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Abstract— Deep neural networks have shown promise in
image reconstruction tasks, although often on the premise
of large amounts of training data. In this paper, we present
a new approach to exploit the geometry and physics un-
derlying electrocardiographic imaging (ECGI) to learn ef-
ficiently with a relatively small dataset. We first introduce
a non-Euclidean encoding-decoding network that allows
us to describe the unknown and measurement variables
over their respective geometrical domains. We then ex-
plicitly model the geometry-dependent physics in between
the two domains via a bipartite graph over their graphical
embeddings. We applied the resulting network to recon-
struct electrical activity on the heart surface from body-
surface potentials. In a series of generalization tasks with
increasing difficulty, we demonstrated the improved ability
of the network to generalize across geometrical changes
underlying the data using less than 10% of training data
and fewer variations of training geometry in comparison
to its Euclidean alternatives. In both simulation and real-
data experiments, we further demonstrated its ability to be
quickly fine-tuned to new geometry using a modest amount
of data.

Index Terms— Geometric Deep Learning, Inverse Prob-
lems, Physics-Based Deep Learning.

I. INTRODUCTION

Deep learning has shown state-of-the-art performance across
a variety of image reconstruction tasks [1]–[6]. In some tasks,
the imaging physics is partially known and modulated by
specific parameters. For instance, heart or brain generates
potentials that can be measured on the body or skull surface
[7], [8]. This gives rise to (forward and inverse) mapping op-
erators following the underlying quasi-static electromagnetic
theory, but specific to the geometry on which the sources and
measurements reside (e.g., the heart and body surface).

In the context of Euclidean deep learning, one would
attempt to learn such inverse mapping without the knowledge
of the underlying geometry, such as the heart shape and
relative position of between heart and torso [9]–[14]. This
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approach, as we will show, increases the need for training
data and produce an inverse mapping not generalizable across
geometries. It is possible to tackle the latter issue by using
an information bottleneck to remove geometrical information
from input data and thus make this inverse mapping invariant
to geometrical factors [14]. Such an approach, unfortunately,
requires even more training data to represent the variations
arising from different geometries.

An interesting open question is thus whether learning such
inverse mapping as a function of the underlying geometry
would reduce the need of training data and improve the
generalization of the learned function. Graph convolutional
neural networks (GCNN) provide a promising approach to
describe non-Euclidean variables defined over geometrical
domains [15]. Significant efforts have been made in GCNN,
such as node- and graph-level classifications, graph embed-
ding, and graph generation [16]. However, to our knowledge,
no previous works have reported learning inverse mappings
between spatiotemporal variables defined on two separate
graphs.

This paper presents a novel network to reconstruct non-
Euclidean image sequences by directly learning the inverse
mapping as a function of the underlying geometry of the
problem. To describe the spatiotemporal variables (unknowns
and measurements) over their respective geometrical domains,
we first introduce an encoding-decoding architecture consist-
ing of spatial-temporal graph convolutional neural networks
(ST-GCNN) defined separately on each domain. To model
the geometry-dependent physics in between, we then learn
the inverse mapping as a function defined on a bipartite
graph over the graphical embedding of these two geometrical
domains with the functional form informed by the underlying
physics. Extending on an earlier proof-of-concept [17], we
focus on the generalization ability of this non-Euclidean
image reconstruction network from two aspects. First, previous
studies [14] based on Euclidean deep networks described that
a stochastic formulation of the the same network, based on the
theory of information bottleneck (IB) [18], could improve the
generalization ability of the network by removing from the
input data geometry information that are not present in the
output solutions. By allowing the inverse mapping to change
with the underlying geometry in the presented non-Euclidean
network, we anticipate that this particular benefit of the IB
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would be reduced. To test this conjecture, we develop the
non-Euclidean network in both deterministic and stochastic
formulations, and investigat their reconstruction performance
differences. Second, we test the presented network in a series
of generalization tasks with increasing difficulty, in compar-
ison to Euclidean baselines with and without a geometry-
invariant bottleneck [14], to test its ability to 1) reduce the
diversity of the training data needed on the same geometry,
2) reduce the amount of geometrical variations needed in
the training data, and 3) train across different geometry (i.e.
different graphs), a process that is not possible with Euclidean
learning unless these geometry are pre-registered. Finally, in
in-vivo animal experiments, we demonstrate the ability of
the presented network – after training on simulation data –
to be quickly fine-tuned to a small amount of in-vivo data.
All experiments are performaned in the application of recon-
structing spatiotemporal electrical potentials on the ventricular
surface from body-surface potentials (commonly known as
electrocardiographic imaging (ECGI)) [19].

The main contributions of this paper include the following:
1) We present, to our knowledge, the first ST-GCNN

approach to learn an inverse mapping between non-
Euclidean variables that is geometry dependent and
informed by the underlying imaging physics.

