correctly segmented, this leaves 436 of 537
neurons assigned to their correct zone – that is 81.2% of the entire population of manually
identified neurons was correctly identified by the algorithm. Although improvements in the
cell segmentation and identification steps would be desirable, the structures found or missed
were not obvious errors, but instead reflect difficulties encountered in both the manual and
automated procedures.

In our semi-automatic registration process, we use a graphical user interface to register points
between the MIP image and the DMCS template, by simply clicking on corresponding points
with a computer mouse (Fig. 5). One issue is the precision with which these points can be
selected and whether or not the algorithm is sensitive to small displacements of the selected
points. Our preferred approach was to pick one pair of corresponding points on the mid-line
and two other pairs on any two zone borders that were easily recognized and were symmetrical
with respect to the mid-line. This method turned out to be reasonably robust to small
displacements of the registration points. In about one-third of the datasets, however, selecting
such a set of symmetrical, corresponding points was not straightforward. For instance, some
z-stacks did not contain symmetrical neuron pairs or neuronal clusters to help find zone
boundaries, whereas others had only unilateral labelling. In such situations we repetitively
registered each z-stack (up to three or four times), selecting different sets of corresponding
points each time, and then for each such candidate registration, proceeded with the rest of the
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zonal identification algorithm. We obtained essentially identical results with the different
registration points, indicating a relatively robust classification protocol – within the context of
the generally good agreement between the algorithm’s results and the manual-identification
results.

Unseen datasets
We also examined the ability of our template to classify neurons in previously ‘unseen’ datasets
by employing a ‘leave-one-out’ test, as follows: using our collection of confocal image stacks
from 11 zebrafish, we cyclically left out the z-stacks from one of the 11 fish and used the other
10 datasets to build a new template. We then used each new template to assign neurons that
were segmented from the ‘left-out’ z-stack. Table 2 presents the results of this leave-one-out
test in terms of cell identification (zone assignment) accuracy; note that the unresolved neurons
were excluded from this analysis. For the correctly segmented neurons, the algorithm was
highly effective in assigning neurons from unseen datasets to their correct zones in the leave-
one-out templates: of the 11 trials on unseen datasets, 10 resulted in assignments identical to
those obtained using the template constructed from the complete dataset. The only exception
was Fish 200 in which one neuron was mis-assigned in the leave-one-out procedure, whereas
all 58 resolved neurons were correctly assigned when using the whole-dataset template
(compare results for Fish 200 in Tables 1 and 2). This result shows that templates constructed
from a ‘training dataset’ can effectively identify neurons in new brainstem datasets, an
approach that should in principle be applicable to other neural structures.

Presentation of results
The results of this cell identification protocol can be provided to users in a variety of forms.
One option is to display all segmented neurons along with a cell identification code. In Fig. 9,
three example sections from an image stack are shown in which each boundary contour or
neuron is given a unique identifying number (which remains the same across planes for that
neuron). The specific cell type (or cluster type) is indicated by the accompanying colour key.
In some instances the assignment is to a zone containing several cell types, such as the zone
containing the purple MiR1-MiM1 cell types. Providing each cell’s location with respect to
other labelled cells and landmarks allows users to perform further classification within a zone
– e.g. distinguishing the purple cells #55 and #52 as either MiR1 or MiM1. Because the display
merges the optical sections and boundary contours, it also enables easy review of instances
where the algorithm and manual identification diverge. By viewing the boundary contours of
false positives (objects recognized only by the algorithm) the user can decide whether or not
to accept these objects’ identification. Similarly, ‘neurons’ not given boundary contours (false
negatives) can be manually assigned identities and added to the collected record. Automated
classification is valuable in sparsely labelled larval zebrafish, where there may be few nearby
landmarks, and becomes more valuable when there are many dozens or hundreds of labelled
cells because manual identification in those situations is tedious and uncertain. The algorithm
further helps the investigator by resolving merged fluorescence structures into individual
neurons. Although further automation might refine cell identification, the current program
accomplishes most of the desired classification by virtue of its segmentation and zone
assignment algorithms.

The morphometric data collected can be visualized by a variety of means. Figure 10 shows a
segmented, 3D dataset that has been projected from three different views, using a volume
rendering feature in the free SciRun/BioPSE software package (reviewed by Bitter et al.,
2007). Stacks of boundary contours are shown in the context of a 3D representation of the
brainstem dataset. A reference set of coordinate axes is shown in the upper right of both panels.
The blue arrow indicates the orientation of the z-axis of the dataset, which is roughly parallel
to the dorsal-ventral axis of the fish. The red arrow indicates the longitudinal (rostral-caudal)
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axis of the brainstem, whereas the green arrow represents the medial-lateral axis. The locations
of the neuronal boundary contours generated by the segmentation algorithm are superimposed
as solid black lines on the volume-rendered image, providing a 3D view of the algorithm’s
overall output.

