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Abstract-Electrocardiography has played an important role in the detection and characteriza- 
tion of heart function, both in normal and abnormal states. In this paper we present an 
inhomogeneous, anisotropic computer model of the human thorax for use in electrocardiography 
with emphasis on the calculation of transthoracic potential and current distributions. Knowledge 
of the current pathways in the thorax has many applications in electrocardiography and has direct 
utility in studies pertaining to cardiac defibrillation, forward and inverse problems, impedance 
tomography, and electrode placement in electrocardiography. 
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INTRODUCTION 

An important problem in the biophysical study of electrocardiography is the determin- 
ation of the pathways of current flow through the body due to cardiac current sources. 
The knowledge of this current can be applied in many different aspects of electrocardi- 
ology, including studies relating to defibrillation, forward and inverse problems, 
impedance techniques, lead field theory, and electrode placement. Furthermore, the 
relationship between potential and current distributions in the thorax has implications 
for biophysical studies outside of electrocardiology, most notably the biological effects of 
electromagnetic fields on the human body. 

In an intact volume conductor current cannot be measured directly and so must be 
derived from the distribution of electric potential given the local geometric and 
conductive properties of the medium. Likewise, electric potential can be practically 
measured only on the surface of the intact volume conductor. Potential distribution 
within the volume can, however, be predicted from surface measurements providing the 
geometry and electrical properties of the medium enclosed by the bounding surface(s) 
are known in sufficient detail. This report describes just such a mathematical model, 
which includes an explicit, magnetic resonance image based geometrical description of 
the human thorax and utilizes the finite element method to solve for both potential and 
current distributions. 

The utility of such a model is many-fold. Perhaps its foremost importance to the field 
of clinical cardiology will be the design of defibrillators, both external and implantable, 
since efficient and reliable design requires an understanding of current flow in the human 
thorax. While defibrillation has been an effective clinical tool for many years, the 
fundamental knowledge of the mechanism that ends the rhythm disorder is still 
unknown. While some propose that only a critical mass of myocardium must be 
depolarized [l] and others argue that one must achieve a sufficient current density 
throughout the myocardium [2], Crampton noted that, “. . . it is clear that the inability to 
access the correct transthoracic current pathway is the most common reason for failure to 
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terminate the rhythm disorder” [3]. One possible reason for this inability is that, until 
now, there has not been a complete enough model to simulate realistic situations in 
humans. In early defibrillation modeling studies, Claydon et al. calculated cardiac surface 
potentials from body surface potentials resulting from different stimulation-electrode 
configurations. Their geometric model was a three-dimensional homogeneous canine 
thorax [4]. In a more recent study Sepulveda er al. calculated myocardial potential and 
current densities in a two-dimensional isotropic, inhomogeneous canine cross-section [5]. 
In terms of human models, only the model of Ahmed et al., attempted to calculate three- 
dimensional currents. Their model, however, was restricted to a partial thorax due to the 
limited capacity of the commercial software package they utilized [6]. None of the above 
models explicitly included anisotropy, nor the geometrical complexity associated with 
actual human data. 

A basic physiological application of such models is to aid our understanding of how the 
normal current pathways generated by cardiac sources manifest themselves in space and 
time. The flow of electric current in the human thorax originates in electrical activation 
and recovery of cardiac tissue. Activation of cardiac muscle is the process by which cells 
undergo rapid depolarization resulting in a propagation of excitation waves moving 
through the myocardium at approximately 0.5-2 m/set (depending on tissue type) [7]. 
This excitation wavefront can be thought of as a distributed surface of current dipoles or 
source-sink pairs with a separation distance of the order of a millimeter. During the 
depolarization process this excitation wave produces an extracellular potential field 0, 
which depends on the intensity of the cardiac membrane current, the distance from and 
orientation of the source-sink pair, and the geometry and conductivity of the inhomo- 
geneous volume within the thorax. Recovery of the cardiac membrane is characterized 
by a return to the polarized resting state. 

Associated with the flow of current due to both activation and recovery is the 
appearance of electric potential distributions on and within the human thorax. These 
time-varying potentials, can be measured invasively as epicardial electrograms and when 
measured on the body surface, are known as electrocardiograms. It is possible to 
compute the transthoracic currents that are associated with cardiac electrical activity, 
either directly from epicardial potentials (forward solution) or indirectly from body 
surface potentials (inverse solution). Another form of the forward solution is to calculate 
thoracic currents which arise due to the application of defibrillatory stimuli, both 
externally, and via implantable defibrillators. The requirements for an accurate rep- 
resentation of the current flow in a human torso include effective numerical techniques, a 
detailed geometrical description of the thorax, including internal structures, the conduc- 
tivities of the tissues, and a means of expressing cardiac electrical activity in terms of 
epicardial potentials. 

The focus of virtually all previous studies of cardiac bioelectric phenomena in the torso 
has been the dependence of body surface potentials on cardiac sources (forward 
solution) [8,9] or, the reverse, determining cardiac sources from body surface potentials 
(inverse solution) [lo-171. These studies have often ignored the actual calculation of the 
volume currents, and most have omitted some aspect of the complexity of the problem, 
particularly inhomogeneity and anisotropy of the volume conductor. 