2) We present the first geometric deep learning approach to
ECGI [19] that addresses the importance of geometry-
specific mapping, which has been widely established in
the ECGI literature [19], [20], but only rarely considered
in emerging machine or deep learning solutions to ECGI.

3) Extending on a previous proof-of-concept, [17], we
investigate the generalization ability of our method,
both by examining its stochastic formulations based on
the theory of IB, and by experimentation in a series
of generalization tasks with increasing difficulty. We
provid evidence for its ability to generalize without the
stochastic formulation, to learn from a small amount of
training data, as well as to learn and test across multiple
different geometries.

4) We further extend our initial work [17] by investigating
the ability of our method to be fine-tuned to a small
amount of data on a new geometry.

5) We perform in-depth examinations into the effects of
different neural network architecture designs, and in-
troducing random edge dropping within the presented
framework.

II. BACKGROUND & RELATED WORKS

A. Electrocardiographic Imaging (ECGI)
Cardiac electrical sources produce time-varying voltage

signals on the body surface, following quasi-static electro-
magnetism [21]. Given a pair of heart and torso geometries
represented by their enclosing surfaces, the governing physics
can be numerically approximated to relate signals on the heart
Xt to those on the body surface Yt [19]:

Yt = H(g)Xt ∀t ∈ {1, ..., T}. (1)

where Xt = [xt(1), xt(2), . . . , xt(M)]T represents electrical
potentials on M vertices of the heart mesh, and Yt =

[yt(1), yt(2), . . . , yt(N)]T the electrical potentials on N ver-
tices of the torso mesh, at time instant t. The forward operator
H(g) defines the physics of their relationship, dependent on
the given heart-torso geometry g. Specifically, the signal on
each torso vertex can be computed as a linear combination of
signals on all heart vertices yt(i) =

∑
j xt(j) · h(g(i, j)) for

i = 1, 2, . . . N and j = 1, 2, . . .M , where linear coefficients
h(g(i, j)) are known to be inversely proportional to the relative
distance between torso vertex i and heart vertex j [22], [23].

ECGI aims to reconstruct Xt from Yt mathematically.
In classic methods, imaging physics is incorporated as prior
knowledge in the forward operator H(g). Numerical opti-
mization and statistical inference methods are then used to
seek the inverse solution that best fit the measurements under
H(g), in combination with various constraints, such as the
smoothness of the solution in space and time at different orders
of derivatives [24], [25], its sparsity [26], [27], and a priori
physiological knowledge about the spatiotemporal dynamics of
the solution [7], [19], [28]. For instance, while the forward pro-
cess is physically independent of time (quasi-static), various
temporal constraints based on verified physiology have been
considered useful for regularizing the inverse solutions [19],
[28]. Overall, in this line of classic physics-based approaches,
it is established that the accuracy of ECGI would rely on
a forward operator that is specific to a subject’s heart-torso
geometry [20], [29].

With the success of modern machine learning and deep
learning, data-driven approaches to ECGI have also emerged.
Instead of incorporating imaging physics within a physics-
based forward model, these approaches typically attempt to
learn a direct inverse mapping using pairs of heart and body-
surface data. For instance, the transmembrane potential and
epicardial potential distributions are reconstructed from body
surface potentials (BSPs) by a combination of clustering
method and support vector regression (SVR) [10]. The corre-
lation of body and heart surface potential in time was learned
from the sequence of BSP data to iteratively reconstruct heart
surface potentials in future timesteps [11]–[13].

Till now, few data-driven ECGI approaches considered the
fact that the inverse mapping should be specific to the under-
lying geometry. As a result, the learned inverse mapping—as
in the examples provided above—has to be restricted to the
same geometry on which the training was performed. This
largely limits the clinical value of these approaches to be
applied across patients. To address this challenge, investigators
have performed the learning of the inverse mapping between
BSPs and activation maps offline and transferred the results
onto patient specific anatomies to achieve fast personalized
predictions online [30]. A similar approach is to learn an
inverse mapping that is invariant to geometry by removing
geometry-related information from the input ECG data us-
ing an information bottleneck [14]. However, this approach
requires additional training data that represents variations
from different geometries. Alternatively, the geometry can be
incorporated by conditioning the reconstructions of electrical
potentials on 2D image scans of the heart shape [9]. It is
not clear how to extend this approach to consider the most
important geometrical factors in ECGI—the relative position
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between the heart and torso.
Our ST-GCNN approach departed from previously reported

techniques to directly learn the inverse mapping as a function
of geometry by 1) modeling the inverse mapping over non-
Euclidean geometry and 2) incorporating physics relationship
between the measurement and unknown into the design of the
inverse mapping at the latent space.