The morphological measurements and other data generated can be used in further ways. For
example, data from an image stack containing eight MeL cells has been auto-quantified and
displayed in tabular form (Table 3). Although details such as cell position and size can aid cell
identification efforts, they may also benefit other kinds of systematic analyses that incorporate,
e.g. physiological or molecular data. The morphometric data obtained here is intended to serve
as an input to our labelled-lesion experiments in which the makeup of lesioned neuronal
populations is related to specific behavioural deficits (Gahtan & O’Malley, 2001;Day et al.,
2005). In this instance, enhanced quantification of morphometric data may facilitate potentially
finer-grained identification of neurons within the 10 ostensibly ‘homogeneous’ clusters and
arrays of cells present in our template (Fig. 4). An ultimate goal is for the algorithms provided
here to contribute to a NeuronBank-like database, such as that created for individually
identified invertebrate neurons (Calin-Jageman et al., 2007).

Discussion
Cell identification protocols have been used in certain domains (Conrad et al., 2004; Chen et
al., 2006), but the methods provided here are, to our knowledge, the first to recognize
individually identified neurons in 3D confocal datasets. Although a variety of segmentation
and processing algorithms might be employed to locate nerve cells in confocal image stacks,
the relatively simple and fast protocol described here proved effective for identifying
reticulospinal neurons in living zebrafish. One limitation is that when neural datasets are
acquired from living animals or brain slices, imaging conditions are rarely ideal because of
light scattering. Image degradation occurs with conventional fluorescence microscopy, as well
as confocal and two-photon imaging, and generally worsens with increasing depth into the
specimen. Nonetheless, automated analysis of confocal datasets spanning the thickness of the
in vivo larval brain (approximately 300 μm thick) yielded better than 80% identification of
neurons – thus providing a favourable test of a protocol that is potentially applicable to other
neuronal and confocal datasets.

Within the DMCS template there are, if we add undivided zones and sub-zones together, a total
of 20 discrete sections in the template (duplicated on each side of the brainstem). Of the 20
sections, 10 have but a single specified cell type that ranges in number from 1 to 12 neurons
(Fig. 4). Automated assignment to such sections thus provides an ‘exact’ identification (or as
exact as manual identification achieves). Of the remaining sections, six have just two cell types.
Thus for a large majority of zones, successful cell assignment results in immediate and
relatively precise identification of cells throughout the brainstem. The user may wish to further
resolve cell identities, based on additional cell features, and may also wish to compare the raw
dataset with the algorithmic results to evaluate nominal false negatives and positives. In our
experience, the pure manual procedure was so time consuming (and tedious) that the
automation could save 2 h or more for each confocal image stack analysed, even with manual
scanning of the algorithm’s results (Fig. 9). The algorithm runs in about 2 min per image stack
on a typical desktop computer. With an average of about five image stacks per fish, this suggests
a savings of around 10 h per typical experiment. The time savings is greatest for larger datasets
that may contain hundreds of labelled neurons. This tool will thus allow us to analyse many
more datasets than was previously possible – while gaining complementary and potentially
enhanced information.
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To summarize our protocol, confocal datasets are processed in three sequential steps: image
registration, segmentation and cell assignment. Beyond the initial selection of three registration
points (which in the worse cases needs to be repeated three or four times), the program is fully
automatic, and none of its parameters need to be adjusted by the user in this implementation.
The protocol was designed to be fast and appropriate for the data and purpose at hand. Because
the three steps are carried out independently, each step might easily be replaced by an
alternative method (see, e.g. Cseke, 1992; Tanaka et al., 2001; Ruggeri & Pajaro, 2002; Chen
et al., 2006). This provides flexibility to modify the algorithm to enhance its resolution or to
tailor it for other kinds of neuronal datasets. For example, any 3D algorithm that is reasonably
fast and accurate and which provides boundary contours could be used for the segmentation
step. One might also improve the detection of neurons by incorporating additional
discrimination features and extending them into the z-dimension. This could include such
features as 3D shape, volume and dendritic/axonal morphologies. With regard to the
classification zones, rectangular 2D regions were used because they were convenient and
adequate for the geometries of our experimental preparation, but other regional classification
schemes could as easily be used. Although changes in performance of one step in the algorithm
might affect overall program performance, the steps are largely independent, and so it should
be possible to directly evaluate the consequences of trial modifications.