Previous studies [18], suggest that a rigorous treatment for electrocardiographic 
applications requires that the intravacitary blood mass, skeletal muscle, lungs, and 
subcutaneous fat, each with appropriate values of conductivity, be included. These 
tissues have average relative bulk conductivities of approximately 15 : 10 : 2 : 1 respect- 
ively. While biological tissue is neither homogeneous nor isotropic at the microscopic 
level, at the macroscopic level most tissue can be treated as such. The major exception is 
that of skeletal muscle, whose striated structure causes the relationship between the 
electric field and current vectors to vary with the orientation of the muscle, in other 
words, the tissue displays anisotropy. Thus, for striated muscle, even at a macroscopic 
level, the conductivity cannot be expressed as a simple, bulk value but must be 
represented as a quantity which depends on direction. This can be accomplished 
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mathematically by representing the muscle conductivity as a tensor that varies spatially, 
depending on local fiber orientation. 

The results we describe here indicate that transthoracic currents can be calculated in a 
realistic model of the human thorax and that, relative to previous work, inclusion of 
anisotropic inhomogeneity, increased geometric resolution, and improved numerical 
techniques enhance-and may be necessary for-accurate calculation of these currents. 

The software that has been developed for calculating transthoracic current includes: 
(1) programs to construct, manipulate, and display large scale, three-dimensional 
geometric models, (2) a three-dimensional finite element program to solve the electro- 
cardiographic field equation in its most general form (i.e. one fully capable of incorporat- 
ing anisotropic inhomogeneities and a wide variety of potential and current sources), 
(3) an algorithm with which we can apply a general set of boundary conditions for use 
with various experimental and simulation conditions, such as injection of external or 
internal defibrillation currents, and (4) programs which solve the large system of 
equations for the current flow and potential distributions and display them graphically. 
(See the Appendix for a more complete listing of the software.) 

The geometric basis of these computations is a discrete, three-dimensional model of an 
actual human torso, including inhomogeneous regions and, where appropriate, assign- 
ment of their anisotropic nature. To this end, we have performed complete thoracic MRI 
scans on several subjects and, from one of these subjects, have constructed two 
geometric models at different spatial resolutions. Conductivities have been assigned to 
each individual volume element in the models based on values from the literature. The 
model we have developed is ideal for simulating electrocardiograms and the current 
pathways resulting from both normal and abnormal cardiac electrical activity as well as 
for estimating transthoracic current pathways which arise due to defibrillatory current 
pulses. 

METHODS 
Model construction 

Although there exist no known “minimum requirements” for calculating thoracic 
potentials and currents, studies by other investigators [14-171 indicate that accurate 
rendition of the geometry to which the forward solution is applied is required in order to 
generate realistic estimates. In fact our aim in future studies, is to examine the issue of 
spatial resolution as well as the effect of anisotropic inhomogeneities on computed 
thoracic distributions. Hence, one goal of this study was to develop the tools with which 
to create models that are both as accurate and highly resolved as possible, yet which 
remain computationally rational. 

The most exact method of performing three-dimensional reconstruction in humans, 
without subjecting them to unacceptable radiation, is by means of magnetic resonance 
imaging (MRI) techniques. All MRI imaging for this study was done at a step size of 
5 mm, from just below the umbilicus to just below the chin (typically 50-70 cm). Before 
the tomography was begun, a set of 192 mineral oil-filled phantom electrodes were 
applied to the subject according to the standard procedure for 192-lead body surface 
mapping [19,20]. Mineral oil appears opaque in MRI images and can be used to locate 
the electrode positions. An example of a single layer of an MRI scan, which includes the 
heart, lungs, and muscle and fat layers is shown in Fig. la. 

While magnetic resonance tomographic images provide the basis for reconstruction of 
the geometry required for forward and inverse calculations, further manipulation is 
required before this geometry is available for computations. Processing consisted of 
extracting, from the 100-140 slices of image data, the location and shape of the major 
surfaces within the thorax : body surface, subcutaneous fat, skeletal muscle, lungs, and 
epicardium. The volumes within each of these surfaces was then discretized into 
tetrahedral elements and assigned realistic conductivity values. The surfaces themselves 
were also tessellated into triangular elements and used both for model computations and 
for subsequent graphical display of the results. 
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Fig. I. An example of construction of a single slice of the torso model, starting in the top panel 
with (a) the magnetic resonance image (NMR) of a single layer. The view perspective is caudal to 
cranial, with the anterior surface at the top of each panel. Solid black and white lines outline the 
various surfaces to be incorporated into the model. The middle panel, (b), shows the same layer 
as in panel (a), now combined with its neighboring layer to form a three-dimensional slice, with 
each surface digitized, smoothed and triangulated. The bottom panel, (c), contains the same slice 
again, with added grid points, tessellated into tetrahedral volume elements. Each element is 
assigned a different conductivity based on its location within the slice. The different shades of 
gray indicate the main tissue groups, fat. skeletal muscle, lungs, a bulk conductivity value 

assigned to all regions that fell outside of the rest, and the atrial region of the heart. 

In the first step of this procedure, the output from the MRI system was transferred first 
via digital magnetic tape, then over a local area computer network, to a Macintosh II 
computer on which individual layers were displayed and the surfaces manually digitized 
[21]. The sampled points (“raw layer data”) from all the surfaces were then transferred to 
a DEC VAX 4000 computer and a Silicon Graphics Iris 4D/210 VGX workstation for 
further refinement. 
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In order to establish uniform spacing of the points defining the surfaces, we interpo- 
lated the raw layer data using a parametric cubic-spline algorithm programmed for this 
application. The value of point separation set in the interpolation program depended on 
the complexity (curvature) of the individual layer being processed and typically ranged 
from 3 to 10 mm. Points from pairs of successive layers of the same surface were then 
combined into “slices”; that is, they represented volumes and not just planar layers. The 
points in these slices were then connected to form triangles which defined the outer 
surface of a tissue region in the slice. We have written triangularization programs which 
use local nearest-neighbor criteria and the fact that spacing between layers was uniform 
to construct triangles that were as close to equilateral as possible. The triangulated slices 
occasionally required some manual editing, which we performed using an Evans and 
Sutherland PS390 graphics system connected to the Vax4000, and the IRIS 4D/210 
graphics workstation. A sorting program then produced complete descriptions of each 
surface containing the points and triangle connectivities from all slices that contained 
points from that surface. Figure lb shows a reproduction of the single triangulated slice 
which was generated from the MRI image above it in Fig. la. 

