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Abstract

Subject-specific geometry such as cardiac position and
torso size plays an important role in electrocardiographic
imaging (ECGI). Previously, we introduced a graph-
based neural network (GNN) that is dependent on patient-
specific geometry to improve reconstruction accuracy.
However, geometric uncertainty, including changes in car-
diac position and torso size, has not been addressed in
network-based methods. In this study, we estimate geomet-
rical uncertainty on GNN by applying uncertainty quan-
tification with polynomial chaos emulators (PCE). To esti-
mate the effect of geometric variation from common mo-
tions, we evaluated the model on samples generated by
different heart torso geometries. The experiments shows
that the GNN is less sensitive to heart position and torso
shape and helps us direct development of similar models
to account of possible variability.

1. Introduction

ECGI [1] aims to reconstruct cardiac electrical sources
from high density ECGs or body surface potentials (BSPs)
mathematically. Classic ECGI methods incorporate phys-
ical models based on patient specific medical imaging as
prior knowledge [1–4]. ECGI can be used to diagnose and
treat cardiac Arrhythmias, but its expansion into clinics has
been hampered by inaccuracies, some of which may derive
from geometric error of the model.

Previously, we introduced a graph-based neural net-
work (GNN) [5] that reconstructs non-Euclidean image se-
quences by directly learning the inverse mapping as a func-
tion of the underlying geometry as shown in Fig. 1. The
goal of this GNN approach form a mathematical approach
to the ECGI that is less sensitive to variations in geometry
and that is numerically better posed than traditional ECGI.
However, since patient geometry is still used to train the
model, our new approach may also be sensitive to geomet-
ric errors.

The patient-specific geometry plays a critical role in the
physics-informed prior knowledge in bioelectric simula-
tion, including ECGI. Geometrical uncertainty in patients

can result from changes in patient posture and respiratory
cycle, altering the cardiac positions and torso size, which
can subsequetly impact ECG signal simulation and the re-
sulting inverse solutions [6,7]. While the sensitivity to geo-
metric error is difficult to determine experimentally, uncer-
tainty quantification (UQ) methods can be used to system-
atically explore model sensitivity to these errors to better
understand their accuracy and ways to improve them.

In this paper, we applied uncertainty quantification to
the GNN to estimate model uncertainty due to torso and
cardiac geometry. Using polynomial chaos emulators
(PCE) and efficient sampling of the parameterized geomet-
ric variation, we were able to estimate the expected varia-
tion of a nominally trained GNN-ECGI model. For com-
parison, we performed similar UQ on a classic tikhonov
ECGI model. Our goal in this study was to determine
the sensitivity of the GNN-ECGI pipeline to cardiac po-
sition and torso shape in relation to more classical ECGI
approaches. This work highlights the sensitivity of the
trained GNN to heart position and torso size and helps us
direct development of similar models to account of possi-
ble variability.

2. Methodology

Graph-based Neural Network We use graphs to repre-
sent the triangular meshes of both torso and heart, where
the patient-specific geometry is presented by the topology
of vertices and edges. The hierarchical geometry preserves
the patient-specific information and embeds both torso and
heart domain in a lower dimension representation.

To describe the propagation of signals on each domain,
we define both encoder and decoder over geometric space
by using spatial-temporal graph neural networks, which
has interlaced graph CNN in space and regular convolu-
tion in time.

We then define the inverse mapping as a function of ge-
ometry. Specifically, the potential on one site on torso can
be represented as a combination of the potential from all
nodes on heart, where the coefficients are determined by
the relative distance between heart and torso. We assume
the linearity to hold in the latent space and explicitly model
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Figure 1. Overview of the graph-based neural network [5].

the inverse mapping as a linear function where the coeffi-
cients are function over geometry.

The GNN was trained using multiple recorded beats
(800 beats) and the nominal geometry obtained from a
torso tank experiment including tank and pericardial sock
electrodes (Sec. refsec:experiments).

Tikhonov Regularization Classical ECGI was per-
formed using zero-order Tikhonov Regularization [2] as a
comparison for the GNN-ECGI. We used the tikhonov reg-
ularization implemented in SCIRun [8] using the L-curve
method to find the regularization parameter. The full car-
diac cycle was regularized in a block and the regularization
parameter was chosen for each beat and geometry.

Experiments We obtain in-vivo recordings from an an-
imal model experiment [9]. Several cardiac activation se-
quences were generated using bipolar stimulation from in-
tramural plunge needles at different sites of the heart: left
ventricle (LV), right ventricle (RV), apex, septum, and si-
nus. The cardiac potentials were recorded at the epicardial
surface with an epicardial sock with 247 electrodes (inter-
electrode spacing 6.5±1.3 mm). The torso tank had 192
silver/silver-chloride electrodes (with inter-electrode spac-
ing 40.2±16.8 mm) distributed across the outer surface.
Geometric surfaces were constructed based on electrode
locations acquired during each experiment.