There are many methods for analysing neuroanatomical datasets. For example, stereological
methods are used to quantify large numbers of nerve cells and synapses (Popken & Farel,
1997; Geuna, 2000, 2005; Kubinova & Janacek, 2001; Ma et al., 2003). Most stereological
methods, however, are not automated, nor are they used to assign neurons to specific functional
classes. Other automated methods include image registration and structure tracing through 3D
datasets (Al-Kofahi et al., 2003a, b, 2006; Barber et al., 2003), but again they are not used for
cell-identification purposes. The algorithms provided here automatically identify neurons with
a precision roughly similar to that of expert users. The modest number of discrepancies might
be viewed as ‘algorithm errors’ (i.e. false positives or false negatives, as designated), but it is
at present uncertain as to which method, manual or automated, is actually better at detecting
bona fide nerve cell bodies and determining their identity. Further research, into these objects’
anatomical and phenotypic features would be needed to more conclusively compare manual
vs. algorithmic performance. Eventually, automation may offer superior performance in
classification while also helping tie data from diverse sources into a common, template-driven
framework –an objective currently being pursued in invertebrate nervous systems (Calin-
Jageman et al., 2007) and, in a more general sense, in vertebrate animals (Dyhrfjeld-Johnsen
et al., 2005; Bota & Swanson, 2007; Martone et al., 2008).

The extent to which our algorithms can be applied to other neural systems has not been
evaluated. The biggest hurdle is probably the construction of a system-specific cell-
identification template. But this only needs to be done once for each system, and in our case
the time investment was small in comparison to the time already invested in manual
identification of neurons in the zebrafish confocal datasets. Since most neural architectures are
investigated in parallel by multiple research groups, the creation of such system-specific
templates should be a modest investment in relation to the rapidly accumulating quantities of
phenotypic data. In cases where suitable landmarks can be recognized, and annotated 3D
datasets are available to create a valid template, it should be possible to generate an effective
identification protocol. In our case, we were aided by the relative ease with which the image
stacks can be oriented and aligned (step 1), using e.g. the paired Mauthner cells. Neuronal
identification (step 3) also depends upon the efficacy of the cell-segmentation algorithm (step
2) and so it may be necessary to modify the cell-inclusion criteria and/or other components of
the algorithmic sequence in order to achieve good identification results.
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We expect that efforts to codify cell identity in a variety of neural architectures could prove
useful – especially in systems with many distinct nerve cell types that are anatomically
intermingled. Emerging technologies in the areas of genetic tagging and manipulation (Luo et
al., 2008) should prove highly synergistic with automated cell-identification protocols. In
zebrafish, a Gal4 enhancer trap enables the genetic tagging of phenotypically related neurons
(Scott et al., 2007) as well as genetic inactivation using, e.g. a tetanus toxin light chain
(Asakawa et al., 2008). Optical-control proteins, such as channel-rhodopsin (Zhang et al.,
2006; Huber et al., 2008) and light-activated glutamate receptors (Szobota et al., 2007), could
in principle be targeted in this manner. Such approaches would benefit from having the
identities of the fluorescently labelled neurons analysed in a quantitative and automated
fashion. Thus, our goal for this technology is not just to accelerate data throughput, but to
improve upon current cell-identification techniques.