Calculations using the finite element method (FEM) require that the entire region 
within the surfaces be tessellated into volume elements. We chose to use tetrahedral 
volume elements due to their relative simplicity and since they are capable of closely 
following the irregular geometry associated with the human body and the enclosed 
regions of inhomogeneity. The first step in tetrahedralization of the model was to add 
internal node points to the previously discretized surface descriptions of each layer. 
These then became the vertices of the elemental volumes. For this, we devised a “grid- 
maker”, which applied a uniform grid of points to the layer and then excluded those 
points which were outside the outer surface or too close to any surface in the layer. Once 
the grid points were defined, all the points from a single slice (two successive layers) were 
input to a program that connected sets of 4 nodes into volume elements based on three- 
dimensional Delaunay and Dirichlet criteria for optimal tetrahedra [22,23]. Figure lc 
shows the same slice as in Figs la and lb after it was tetrahedralized in this manner. 

Just as the points and triangles from all the slices were combined and sorted to form 
complete surfaces, so too were the tetrahedralized slices combined to yield the complete 
geometrical description of the model. Sorting of the tetrahedralized slices also involved 
keeping track of element connectivities, of links between point in the context of surfaces 
(triangles) and of the same points as nodes of the volume elements (tetrahedra). Finally. 
and most importantly, sorting included the determination of conductivity for each 
element (see next section: “Assignment of conductivity”). 

Assignment of conductivity 

The major advantage of the finite element method is the ability to assign-and easily 
change-conductivity information for each element of the volume. Hence, it is also 
possible to include, explicitly, the effect of anisotropy in a finite element solution. 

The actual process of determining the value of conductivity for each element in the 
model consisted of two steps. In the first, the centroid of each tetrahedron was located 
and projected to the plane defined by the points in the next lower layer. This projected 
point was then subjected to a sequence of tests in order to determine whether it was 
inside or outside each surface until finally the location relative to the boundaries was 
confirmed. The tetrahedral element was then assigned a group number according to the 
region in which it was found to lie. The actual conductivity values assigned to each 
element in the second stage of the process was not set until the finite element solution 
was computed. In this way, it was easy to vary the conductivity without altering the 
geometrical model. 

For all regions except skeletal muscle, a single group number was used. The local 
nature of muscle fiber orientation, and the resulting change in the conductivity tensor, 
required that more group numbers be reserved for the muscle region. As a first 
approximation to the actual fiber orientation, we established 12 muscle regions as wedge- 
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shaped sectors defined by bounding planes which all intersected at the center line of the 
torso (the z-axis in this case) and were spaced at regular 30-degree intervals around the 
thorax as shown in Fig. 2. The slice depicted in Fig. lc has been color-coded according to 
the group number, and, thus conductivity values. 

The conductivities finally used for each region in the model were based on values from 
the literature [24]. The muscle regions were assigned conductivities such that the ratio of 
conductivities-longitudinal vs radial-of the fiber direction was between 3 : 1 and 5 : 1, 
again in accordance with the literature. 

Mathematical theory 

Electrical activity arising from cardiac sources is governed by Maxwell’s equations. It 
has been shown [18] that for the frequencies of interest in electrocardiography, we can 
neglect capacitive, inductive, and electromagnetic propagation effects within the volume 
conductor. This leads to a quasi-static formulation of the field equation (the general form 
of Poisson’s equation for electrical conduction), which can be stated as: 

V.(aV@)=-I,, in Q (I) 

with the general boundary conditions: 

~‘=~,~ onr, (2) 
(aV@)*n--g=O onI, (3) 

where: 

@ = potential field 
a0 = potentials on the epicardial surface boundary (known a priori) 
CT= conductivity tensor 
fSv= internal current source per unit volume 
g = externally applied boundary current (if one exists) 
Q = bounded domain 
IE = boundary at the epicardial surface 
17.= boundary at the torso surface. 

Fig. 2. Diagram of a single slice through the torso model showing the way in which conductivity 
values were assigned to the anisotropic skeletal muscle. Each transverse torso slice was first 
divided into 12 equiangular sectors. Muscle fibers were assumed to run in the plane perpendicular 
to a radial vector drawn from the origin, through the center of each sector. For each tetrahedral 
volume element whose centroid fell within the sector, the transuerse value (typically 0.1 S/m) was 
given to the component of the conductivity tensor in the direction of this ray. All components of 
the conductivity tensors perpendicular to the radial vector received the longitudinal value 
(typically 0.3 S/m). Orthogonal transformations resolved the tensor components to Cartesian 

coordinates for use in the finite element calculations. 
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A solution of (l)-(3) which allows for anisotropy, complex geometries, and inhomo- 
geneities utilizes the finite element method. The finite element method converts the 
differential equation in (1) according to the principle of virtual work to a more general 
integral form of the equation which is called the weak formulation of the problem. Since 
the conductivity tensor is symmetric and Poisson’s equation is an elliptical partial 
differential equation that satisfies the Euler-Lagrange condition for minimization of a 
functional via the Ritz method of variational calculus, the weak formulation is equivalent 
to the variational formulation, which, in this case, is also equivalent to the Galerkin 
formulation [25]. The global integral form over the domain Q of (1) with boundary 
conditions (2) and (3) is then: 

Equation (4) holds for an arbitrary continuous function $ such that VG E 6 = 0 on p, 
subject to the condition Q, = a,, on p,. 