B. Graph Convolutional Neural Networks (GCNN)
GCNN provides an appealing method to learn functions

on non-Euclidean variables defined over geometrical domains
[15]. To extend the convolution operator to graph-structured
data, the spectral approach utilizes a graph Fourier transfor-
mation that projects the input graph signal to the orthonormal
space whose basis is formed by eigenvectors of the normalized
graph Laplacian [16]. These approaches are typically limited
to a single graph because the spectral filter coefficients depend
on the selected basis [15]. The spatial approach defines graph
convolutions based on the spatial relation of each vertex
[16]. For instance, in SplineCNN [31], the graph convolution
operator integrates the signals within the vertex neighborhood,
where the weighting function is a B-spline that considers the
relative position between a vertex and its neighbor. In this
study, we adopted the SplineCNN as the building block of the
ST-GCNN model, since the spline convolution filter can be
applied to different graphs.

Spatial-temporal graph neural networks (ST-GCNNs) cap-
ture spatial and temporal dependencies of a graph simultane-
ously [16]. Recurrent neural network (RNN)-based approaches
use a recurrent unit to pass hidden states and filter them
together with inputs using graph convolutions [32]. The ma-
jor drawback of these approaches is that they suffer from
time-consuming propagation and gradient explosion/vanishing
problems [16]. Convolutional neural network (CNN)-based
approaches mitigate this drawback by interleaving 1D CNN
layers with graph convolutional layers to learn temporal and
spatial dependencies respectively [33]. Our version of ST-
GCNN applied to ECGI is inspired by the latter structure.

To learn graph embeddings, graph autoencoders have been
investigated to reconstruct, or to generate new graphs [34]–
[36]. This line of work mainly concentrates on reconstructing
or generating new structures of the graphs. In contrary, the
presented work utilizes graph encoding and decoding for the
purpose of incorporating structural information from given
geometry, and for learning a geometry-dependent mapping
between signals on the input and output graphs.

III. METHODOLOGY

To respect the geometry-dependent physics behind the prob-
lem, our method learns a geometry-dependent inverse mapping
by 1) describing Xt and Yt in their respective geometrical
domains, and 2) explicitly modeling their relationship at the
latent space as a function of the geometry. We realize our
method in an encoder-decoder architecture with ST-GCNNs
as summarized in Fig. 1: a ST-GCNN encoder embeds Yt

over the torso geometry, and a ST-GCNN decoder generates
Xt over the ventricular geometry; at the latent space, the

relationship between the latent variables of Yt and Xt – as in-
formed by the actual imaging physics – is assumed to be linear
with coefficients as a function over the graph embedding of
the two geometries. Following past ECGI works that showed
the importance of including the temporal dimension into the
reconstruction, we consider reconstructing the spatiotemporal
signals on the heart over time.

A. Encoding-Decoding with ST-GCNNs
As Xt and Yt are temporal sequences that exist within a 3D

geometry, we describe their generation/embedding with ST-
GCNNs that consist of interlaced graph convolution in space
and regular compression in time as illustrated in Fig. 1.

1) Geometrical Representation in Graphs: Triangular
meshes of the heart and torso surfaces are represented as
two separate undirected graphs: G = (V, E ,U,F), where
vertices V consist of all V mesh nodes and edges E
describe the vertex connection as defined by the triangular
mesh. U ∈ [0, 1]V×V×3 consists of edge attributes u(i, j)
between vertex i and j as normalized differences in their
3D coordinates if an edge exists. F ∈ RV×M×T represents
the time sequences of features across all vertices, where the
feature represents the signals at the input/output level when
M = 1 and feature maps in the middle layers, where M is
the size of the feature dimension.

During encoding and decoding, we apply hierarchical graph
representations that coarsens as it gets closer to the bottleneck
to the two geometries. In contrast to general graphs, this
hierarchical representation should satisfy a constraint that the
topology of the geometry must be preserved in its hierarchical
representations to prevent non-physical spatial propagation
of signals. The hierarchical representations are obtained by
a specialized mesh coarsening method in the Computational
Geometry Algorithms Library (CGAL) [37], defined prior to
the training of the ST-GCNN.

2) Spatial Graph Convolution: We use a continuous spline
kernel for spatial convolution such that it can be applied across
different graphs [31]. For each channel of the feature map at
each time instant, the convolution kernel is defined as:

gl(u) =
∑
p∈P

wp,lBp(u), (2)

where 1 ≤ l ≤ C and C is the number of channels. The
spline basis Bp(u) =

∏d
r=1N

m
r,pr (u) with Nm

r,pr denoting d,
an open B-spline basis of degree m based on equidistant knot
vectors, P = (Nm

1,r)r × . . .× (Nm
d,r)r is the Cartesian product

of the B-spline bases, and wp,l are trainable parameters.
Given kernel g = (g1, . . . , gC) and graph node features

f ∈ RV×M at each time instant, spatial convolution for vertex
i ∈ V with its neighborhood N(i) is defined as:

(fl ∗ gl)(i) =
∑

j∈N(i),p∈P(u(i,j))

fl(j) · gl(u(i, j)). (3)

Since the B-spline basis in the (2) is conditioned on local
geometry, the learned kernel can be applied across graphs and
the convolution incorporates geometrical information within
the graph. This spatial convolution is independently applied
to each time instant of the signal sequence in parallel.
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Fig. 1. Outline of the ST-GCNN inverse imaging network. The size of the feature maps follows the format of #Vertices×#Feature×#Time.