In the case of the larval zebrafish DMCS, we currently recognize 40 distinct descending cell
types based upon anatomical features including brainstem location, but future experiments may
subdivide this population (which has 150 neurons in total on each side of brainstem) and thereby
increase the number of individually identifiable cell types. Alternatively, a minimalist
classification scheme might lump together some of the 40 known (i.e. user-defined) DMCS
cell types, thus ‘reducing cell diversity’ and, as such, the identification problem. Intracellular
fills of these cells, however, have revealed extreme diversity in their axonal projection patterns
in spinal cord, indicating that they are both individually recognizable and functionally distinct.
This was true even for three escape-eliciting neurons that were believed to form a single
functional class (Gahtan & O’Malley, 2003). There is likely to be equivalent or greater local-
circuit diversity and complexity in most other parts of the vertebrate brain including the retina
(MacNeil & Masland, 1998), cerebral cortex (Tseng & Prince, 1993; Stevens, 1998),
hippocampus (Jinno et al., 2007) and optic tectum (Baez et al., 2003; Niell & Smith, 2005).
Automation of image analysis in such systems should lead to a more precise and reproducible
quantification of each system’s neuronal constituents. The absence of such an accounting could
be likened to the situation of an auto mechanic trying to fix a car without knowing all of the
functional parts, or even how many parts there should be. For us ‘neuromechanics’, we expect
that advances in neuronal classification, in conjunction with automated image analysis, will
facilitate efforts to understand and repair diverse neural systems.
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Fig. 1.
Orientation of confocal datasets. All datasets were acquired from the brainstem of restrained
larval zebrafish (the brainstem is comprised of the medulla and midbrain in fishes). The lateral
view of the larva illustrates very well the brain’s transparency, but our 3D datasets are always
collected from a dorsal view which provides a better layout of the reticulospinal neurons being
studied. In addition, the larval ear obstructs much of the rostral medulla in the lateral view.
Our dorsal-view confocal images are shown oriented with the head up and tail down. For
orientation, the larval ears are just outside the vestibulospinal cells, which are found at the end
of the lateral dendrites of the Mauthner cells on either side of the larval head.
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Fig. 2.
Example confocal dataset from a restrained larval zebrafish. A large population of neurons has
been fluorescently labelled by retrograde transport of Oregon Green Dextran from spinal cord.
Because neurons overlap one another in the z-dimension, 3D analysis is required to distinguish
them. (A) Two large midbrain clusters (nMLF or nucleus of the longitudinal medial fasciculus)
are present in rostral brainstem on either side of the larval midline (dashed line). The caudal
brainstem shows a segmentally organized array of neurons spanning the medulla. This montage
is constructed from maximum projection images of three confocal datasets, each with 16 optical
sections acquired at 4-μm intervals. (B) Shown are four individual optical sections taken at
different depths from the middle stack of the three stacks making up the montage. Note that
these images extend beyond the portion shown in (A) because z-stacks are acquired with
sufficient overlap for easy alignment into a continuous montage. The xy-extent of the middle
image stack is indicated in by the dotted lines in (A). Asterisks mark the left and right Mauthner
cells both in the montage (A) and in those image planes in (B) where the Mauthner cell bodies
are evident. Scale bar = 30 μm.
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Fig. 3.
Construction of the DMCS template. (A) Starting from a montage of maximum projection
images of confocal image stacks that spanned this larva’s brainstem, we manually assigned
identities to labelled descending neurons in accordance with prior descriptions (see tabulation
in O’Malley et al., 2003); these identifications are represented as colour-coded rectangles. This
procedure was repeated for 11 zebrafish, each of which was represented by multiple confocal
image stacks. (B) Because no confocal dataset has all 300 descending neurons labelled, we
used a cumulative procedure to define the locations of all descending neurons into a common
coordinate system. After colour coding all neurons, we used the ‘layers’ feature in Adobe
Photoshop to project all represented neurons from all datasets into a single plane. Image
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transformations (including rotation, translation, scaling and affine transformations) were used
to conform all image sets into this common coordinate system (Broit, 1981; Brown, 1992).
The colour intensity at each location represents the probability within this dataset of finding
those specific neurons at that location in the template.
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Fig. 4.
The DMCS template. Based on the method illustrated in Fig. 3, a template was constructed
that includes the locations of all known reticulospinal neurons in the larval zebrafish brainstem.
This template is organized into a set of zones and sub-zones and is used for automated cell
identification. There are a total of 28 zones, 14 on each side. Some zones have only one neuronal
cluster whereas others have two or three clusters. Six of the 14 unique zones were divided into
two sub-zones to allow for more refined cell identification. This results in a total of 20 distinct
regions in the template on each side of brainstem. Zones are bounded by solid lines, whereas
sub-zones are separated by dashed lines. The red boxes on the sixth row of zones highlight an
undivided zone (lateral box) and a sub-divided zone (medial box). In subsequent image
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processing steps, automatically segmented neurons are assigned to zones based upon their
location within the 3D confocal datasets. Note that a group of approximately 30–40