Once the equation is in the global integral form, the finite element approximation 
method can be applied to turn the continuous formulation into an equivalent discrete 
form. With the discretization completed, one must define the approximation function, 
i.e. the interpolating function, which solves the discrete form of the equation. The 
discretization of the potential field and volume conductor was accomplished using 
isoparametric elements that satisfy the basic convergence requirements for interpolating 
functions of: smoothness, continuity across the element boundaries, and completeness 
[25,26]. 

In order to apply the interpolation function, all coordinates must be mapped to what is 
termed the “parent domain”, which is a fixed unit coordinate system. The coordinate 
transformation from the natural coordinates associated with the element parent domain 
(finite element domain) to the coordinates of a point (x, y, and z location of the mesh 
points) take place via affine maps. Thus, the elemental volume domain is the image of 
the biunit cube in the parent domain under a trilinear transformation [25,26]. The 
transformations in terms of the elemental coordinates and interpolation functions are: 

(5) 

where N,(t, r, 5) = $(I + bNl+ w~)(l+ LL) is the interpolation function and z= 
[c, 77, c} are the natural coordinates (parent domain) in the trilinear hexahedron. 

The interpolation function N,,(t, 7, (;) originally applies to an eight-node hexahedral 
element but can be reduced to either a six-node prism or a four-node tetrahedral element 
by the method of degeneration [25,26]. 

The finite element approximation, expressed in terms of the interpolation function, of 
(l)-(3) is thus: 

(7) 

where E, is the number of elements on rT through which boundary current is applied. 
The quantity in parentheses is the element stiffness matrix which represents the 
geometry and conductivity of each finite element. Summation over all the element 
stiffness matrices yields the global stiffness matrix which contains the geometry and 
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conductivity of the entire volume conductor. Once the boundary conditions (2) and (3) 
are applied to (7), the finite element approximation reduces to solving a system of linear 
equations: 

where 

Several different problems of interest in electrocardiography can be solved from the 
general formulation of (8). If the source current term is zero (Is”= 0) and the boundary 
current term is non-zero, effects on the transthoracic currents due to injection of current 
at the body surface could be computed. Such an injection would provide current 
equivalent to that introduced by the application of external defibrillation fields. If the 
externally applied boundary current is zero (g = 0), and the internal source currents, Zsv, 
are known, then one could calculate the potential and current distributions not only 
within the thorax, but also on the epicardial surface and through the myocardium. If one 
excludes all regions containing sources from the domains, one can formulate the problem 
in terms of a volume bounded by the epicardial and torso surfaces for which Laplace’s 
equation holds. The epicardial potential distribution becomes the necessary and suffi- 
cient boundary condition to calculate transthoracic current and potential distributions. 
This requires solving (8) with the right-hand side equal to zero: 

E c K,,b@. = 0 with Q, = e0 on rE (9) 
e=l 

from which, given the potential field on the epicardial surface, the potentials throughout 
the thorax and on the body surface can be calculated for any specified conductivity and 
geometry. Once the thoracic potentials are known, the currkn; 
can be calculated for each element by approximating the 
multiplying it by its local conductivity tensor, a,,,. 

density per unit vdlume 
potential gradient and 

(10) 

This allows for the calculation of the three-dimensional currents within the thorax that 
arise due to cardiac electrical activity at any instant of time in the cardiac cycle for which 
epicardial data exists. 

Numerical solution of the finite element approximation 

The numerical treatment consists of solving equations (9), for the potential distribu- 
tion, and (10) for the current density, given different epicardial potential distributions, 
and for different conductivity configurations. These computations have been previously 
tested and validated by theoretical studies involving simple geometries and in experimen- 
tal studies utilizing an electrolytic torso tank [25,27]. 

Equation (9) can be solved in several different ways, depending on the further use of 
the results. For example, if one wishes to calculate solutions to inverse problems then it is 
necessary to express (9) in terms of a transfer coefficient matrix. The resulting formula- 
tion can be used for both forward and inverse solutions: 
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(11) 

or equivalently: 

G”r= (Krr- Kn/K;;K#(KTyK;:KyE - KTE)Q)E = ATE&. (12) 

The matrix in (11) is the partitioned global stiffness matrix that expresses the interaction 
between the various regions of the thorax, where the subscripts T, V, and E stand for 
torso, volume, and epicardium, respectively. The stiffness matrix is typically very sparse 
since each element can interact with only a few other neighboring nodes with which there 
is direct contact. In (12) ATE is the transfer coefficient matrix relating epicardial and 
torso potentials. Drawbacks of this formulation are primarily computational due to the 
storage requirements for the various submatrices in (12) and the cost of calculating 
inverses and performing large matrix multiplications. The advantages are that solutions 
to (12) are solutions to the forward problem that can also, with some additional 
manipulations to deal with the ill-conditioned nature of ATE be used to solve the inverse 
problem. Furthermore, to apply the forward solution to different sets of epicardial 
potentials requires only a matrix multiplication by A,. 