Fig. 2. Illustration of the structure of one ST-GCNN layer followed by a spatial pooling/unpooling layer from Fig. 1. C1 and C2 are the number of
channels before/after the spatial/regular convolution. T1 and T2 are the temporal dimensions before/after the temporal convolution.

To make the network deeper and more expressive in feature
representation, residual blocks are introduced to pass the input
of spatial convolution through a skip connection with 1D
convolution. Fig. 2 illustrates all components in an ST-GCNN
layer.

3) Temporal Modeling: The spatial convolution is interlaced
with temporal modeling. Common approaches for temporal
modeling include using a standard convolutional kernel [38]
or a recurrent unit of time sequences [39]. Here, we apply
directly the fully connected layers on time sequences, where
the parameter of the layer is shared across each vertex and
feature. The size of the output of the fully connected layer is
set to compress the time sequence in dimension in the encoder,
while expanding in the decoder. The geometry graph remains
the same for the complete temporal sequences. In Section IV-
F, this temporal modeling will be compared with alternative
RNN or CNN options in experimental evaluations.

4) Pooling and Unpooling: Pooling and unpooling in space
are carried out on the hierarchical graph representation of
the two geometries described in Section III-A.1. Using Go to
denote a graph with N1 vertices and Gc its coarsened graph
with N2 vertices, we use a binary matrix P ∈ RN1×N2 , where
Pij = 1 if vertex i in Go is grouped to vertex j in Gc, and
Pij = 0 otherwise. Here, each vertex on Go is grouped to
its nearest vertex on Gc. Given a feature map fo ∈ RN1×M

over Go and fc ∈ RN2×M over Gc, the pooling operation is

defined by fc = PTn fo and the unpooling operation is defined
by fo = Pfc, where PTn is column normalized from P.

5) Summary: As summarized in Fig. 2, each ST-GCNN
block consists of spatial graph convolution, temporal com-
pression, and spatial pooling/unpooling, as described above.
Denoting the latent features of the body-surface signals as Zb
and those of the heart-surface signals as Zh, respectively, we
can represent the encoder and decoder as Zb = Eθ(Y) and
X̂ = Dφ(Zh), where θ and φ are parameters of the encoder
and decoder, respectively.

B. Learning Latent Geometry-Dependent Physics

As explained in (1), Yt on one torso vertex can be repre-
sented as a linear combination of Xt from all heart vertices,
where the coefficients are determined by the relative position
between each pair of torso-heart vertices. We assume this
linearity to hold between Zh and Zb in the latent space.
Specifically, for zh(i) on vertex i of the latent heart mesh,
we define it as a linear combination of latent features zb(j)
across all vertices j of the latent torso mesh.

One option to learn this linear mapping between Zb and
Zh is a fully connected layer. However, the resulting learned
relationship will not consider the underlying geometry and,
more importantly, will not be applicable to different heart-torso
geometries with different numbers of graph vertices. Instead,

This article has been accepted for publication in IEEE Transactions on Medical Imaging. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TMI.2022.3218170

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: The University of Utah. Downloaded on November 01,2022 at 17:37:51 UTC from IEEE Xplore.  Restrictions apply. 



X. JIANG et al.: IMPROVING GENERALIZATION BY LEARNING GEOMETRY-DEPENDENT AND PHYSICS-BASED RECONSTRUCTION OF IMAGE SEQUENCES5

we explicitly model the learnable coefficients as functions
of the relative position between embedded heart and torso
geometries. To do so, we construct a bipartite graph such that
an edge with attribute u(i, j) exists between each pair of heart
and torso vertices in their graph embeddings. We then define
zh(i) as a linear combination of zb(j) across all vertices j,
where linear coefficients ĥ are learnable as a function over
u(i, j):

zh(i) =
∑
j

zb(j) · ĥ(u(i, j)). (4)

Exploiting the similarity between (4) and (3), we describe
(4) using spline convolution with the geometry-dependent
coefficients ĥ learned as the spline convolution kernel. We
denote the geometry-dependent inverse function as Zh =
hρ(Zb) with network parameter ρ. Aside from being physics-
informed, this geometric parameterization allows the learned
function to generalize across different geometries.

C. Deterministic and Stochastic Formulations

As explained earlier, we developed both a deterministic
and stochastic formulation of the non-Euclidean encoding-
decoding networks, in order to investigate whether the use
of IB theory is still necessary for improving the ability of the
network to generalize to different geometries.