Geometric Variation The geometric variation used in
this study are meant to model the change in cardiac posi-
tion as a result of posture and the change in torso shape
during the respiratory cycle. Cardiac position was param-
eterized similar to the variation described in Swenson etal.
[6], representing three directions of cardiac swing, and ver-
tical translation. Torso shape was modeled as a anterior-
posterior scaling. The five total parameters were assumed
to be independent and uniform in distribution.

Uncertainty Quantification We applied UQ to both
the trained GNN-ECGI and Tikhonov ECGI models us-
ing PCE [10] in UncertianSCI [11]. The cardiac position
and torso size were sampled using weighted Fekete points
[12, 13] generating 262 sets of caridac-torso geometries.
The geometries were used in both ECGI pipelines and the
predicted cardiac sources were used with PCE to estimate
the statistics of the model variation. We predict the model
mean, median, stdev, and 8 quantile bands for each cardiac
source on the pericardial surface and timestep.

3. Results

The uncertain heart position and torso size resulted in
high levels of variability in cardiac potentials predicted by
the trained GNN and Tikhonov resgularization. Derived
metrics, such as the local activation times, showed simi-
larly high uncertainty.

Table 3 is the summary of both Tikhonov and GNN
models. We computed uncertainty of the pericardial po-
tentials and local activation times (LATs) using polynomial
chaos expansion (PCE) implemented in UncertainSCI. In
general, the GNN is less sensitive to geometrical changes
on pericardial potential prediction. Tikhonov method is
less sensitive on predicting activation maps.

Fig. 2 shows some examples of LATs presented by mean
and standard deviation over the heart surface. The graph-
based model shows more variability from the geometry
uncertainty on LV stimulation, while Tikhonov model has
more variability on sinus and RV stimulations.

Fig. 3 are RMS potentials over heart surface. The quan-
tile ranges show the variability because each bands rep-
resents the distribution where the darker band shows the
higher probability of prediction for the signal that will be
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Table 1. Uncertainty statistics of GNN and Tikhonov models on different stimulation sites.
Model Sinus LV RV Apex Septal
GNN Potentials (mV) 2.6 ± 2.9 5.2 ± 5.0 5.6 ± 5.3 3.5 ± 2.7 4.3 ± 3.8
Tikhonov Potentials (mV) 0.7 ± 0.7 5.2 ± 6.0 13.9 ± 20.1 21.0 ± 24.6 30.9 ± 35.1
GNN LATs (ms) 19.7 ± 5.9 54.2 ± 17.7 63.6 ± 23.8 32.9 ± 9.3 41.6 ± 10.0
Tikhonov LATs (ms) 14.9 ± 6.6 31.9 ± 11.7 46.2 ± 14.1 41.3 ± 12.1 44.9 ± 14.0

Figure 2. Spatial distribution of uncertainty of the LATs on both GNN and Tikhonov models. Colormap shows the mean
and the cylinders show the standard deviation.

Figure 3. Uncertainty of reconstructed cardiac RMS potentials on both GNN and Tikhonov models.

more likely to fall into that region. The graph-based model
has lower sensitivity of geometrical changes along the time
of signal propagation and is less dependent on RMS am-
plitude.

Fig. 4 shows examples of the uncertainty of the simu-
lated pericardial potential recordings . The quantile bands
shows the probability of samples falling into that region.
The results show consistent variation with respect to ac-
tivation pattern to what we saw in other measures, with
Tikhonov showing lower variability in sinus activation, but
lower variability in LV and RV stimulation. The samples

show in the figure (blue lines) also demonstrate extreme
variability with RV stimuation predictions.

4. Conclusions

The results described in this study show a similar level
of uncertainty in both the GNN and Tikhonov regulariza-
tion predictions of cardiac sources resulting from cardiac
and torso geometry variability. While the relative variation
of the two models depended on beat and activation profile,
the GNN-ECGI was less sensitive to the modeled geomet-
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Figure 4. Examples of simulated pericardial recordings for both GNN and Tikhonov models.

ric uncertainty overall. Predicted uncertainty also demon-
strates possible improvements in the GNN-ECGI model,
such as including geometric variation in the training data.
Better understanding of ECGI sensitivity to model geome-
try will also improve understanding in clinical settings and
inform diagnostic and treatment predictions.
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