Other solution methods, which are more commonly used in solving systems of 
equations that result from finite element approximations, involve manipulating the 
potential vector and the stiffness matrix in (11) in such a way as to incorporate a single set 
of boundary conditions and then solve the resulting linear system of equations. The 
advantages to this approach are typically a significant reduction in memory requirements 
and solution time, but these are gained at a cost of having to solve (11) again for each set 
of epicardial potentials. In these methods, boundary conditions are either applied 
explicitly, changing the corresponding columns of global stiffness matrix to reflect the 
imposed value at the boundary or by a computationally more efficient way using a 
penalty method. The penalty method in finite elements works by first adding a large 
positive value, C= iV* 10P.max(K,b), where Nis the order of the system andp is typically 
3 - 8, to each diagonal term of the global stiffness matrix that corresponds to a node 
which has an applied boundary condition, and then multiplying C by the boundary 
condition and adding it to the right-hand side of equation (9). As long as the value of C is 
considerably larger than the diagonal elements of the stiffness matrix and the condition 
number of the stiffness matrix remains within stable limits, the boundary conditions are 
satisfied to within an error of 10-P [28]. 

Once the boundary conditions have been applied, one is still left with a potentially 
large system of linear equations to solve, for which there are a number of techniques. 
Direct solution methods, while potentially fast, are limited by the size of the system and 
the amount of available memory, especially when no attempt is made to take advantage 
of the sparse nature of the stiffness matrix. Iterative methods, on the other hand, are 
more memory efficient but their performance depends on the number of iterations, and 
thus the time, required for convergence, if indeed the solution converges at all. 

For the solution of this model, we have implemented both direct and iterative solution 
strategies. In order to improve the performance of direct methods, we made use of a 
number of storage and program optimizations. The finite element method generates a 
symmetric, linear system whose computational size is determined by the maximum 
bandwidth of the global stiffness matrix. The number of non-zero elements along any 
row (or column) depends on the number of nodes that interact via common elements; 
therefore, the bandwidth, while potentially small, can become grossly inflated due to an 
inefficient numbering of the nodes. To reduce this bandwidth, and thus the memory 
needs for storage of the matrix, we utilized two approaches. The first was a bandwidth 
optimization algorithm based on that of Cuthill and McKee [29]. This necessitated 
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reordering the nodes in such a way as to minimize the elemental connectivity, and thus 
the bandwidth. While this strategy typically reduced the bandwidth by an order of 
magnitude, it still left numerous zeros in the matrix. 

The second, and more successful strategy, involved storing the global stiffness matrix 
in compressed-sparse-row (CSR) format [30]. According to this scheme, only the non- 
zero values in the matrix are stored, along with two integer vectors which contain the 
necessary pointers to locate the original elements. This scheme reduced the storage 
needs for the global stiffness matrix typically by two orders of magnitude. While such 
schemes require more overhead to retrieve and store the data, when used with sparse 
matrix solvers on large (hundreds-of-thousands of elements) problems, the overall effect 
was a considerable reduction in compute time over direct methods. 

Code optimization included, at least for the solvers written in house, use of processor 
specific basic linear algebra software (BLAS) routines [31-331 for all standard matrix and 
vector calculations, along with standard Fortran optimization and profiling techniques. 
Furthermore, we took specific advantage of the super-scalar architecture of the IBM 
RISC/60000 wherever possible. 

Direct solutions consisted of first optimizing the bandwidth, then storing the maximum 
bandwidth region of the global stiffness matrix in a one-dimensional array, and finally 
computing the solution using a bandwidth solver based on a modified Gaussian elimina- 
tion method. The methods for iterative solutions included a Jacobi method with 
preconditioned conjugate gradients (JCG), successive overrelaxation (SOR), and sym- 
metric SOR with a conjugate gradient preconditioner (SSORCG) [34]. All the iterative 
methods converged within 500 iterations, with the symmetric SSORCG converging to a 
stopping criterion of 1 x lo-* within 250 iterations in the least amount of CPU time. 

Data acquisition and experimental procedures 

The input data that drive the calculations of the body surface potentials and the 
thoracic currents are electric potentials from the epicardial surface of the heart. These 
“electrograms” are gathered as part of clinical procedures performed at the University of 
Utah Medical Center, for the purpose of determining the location of sources of 
arrhythmia in patients with chronic cardiac rhythm disturbances that do not respond to 
less invasive interventions. The standard procedure for such recordings is as follows: 

After the chest is surgically opened, but prior to the necessary heart surgery, a 64- 
electrode recording array is placed in the heart. The array is constructed of 64-enamel 
insulated, 5 mil diameter, silver wires knotted into nylon stocking material sewn into the 
basic shape of the heart. The insulation is removed just where the wires are tied into the 
sock, forming very fine unipolar electrodes. 

Electrograms are recorded using a multiplexer consisting of 64 low noise, high input 
impedance instrumentation amplifiers, each of which is referenced to a Wilson Central 
Terminal. Each amplifier incorporates a sample and hold circuit to insure simultaneous 
sampling at rates of 1000 samples per second, and digitized using a 1Zbit linear analog to 
digital to analog converter. Two to fifteen seconds of data are recorded and stored to 
hard disk for processing. 

During processing, the data are gain adjusted and corrected for baseline drift. The 
data from multiple cardiac cycles can be averaged to further reduce noise and minimize 
beat to beat variations. Isopotential maps are typically constructed at every 5 msec 
during the QRS interval and every 20 msec during the ST-T interval, although data are 
available for every millisecond during the entire QRST interval. 

Visualization 

In developing the geometrical model and examining the results of simulations, we 
developed a number of visualization tools specifically for this project. This effort was 
driven in part by our rather specialized needs, but also by the poor performance of 
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existing general-purpose programs for scientific visualization. The recent advent of 
high-powered, dedicated graphics hardware incorporated into the standard UNIX 
environment, together with mature, well documented, graphics software primitives, 
made this development both feasible and relatively efficient. 