For the deterministic model, its parameters θ, ρ and φ are
optimized by minimizing the mean square error between the
reconstructed X̂(i) on training data {X(i),Y(i)}Ni=1:

L =
1

N

N∑
i=1

||X(i) −Dφ

(
hρ

(
Eθ

(
Y(i)

)))
||22. (5)

For the stochastic model, Zb is modeled with a Gaussian
distribution whose mean and variance are obtained by neural
networks: pθ(Zb|Y) = N (Zb|µb(Y),σ2

b (Y)). We apply
reparameterization Zb = µb + σb � ε as described in [40],
where ε ∼ N (0, I) and � is Hadamard product. We draw a
random sample from the distribution of Zb, and then apply
Zh = hρ(Zb) to obtain the sample for Zh. The decoder then
reconstructs from this sample. From the theory of information
bottleneck [18], we minimize:

lossIB = −I(X;Zh) + βI(Zb;Y) (6)

where I(X;Zh) is the mutual information between the output
and latent features of the heart signals, I(Zb;Y) is the mutual
information between the measurement and latent features of
the torso signals, and β is the multiplier of the KL-divergence

term. For the first term in (6) we have:

I(X;Zh) =

∫
p(X,Zh) log

p(X|Zh)

p(X)
dXdZh

= H(X) +

∫
p(X,Zh) log p(X|Zh)dXdZh

= H(X) +

∫
p(Zh)p(X|Zh) log

p(X|Zh)

q(X|Zh)
dXdZh

+

∫
p(Zh)p(X|Zh) log q(X|Zh)dXdZh

= H(X) +DKL(p(X|Zh)||q(X|Zh))

+

∫
p(X,Y,Zh) log q(X|Zh)dXdYdZh

≥ Ep(X,Y)[Ep(Zb|Y)[log q(X|Zh)]],

where Zh = Ĥ(g)Zb and H(X) =
∫
p(X) log p(X)dX. We

set qφ(X|Zh) to be a Gaussian distribution parameterized by
the decoder: qφ(X|Zh) = N (X|µh, σ2

h).
For the second term in (6):

I(Zb;Y) =

∫
p(Y,Zb) log

p(Zb|Y)

p(Zb)
dYdZb

=

∫
p(Y,Zb) log

p(Zb|Y)r(Zb)

r(Zb)p(Zb)
dYdZb

=

∫
p(Y)p(Zb|Y) log

p(Zb|Y)

r(Zb)
dYdZb

−DKL(p(Zb)||r(Zb))

≤
∫
p(X,Y)p(Zb|Y) log

p(Zb|Y)

r(Zb)
dXdYdZb

= Ep(X,Y)[DKL(p(Zb|Y)||r(Zb))],

where the KL divergence is analytically available when r(Zb)
is set to be a standard Gaussian distribution: r(Zb) =
N (zb|0, I) and the latent distribution of torso graph embed-
ding as a Gaussian distribution: pθ(Zb|Y) = N (Zb|µb(Y)).
Therefore, we have:

lossIB = −I(X;Zh) + βI(Zb;Y)

≤ Ep(X,Y)[−Epθ(Zb|Y)[log qφ(X|Zh)]]

+ βDKL(pθ(Zb|Y)||r(Zb)) = LIB .

IV. SIMULATION DATA EXPERIMENTS

In controlled simulation experiments, we evaluated the
performance of the reconstruction network in a series of
generalization tasks, with increasing difficulty in terms of how
close the test geometry is to those in training data. We further
assessed how the performance of the network changed as the
diversity of the training data decreased. We compared the
performance of our network to that of a Euclidean encoding-
decoding networks, as described by Ghimire et al. [14] in a
deterministic formulation as well as a stochastic formulation
with a geometry-invariant bottleneck. In a subset of experi-
ments where Euclidean networks do not apply (Section IV-
D, training across multpile geometry), we further compared
the performance of our network to classic ECGI approaches
utilizing known physics-based forward operators.
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Fig. 3. Summary of average performance with respect to different percentages of full training data among the three comparison models.

A. Models, Data, and Training

Our presented network consisted of three ST-GCNN blocks
and two standard convolutional layers in the encoder, one
spline convolutional layer in the latent inverse mapping, and
four ST-GCNN blocks and two standard convolutional layers
in the decoder, as detailed in Fig. 1. We used B-spline basis
degree of m = 1 with kernel size of k1 = k2 = k3 = 3 in
all graph convolution layers. The spatial and temporal dimen-
sions in each level of the encoder were [120, 63, 34, 19] and
[101, 60, 40, 20] , respectively; and [115, 164, 234, 334, 477]
and [20, 40, 60, 80, 101] in the decoder, respectively. We used
ELU activation [41], an ADAM optimizer [42], and a learning
rate of 5 × 10−4. The Euclidean baselines followed the
architectures presented in [14] consisting of cascaded LSTMs
and fully-connected layers.