vestibulospinal neurons (not included in the template) makes up essentially the remainder of
the 300 known descending neurons; these neurons have not been functionally subdivided and
are easily recognized as a neuronal grouping distinct from the reticulospinal cells (see O’Malley
et al., 2003).
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Fig. 5.
Registration of MIP images to the template coordinate system. To convert the confocal datasets
to the template coordinate system, the user manually selects three registration points (green
symbols) on the maximum intensity projection (A) of the dataset and clicks on three
corresponding points in the DMCS template (B). Using an affine transformation, the entire 3D
set of images is then warped into the normalized template space, as shown in a MIP projection
in (C). This procedure proves suitably robust for this application in part because these confocal
datasets have roughly similar orientations, based on the experimental positioning of the fish
prior to data acquisition.
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Fig. 6.
Segmentation of neuronal contours. Prior to identification, neurons must first be detected or
‘segmented’ as discrete objects. (A) Shows a confocal optical section in which there are densely
packed neurons, including two (inside the white box) that appear to be touching one another.
(B) and (C) illustrate segmentation of this pair of neurons. (B) As the pixel-intensity threshold
is increased, a single merged object becomes two separate objects (marked with small dots).
(C) Adjacent threshold-planes from (B) are projected to illustrate an abrupt change in centre-
point location when two objects become merged. In the resolved case, the change in location
of an object’s centre is slight as one moves down one step in threshold. But at a certain step
down (merged case), the two objects merge and there is an abrupt shift in centre location – the
centres of the two objects (3 and 4) now move to become one common centre point of the
merged contour (object 5). At this point, the contours in the immediately higher threshold plane
(i.e. the ‘pre-merged’ contours) are taken as boundary contours of the two cells from this optical
section.
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Fig. 7.
Alternative segmentation algorithms. (A) This representative optical section has many closely
packed neurons that make their resolution difficult for both manual and automated
identification procedures. (B) Using a conventional watershed algorithm, we see a large
number of ‘objects’, e.g. the three distinct structures inside the red box. (C) Use of the boundary
contour segmentation algorithm results in a segmentation of neurons that agrees better with
the manual identification procedure. The numbering indicates individual neurons within the
dataset to which the boundary contours shown have been assigned.
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Fig. 8.
Example results of the boundary contour method. The grey contours are the boundary contours
generated by the cell segmentation algorithm. In many instances neurons appear to touch – e.g.
within the areas marked by red rectangles. In each of these instances, the neurons have been
resolved in agreement with manual identification results. Note that some fluorescent structures,
for example those indicated by asterisks (*) in the middle image, were not identified in this
optical section as neurons, due to their failure to satisfy one or more inclusion criteria. At nearby
sections in the image stack, these particular structures are seen to be continuous with segmented
neurons.
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Fig. 9.
Output of the cell identification program. A graphical representation facilitates cross-checking
of algorithm performance against manual identification. An example output is illustrated for
three slices (slices #7, #8 and #9) from a 16-slice, annotated image stack. The segmented
neurons are colour coded according to their zone assignment and each segmented neuron is
given a unique identifying number. Overlaying the segmentation results onto the confocal z-
stack allows the user to readily view the confocal, segmentation and identification results by
simply using a slider button to navigate up and down through the dataset. This is useful in cases
where the user wants to double-check cell assignments or make finer assignments within the
template zones.
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Fig. 10.
Visualization of datasets. 3D reconstructions of a sample dataset illustrate the distribution of
boundary contours. Three distinct views of this same dataset are shown, with the blue arrow
indicating the z-axis (which is approximately the dorsal-ventral axis) in each case. Note that
the z-axis is stretched to make it easier to see the associated sets of boundary contours. The red
arrow indicates the long axis of the larvae, whereas the green arrow runs along the medial-
lateral dimension. The view on the right shows a dorsal view (i.e. the xy plane) and since the
z-axis is perpendicular to this view of the reconstruction, the blue arrow that would indicate
the z-axis is not visible. For each image, the sets of boundary contours generated in MatLab
were imported using the SciRun/BioPSE software package
(http://www.sci.utah.edu/cibc/software) and were meshed with the confocal data and projected
as semi-transparent, 3D-renderings using the BioImage module. The linking of boundary
contours across optical sections is central to the 3D segmentation and identification of neurons.
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Table 2

Accuracy of neuronal assignment in the leave-one-out paradigm. Beginning with the number of correctly
segmented neurons, the unresolved neurons are subtracted and then the number correctly assigned (i.e. in
agreement with manual assignment) is determined. Subtraction of the correctly assigned neurons from the
resolved neurons gives the number mis-assigned. The segmentation results are the same as for Table 1 because
the segmentation algorithm is independent of the template/zone assignment algorithm.

Fish # # of mis-assigned neurons

191 2

193 0

199 1

200 1

203 0

204 2

205 2

207 0

211 3

212 0

214 2

Total 13
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