The tools required for this project fell into two overlapping categories: for building 
and developing the geometric model, we needed interactive, real-time three-dimensional 
display and editing programs, with which we could view and digitize the MRI images and 
then examine and alter the resulting points and connectivities. Once data were generated 
from the model, we needed a second group of programs to visualize the potential 
distributions and current vector fields in three dimensions, also interactively. Programs 
in the first category were originally developed in Fortran on the Evans and Sutherland, 
PS-390. a graphics terminal served by Vax 11/750 and Vax 4000 computers, and then re- 
written in C for the GL graphics library from Silicon Graphics. We developed the 
digitizing program used to obtain surface descriptions from the MRI images on the 
Macintosh II computer in C [21]. The data visualization software was developed 
exclusively in GL, using both a Silicon Graphics 4D/210 VGX graphics workstation and 
an IBM RS/6000 workstation equipped with a Silicon Graphics display system. 

All programs on the workstations incorporated user input via the keyboard for setting 
parameters or toggling settings, a mouse for picking objects or editing connectivities, and 
a dial box for rotating and translating the contents of the display. The models 
themselves, wire-frame meshes of nodes connected into either triangles or tetrahedra, 
served as the frame or structure for the display of potentials and currents. From potential 
data at the vertices of triangular surface elements, we could construct flat and Gouraud 
shaded, color-coded potential distributions, to which we could then apply scaling, 
rotation, translation, and clipping planes. For a more quantitative view of the data, 
construction of color-coded contour lines was often better suited than shaded rendering, 
especially when combined with different scaling models for the data (linear, exponential, 
and logarithmic) and different color schemes. Examples of potential displays are shown 
in Figs 4 and 5. 

Display of current vector fields presented some new problems since there are few 
existing standard methods of displaying data which have both amplitude and directional 
information, especially in three dimensions [35]. We have included several options in the 
display graphics, the simplest of which draws for every vector a single “arrow” of 
normalized length and with the shaft colored according to the vector magnitude. A 
second form of display requires a starting point to be defined as an element for which the 
current vector is known. From the centroid of this starting element, a search line is 
constructed in increments along the direction of the current vector for that element until 
the endpoint of this line is outside the region enclosed by the entire first-order 
neighborhood of the starting element. At each increment, the location of the closest 
element centroid to the interim endpoint is determined and when the search line is 
finished, the element which was closed overall is selected and a vector drawn to its 
centroid from the centroid of the starting element. This process continues until the 
search line hits either an element on the edge of the geometry, or the same element for a 
second time, yielding a loop which represents a continuous path of current in the volume. 
The user can then select which and how many such current loops are followed and then 
display them as continuous, color-coded lines or ribbons. An example of current display 
is shown in Fig. 5. 

RESULTS AND DISCUSSION 

Model specifications 

For this study, we present two separate models based on a single set of MRI images, 
one we refer to as the high resolution (H), the other as the medium resolution (M) 
version. The specifications for both are given in Table 1. 
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Table 1. Specifications for 2 separate geometric models based on a set of MRI images from a single patient. 
“H” indicates the high resolution version of the model, “M”, the medium resolution version 

Surface 

Torso 
Fat 
Muscle 
Lung 
Epicardial 

No. surface No. triangles Internodal 
nodes (H/M) (HIM) spacing (H/M) 

12 000/2867 24 000/5635 5.39DO.99 mm 
11900/2596 23 60015077 5.5Y11.12 mm 
I1 700/2403 23 20014684 5.36UO.99 mm 
550011254 11000/2321 5.38/11.10mm 
1591/1591 265012650 4.80/4.80 mm 

Totals 

Surface nodes 
Grid nodes 
Total nodes 
Triangles 
Tetrahedra 

No. elements 
(H/M) 

42400/10 711 
39600111372 
82 000122 083 
84 450118 676 
500 0001129 946 

The terms “high” and “medium” are obviously empirical measures which refer to the 
ease with which the models could be reasonably managed given our available computa- 
tional resources. The high resolution version, while enabling us to display and manipu- 
late the geometry, led to a finite element computation which outstripped the memory 
configurations and CPU capabilities of even the supercomputers at our disposal. In fact, 
to compute transthoracic currents with the high-resolution version of the model would 
require at least a week of CPU time and 30 GByte of storage on an IBM 3090/6008 
supercomputer using our direct-solve algorithms. Partitioning of the problem would 
reduce the memory requirements at a severe penalty in increased CPU needs. While the 
medium resolution model contains considerably fewer elements than the high resolution 
version, it is still twice as large as any other thorax model reported in the literature [36]. 
Figure 3 shows an anterior view of the complete high-resolution model as a wire mesh 
diagram. For illustration, each surface is rendered in a different color and a clipping 
plane has been applied to strip away some of the most anterior triangles. 

Simulations 

In the first simulations, three sets of artificially generated potentials were used as 
boundary conditions. Values at the nodes ranged from + 20 to - 20 mV as a function of 
their distance from each of three orthogonal planes intersecting at the center of the 
heart, thus providing simple configurations for testing and illustrative purposes. 

The second set of simulations employed epicardial maps recorded during open chest 
surgery on a human patient. At each instant in time throughout the QRS, the 
experimentally recorded potentials were mapped to anatomically equivalent positions on 
the model heart. These potentials then had to be interpolated to yield potentials over the 
entire ventricular surface of the model heart, which provided the Dirichlet boundary 
condition for the simulation. Interpolation was performed using a scheme which is 
equivalent to minimizing a discrete estimation of the Laplacian of the potential over the 
entire surface of interpolation [37]. 