For training, we generated pairs of simulated potentials on a
heart-torso mesh. We simulated realistic spatiotemporal prop-
agation sequences of action potentials by the Aliev-Panfilov
model [43], considering a combination of 38 origins of acti-
vation and 16 spatial distributions of scar tissue (totaling 531
data samples for a single geometry). We then rotated the heart
by -2◦ to 2◦ around the z-axis, obtaining approximately 2700
sets of body-surface potentials. All body-surface potentials
were corrupted with 20 dB SNR of Gaussian noises before
performing inverse imaging.

Testing data were generated in a similar fashion, with
additional geometry changes as detailed below. The recon-
struction accuracy was measured by the mean square error
(MSE), spatial correlation coefficient (SCC), and temporal
correlation coefficient (TCC) between the reconstructed and
actual potential sequence on the heart surface. While MSE
measures the quantitative errors of the reconstructed signals on
the heart, the SCC and TCC measures the correlation between
the reconstructed and reference signals. We considered the

Fig. 4. Examples of reconstructed electrical activity trained on 25% of
full training data, tested at rotation x = 10◦. The MSE value is shown
for each model at each timestep. Both of the two baseline models
showed high errors on the free wall of the left ventricle during depolar-
ization/repolarization (arrows), while our presented model predicted the
most accurate signal propagation pattern and the scar location (circles).

correlation both for spatial signals at each time instance (SCC)
and temporal signals at each location of the heart (TCC).

B. Generalization to Unseen Heart Rotations
In this set of experiments, we first applied the trained models

to 21,771 sets of body-surface potentials generated by rotating
the heart by -20◦ to 20◦ around the z-axis, a range far outside
that considered in training. We then tested the trained models
on a different set of 64,782 body-surface potentials generated
from novel heart rotations around the x-axis (-20◦ to +40◦) and
y-axis (-20◦ to +40◦), types of rotations not seen in training. In
both experiments, we examined the change of performance of
the trained models when 1) we randomly sampled the training
data with respect to the combinations of sites of activation and
scar locations by a rate of 2%, 4%, 10%, 25%, 50%, 75%, and
100% of the complete training data, and 2) we reduced the
number of rotations around z-axis in the training data from
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Fig. 5. Summary of average performance with respect to geometrical variations among the three comparison models.

-2◦ to 2◦ (five geometries), to -1◦ to 1◦ (three geometries),
and eventually to no rotation at all (one single geometry).

1) Generalization with reduced diversity in training data:
Fig. 3A1 shows quantitative metrics of the three models on
z-axis rotations unseen in training set (21,771 cases), against
the number of combinations of earliest activation sites and scar
locations. The decrease in performance (reduced accuracy and
increased standard deviation) in the face of reduced training
data was significantly slower by our method (red) compared
to the deterministic (green) and stochastic (blue) Euclidean
baselines. Fig. 3A2-3 lists the performance of the three models
on geometry with novel x- and y-rotations, showing a similar
trend. While the performance of the ST-GCNN was similar and
occasionally worse than the stochastic Euclidean baseline (e.g.,
generalizing to y-rotations in Fig. 3A3) at the full diversity
of the training data, it outperformed both baselines in all
metrics as the training diversity decreased to 25%. In fact,
its performance did not show notable change in performance
until the number of training cases was reduced to below 5-10%
of the complete set.

As an example, Fig. 3B shows the detailed quantitative
metrics of the three models trained on 25% of the full training
data, against x-axis rotations of the heart as measured by
differences from training data. The presented method (red)
outperformed the deterministic (green) and stochastic (blue)
Euclidean baseline in all metrics, and its performance changed
only slightly compared to that using full training data (yellow).
Fig. 4 provides visual examples of the comparisons. The
presented ST-GCNN model predicted the most accurate signal
propagation pattern and scar location, while both baseline
models showed errors on the free wall of the left ventricle.

2) Generalization with reducing training geometry: Fig. 5A1
summarizes quantitative metrics of the three models against
the number of geometrical models in training. Our method
(red) again showed a slower decrease in the average error and

Fig. 6. Visual examples of reconstructed electrical activity trained on
one single geometry and tested on the heart with a rotation at z = 10◦.
The MSE value is shown for each model at each timestep. Both baseline
models showed substantial errors in locating the scar, while our model
predicted the most accurate signal propagation pattern and the scar
location (circles).

increase in standard deviation than the two Euclidean base-
lines. The testing results on novel x- and y-rotations showed a
similar trend (Fig. 5A2-3). Note that these experiments were
performed using training data that contained the full diversity,
as described in the section above, thus the performance of
ST-GCNN was lower than the stochastic Euclidean baseline
when generalizing to y-rotations of the heart using five or
three geometries.

Fig. 5B shows quantitative metrics of the three models when
trained on a single geometry and tested on data following
z-axis rotations of the heart. The decrease in performance
compared to using more geometries (yellow curve) was more
evident compared to the results in Fig. 3B, although it
was much less significant compared to the two baselines.
Fig. 6B provides visual examples of the reconstructed image
sequences. Similar to the example shown in Fig. 4, ST-
GCNN was the most accurate at predicting signal propagation
and locating the scar, while both baseline models indicated
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incorrect scar locations.

C. Generalization to New Geometry

We then applied the model to 491 and 444 sets of simulated
potentials generated on each of two new heart-torso meshes,
respectively. This scenario is realistic in that the network
trained on one group of patients will be applied to new
patients. The blue flat line in Fig. 7 shows the accuracy of
the results, trained on the full data set as described earlier and
directly applied to the test data from the two new geometries.
The performance (patient #2: MSE = 0.11, SCC = 0.23, TCC
= 0.76; patient #3: MSE = 0.08, SCC = 0.19, TCC = 0.80)
showed a larger decrease compared to those in Section IV-
B, yet it is satisfactory overall. Note that Euclidean networks
cannot be applied directly on a new geometry without re-
training [14]. We then fine-tuned the model on a small set of
data for each new geometry (122 and 111 sets, respectively), in
comparison to retraining the model from scratch. As shown in
Fig. 7, the fine-tuned model was much faster (< 100 epochs)
to converge than the retrained model (> 300 epochs). Fig. 8
provides examples of the results. The fine-tuned model had
the most accurate reconstruction of both the signal propaga-
tion pattern and the scar location among all the models we
compared.

D. Training and Testing on Multiple Geometries

We further evaluated the ability of our model to be trained
and tested across different geometries of the heart and torso,
i.e., across different input graphs. Such cross-training is not
possible with Euclidean models unless the different heart and
torso geometries are pre-registered. Even after registration,
the learning will completely miss the different geometry
information underlying the data. Therefore, in this set of
experiments, we compared our method with traditional ECGI
methods that rely on first building a forward mapping oper-
ator based on the given geometry, and then optimizing for
the reconstruction, given the forward operator and applying
second-order Tikhonov regularization [24]. Since unipolar
extracellular potential, instead of transmembrane potential,
is more commonly used as the source model in traditional
ECGI methods, we chose to apply the presented method to
reconstruct extracellular potential as well. Specifically, we
considered the meshes in Section IV-A and Section IV-C for
the simulation of extracellular potentials. We trained our model
on a small subset of data for each geometry (50, 50, and
50 sets, respectively). We then evaluated the model on each
geometry used in the training set but with rotations unseen in
the training set. Fig. 10 shows that our method had a much
better reconstruction accuracy than the ECGI method.

E. Effect of Stochastic IB Formulation

As observed in Section IV-B, in the Euclidean baselines,
the stochastic model outperformed the deterministic one. This
result was consistent with published results [14], which at-
tributed this gain to the theory of information bottleneck in
helping remove geometry-related information from the latent

TABLE I
COMPARISON OF ARCHITECTURES

Architecture Type Time Complexitya Average MSEb

L-Conv 12.1 min 0.0144
LSTM 29.5 min 0.0118
GCN-LSTM 32.6 min 0.0139
ST-GCNN 9.5 min 0.0096
a Average time per epoch.
b Average mean square error tested on all z-rotations with all models trained
for 300 epochs. The other metrics followed the same trend.

space. With our network trained as a function of the geometry,
we expected that the stochastic IB formulation would bring
less significant benefits. The results in Fig. 11B verified this
assertion, as the performance of the stochastic model changed
only minimally when using different values of β. Using β =
1 × 10−2 as an example (Fig. 11C), the performance gap
between the stochastic and deterministic models was marginal.

F. Effect of Alternative Model Architectures
1) Temporal Modeling: We investigated several alternatives

for temporal modeling in our network including: 1) interlaced
spatial graph convolution and local temporal convolution [38]
(L-Conv), which uses a 5×1 standard convolutional kernel to
slide through the time sequence on each node and feature, 2)
interlaced spatial graph convolution and regular Long Short-
Term Memory (LSTM) networks [39] on temporal sequences,
and 3) graph LSTM (GCN-LSTM), which replaces the fully
connected operator in LSTM [39] with graph convolution so
that the layer can operate on graph data. Table. I shows that
the presented ST-GCNN model was the most efficient and
achieved the best performance.

2) Residual Blocks: We further trained a geometric network
without residual blocks on the dataset used in Section IV-A
and tested it on the same dataset of rotations as described
in Section IV-B. Fig. 11A summarizes the mean square error
of two networks against the change in heart rotations from
the training data. As shown, without the residual blocks, the
network was not able to accurately reconstruct heart potentials.