To characterize the effect of including anisotropic conductivity within the skeletal 
muscle on the forward calculation, we computed the intrathoracic potential distribution 
using both the inhomogeneous isotropic and anisotropic versions of the medium 
resolution torso model. In the anisotropic model, conductivities were assigned the 
following values [ 241: 

subcutaneous fat = 0.045 (S/m) 
lungs = 0.096 (S/m) 
blood = 0.680 (S/m) 
average trunk = 0.240 (S/m) 
skeletal muscle = 0.100 (S/m)-perpendicular to fiber orientation 
skeletal muscle = 0.300 (S/m)-parallel to fiber orientation, 
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Fig. 3 (Bottom left). The torso, fat, lungs, and epicardial surfaces of the high-resolution torso 
model shown in an anterior view. Each surface is rendered as a triangularized wire mesh 
of a different color and a frontal cutting plane has been applied to strip away the most anterior 

of the triangles. 
Fig. 4 (Top and middle). A composite plate of electric potential maps over epicardial and torso 
surfaces. For each panel we chose the same anterior view and in each map, the equipotential 
contour lines are color-coded from blue (most negative potential) through green and yellow to 
red (most positive potential) in linear steps over the range of potential values in the panel. In 
panel (a) (middle left) is shown the potential distribution derived directly from epicardial 
potentials measured with a 64-electrode sock from a patient during open-chest arrhythmia 
surgery. Panel (c) (middle right) depicts the potential distribution over the entire ventricle 
surface as interpolated from the values in panel (a). Panels (d) and (e) (top left and right) show 
the body surface potential maps computed using the forward solution. For the results in panel (d) 
an inhomogeneous, isotropic torso model was used, while for panel (e) the skeletal muscle region 
was assigned isotropic conductivity values. In panel (b) (middle center) is shown a single, 
computed ECG tracing from a precordial lead location on the surface of the inhomogeneous, 
isotropic torso model. The red vertical bar indicates the instant in time at which all the surface 

maps were taken. 
Fig. 5 (Bottom right). Two views of the current vector distribution in a single slice (the same slice 
as that used in Fig. 1) together with the potential map rendered on the surface of the ventricles at 
the same instant in time as in Fig. 4. Colors in the potential map are coded from green (most 
negative), through gray (zero), to red (most positive). Current vectors are depicted as three- 
dimensional arrows of uniform length with the tip of each colored white and the shaft colored 
according to the current magnitude (blue for smallest, through yellow and green to red for 
largest). The upper panel shows an anterior view with approximately 20” of cranial rotation, 
while the lower panel shows the same transverse slice after 90” of cranial rotation looking 

inferiorly with the anterior surface of the torso at the bottom of the figure. 
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Once the potential values were calculated using (9) for all the nodes of the model 
geometry, potential gradients and then current densities were computed according to 
equation (10). The results were displayed as potential distributions on all the surfaces of 
the model and as current density vectors in the volume. The epicardial boundary 
conditions and the resulting computed body surface potentials for a single instant in time 
are shown in Fig. 4. Panel 4a shows an equipotential contour map of the measured 
epicardial potentials and Panel 4c shows the same distribution after it had been 
interpolated. Panels 4d and 4e contain images of the body surface potential contour maps 
in the case of the isotropic (4d) and anisotropic (4e) models. In Panel 4b is shown a single 
calculated ECG lead from the precordial region of the isotropic torso model, the red 
vertical bar indicates the temporal location at which the potential distributions in Panels 
4a, 4c, 4d, and 4e occurred, 34 msec into the QRS. 

Comparison of the two epicardial distributions in Fig. 4 confirms the validity of the 
interpolation procedure-the overall shape of the distribution remains constant while 
areas of positive and negative potentials remain anchored to the same region of the 
epicardium. Only over the area not covered by recording electrodes is there slight 
expansion or shift of potential extrema. The epicardial data used for these calculations 
were recorded from a patient suffering from Wolff-Parkinson-White syndrome, and this 
particular beat demonstrates clear signs of pre-excitation via an accessory pathway 
feeding into the right-ventricular wall. Tell-tale signs include the early, low-amplitude 
activity in the ECG (delta wave) and the premature activity in the basal, right-ventricular 
epicardium (green contour lines on the left side of the epicardium). 

The resulting computed body surface potential distributions shown in Figs 4d and 4e 
are typical for the early stage of the QRS. The pre-excitation suggested on the right basal 
epicardial surface is not yet reflected on the body surface. The dominant feature of the 
distribution is a pair of positive areas over the left anterior epicardium, which is clearly 
reflected on the body surface as a precordial maximum. Of interest is the fact that there 
are two separate areas of positive potential on the epicardial surface that fuse to become 
a single maximum on the body, documentation of a phenomena long known from 
experimental studies. The effect of the anisotropic skeletal muscle on the body surface 
distribution can be seen by comparing the distributions in Figs 4d and 4e. The contour 
lines in the anisotropic case are more concentrated on the anterior surface than in the 
isotropic case; in fact, the entire back of the torso is free of contour lines in the 
anisotropic case, in sharp contrast to the isotropic case. There is also a slight shift in the 
location of the maxima between the two distributions. 

In later frames of the same beat the differences between isotropic and anisotropic body 
surface distributions become even more marked, drawing what are relatively symmetric 
and round extrema in the isotropic map into vertically oriented, elliptical regions of 
positive and negative potential. These effects are not characteristic of recorded body 
surface maps and are, we feel, an artefact of the manner in which the orientation and 
degree of anisotropy in the torso model were approximated. While neither the numerical 
values of 0.1 and 0.3 S/m nor their ratio could be considered inappropriate, the simple 
manner in which we assigned fiber orientation to the individual volume elements resulted 
in conductivity tensors which apparently had too strong a crania-caudal component. This 
follows directly from our resolution of the fiber direction into transverse components that 
were always aligned with a ray from the central axis of the body, and longitudinal 
components that were perpendicular to the same ray, in all directions. In reality, the 
sheets of skeletal muscle that enfold the thorax have longitudinal components that lie 
more in the transverse plane of the body than we have assumed. Hence the overall effect 
is an exaggeration of the crania-caudal component of the skeletal muscle conductivity. 
Increased longitudinal conductivity will tend to direct the current flow away from the 
radial direction and hence reduce the amplitude of the body surface potential distribu- 
tion, concentrating the contour lines where there is significant potential amplitude 
(anterior surface of the torso) and reducing it altogether in areas which lie further from 
the heart (posterior surface of the torso). 
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The computed current field from the same instant in time as depicted in Fig. 4 within a 
single, transverse slice through the thorax is shown from two different perspectives in 
Fig. Sa and Fig. 5b. Current flow is indicated by the direction of the arrows; the tips of 
the vectors are colored white, while the shaft colors range from blue through yellow, 
green, and then red as a function of the current magnitude. In this figure, current can 
clearly be seen flowing from the areas of positive potential on the heart surface (colored 
red) and returning to areas of negative potential (colored green). The magnitude of the 
current is greatest where flow is directed into the anterior surface of the heart but 
decreases sharply within a few centimeters of the epicardium. Near the body surface, 
current is directed parallel to the surface, as dictated by the Neumann boundary 
condition. 

CONCLUSIONS 

In this paper we have introduced an inhomogeneous, anisotropic thorax model based 
on human data for use in electrocardiography with emphasis on the calculation of 
transthoracic potential and current distributions. The model has utility in a variety of 
applications in electrocardiography including defibrillation studies, forward and inverse 
problems, impedance tomography, body surface potential mapping and more generally, 
to increase the understanding of the general theoretical basis of electrocardiographic 
waveforms. 

We have demonstrated the effects of including the anisotropic skeletal model volume. 
Since we could detect the influence of anisotropy using the conservative 3 : 1 estimate of 
parallel vs perpendicular anisotropy ratios, we predict that a more realistic represen- 
tation of the anisotropy will produce more pronounced effects. It remains to be seen 
however, if when a more accurate representation of the layering of the skeletal muscle 
volume is included, its effect will be to enhance or reduce both the radial current flow 
and body surface potential amplitudes. 

We are presently performing studies which quantitatively measure the effects of 
specific tissue inhomogeneity and anisotropy on the transthoracic current pathways and 
to further determine the functional relationships between the discretization level of the 
geometry and the solution accuracy. 

SUMMARY 

Electrocardiography has played an important role in the detection and characteriza- 
tion of heart function, both in normal and abnormal states. In this paper we introduce an 
inhomogeneous, anisotropic thorax model based on human data for use in electrocardi- 
ography with emphasis on the calculation of transthoracic potential and current distribu- 
tions. The model has utility in a variety of applications in electrocardiography including 
defibrillation studies, forward and inverse problems, impedance tomography, body 
surface potential mapping and more generally, to increase the understanding of the 
general theoretical basis of electrocardiographic waveforms. 

We have demonstrated the effects of including the anisotropic skeletal model volume 
in the model. Since we could detect the influence of anisotropy using the conservative 3: 1 
estimate of parallel vs perpendicular anistropy ratios, we predict that a more realistic 
representation of the anisotropy will produce more pronounced effects. It remains to be 
seen however, if when a more accurate representation of the layering of the skeletal 
muscle volume is included, its effect will be to enhance or to reduce both the radial 
current flow and body surface potential amplitudes. 

We are presently performing studies which quantitatively measure the effects of 
specific tissue inhomogeneity and anisotropy on the transthoracic current pathways and 
to further determine the functional relationships between the discretization level of the 
geometry and the solution accuracy. 
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APPENDIX. SOFTWARE DEVELOPMENT 
This Appendix contains a list and short explanations of the original software developed for the construction 

and use of the CVRTI Torso model. 

(1) mri2ps 
(2) new-digitizer 
(3) mri_metric 
(4) mri_spline 

(5) mri_tri 
(6) tri_sort 
(7) mrigoint_adder 

(8) tessellate 
(9) terra-tester 

(10) tetra_sort 

(11) edtri 
(12) cjmaps 

(13) ecgfe3D 

Converts MRI image data into postscript files. 
Manually selects pixels (x, y coordinates) from each MRI slice (Macintosh II). 
Scales, shifts, and sorts the digitized surface points from the MRI images. 
Uses a parametric cubic spline to smooth raw data points into evenly spaced points on 
a contour. 
Automatically triangulates a pair of MRI contour layers. 
Sorts triangulated slices into complete surface descriptions. 
Automatically produces a grid of points based upon a minimum separation distance 
criterion. 
Tetrahedralizes a cloud of points in three dimensions. 
Tests the tetrahedra, generated by tessellate, according to minimum volume and length 
criteria, and deletes tetrahedra that were formed outside the boundary in convex 
regions. 
Sorts tetrahedralized slices into complete volume descriptions, including determi- 
nation of conductivity for each element. 
Displays points, surfaces and volumes for interactive editing of connectivities. 
Interactively visualizes and displays the model geometry, rendered potential distribu- 
tions, contour maps, and current vector fields. 
Solves Poisson’s (and Laplace’s) equation using a general three-dimensional finite 
element algorithm with options for a variety of different boundary conditions. 
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