3) Latent inverse mapping: We investigated a more general
modeling option at the latent space for the relationship be-
tween latent embedding Zh and Zb: a fully-connected layer
with ELU activation [41]. This describes Zh as a general
nonlinear function of Zb without considering the underlying
geometry. We trained this network on 50 data samples on one
single geometry and tested it on 3,095 data samples from the
same geometry but with five different rotations of the heart. As
shown in Fig. 12, the resulting network – while performing
well on the training geometry – struggled with testing data
from different geometries.

To further understand the learned latent inverse mapping in
(4), we examined empirical evidence on how the coefficient of
the linear inverse mapping ĥ(u(i, j)) changed with the relative
distance between vertex i and j in the latent torso and heart
graphs. Due to the high dimensionality of zh and zb, this was
difficult to observe directly. Instead, we set all zb(j) on the
torso graphs to be identical constants, chose random vertex
i on the heart graph, and obtained the norm of ĥ(u(i, j))
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Fig. 7. Convergence of reconstruction accuracy on new geometry by the fine-tuned (red) vs. retrained model (yellow).

Fig. 8. Examples of reconstructed electrical activity by the fine-tuned model at epoch = 100, the retrained model at epoch = 100, and the retrained
model at epoch = 300 on A) patient #2 and B) patient #3. The MSE value is shown for each model at each timestep. The fine-tuned model has the
most accurate reconstruction of the signal propagation pattern and the scar location (circles).

Fig. 9. A flexible epicardial sock array encircled the isolated heart,
which was perfused from a second support animal through the aorta
with blood returned under suction from the right ventricle. The human-
torso-shaped tank was filled with electrolytic fluid consistent with human
torso conductivity and contained 192 embedded Ag/AgCl electrodes.
The recording system sampled cage and torso potentials simultane-
ously. Bipolar stimulation was initiated from intramural plunge needles

for each j which describes how each zb(j) contributed to
zh(i) for different vertices j. Fig. 13 shows three examples
of randomly selected i on the heart graph: consistent with
the known physics, the contribution of each zb(j) to zh(i)
decreased as the distance of (i, j) increased. This suggests that
the inverse mapping learned geometry-dependent functions
consistent with the underlying physics.

V. REAL DATA EXPERIMENTS

A. Experimental Data Description

1) Torso Tank Experimental Preparation: The experimental
data sets used in this study were acquired from a modified
Langendorff-perfused torso tank preparation [44]. As illus-
trated in Fig. 9, an isolated canine heart was suspended within
a human shaped torso tank and perfused via arterial blood
from a second support dog. Blood was returned to the support
dog from a right ventricular cannula to the jugular vein.
The human-shaped torso tank was filled with an electrolytic
solution (resistivity was 500 Ω-cm), which approximates the
electrical conductivity of a human torso. The animals were
under deep anesthesia using procedures approved by the In-
stitutional Animal Care and Use Committee of the University
of Utah and conformed to the Guide for the Care and Use of
Laboratory Animals.

2) Signal Acquisition: Cardiac activation was generated with
bipolar stimulation using plunge needles at five sites: left
ventricular (LV) base, LV Apex, LV freewall, LV septum, and
right ventricular (RV) free wall. All stimulation was initiated
near the endocardium and signals were recorded for five
seconds.

Cardiac potentials were recorded using an epicardial sock
with 247 electrodes (inter-electrode spacing 6.5±1.3 mm)
stretched over the ventricles of the heart. The torso tank
had 192 silver/silver-chloride electrodes (with inter-electrode
spacing 40.2±16.8 mm) distributed across the outer surface.
All signals were referenced to a Wilson’s Central Terminal
and were simultaneously sampled at 1000 Hz. Signals were
filtered, annotated, and post-processed using PFEIFER [45].
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Fig. 10. Performance of our ST-GCNN method vs. ECGI.

Fig. 11. A) Effect of residual blocks; B) Effect of hyperparameter value of β; C) Comparison of model performance at β = 0.01.

Fig. 12. Performance of GCNN and non-linear fully-connected (FCN) latent inverse mapping.

Fig. 13. Examples of the relation between the norm of zb(j) · ĥ(u(i, j)) (y-axis) and the distance u(i, j) between vertex i and j on the bipartite
graph (x-axis).

3) Geometric Model Creation: The surface geometries were
constructed based on electrode locations acquired during each
experiment. Template geometries for both the torso tank and
epicardial sock were registered using known correspondence
points, which were measured using a 3D mechanical digitizer
(Microscribe from Immersion Corp). The epicardial sock
registration was further refined as described previously [46].

B. Evaluation & Results
120 out of 192 torso-tank measurements were selected

for inverse imaging, to be consistent with the number of

input measurements used in the synthetic training data. The
measured QRST signals were downsampled using polyphase
filtering to the length of the simulated training signals. The
epi-endocardial geometry used in Section IV-A was registered
to the epicardial sock geometry with transition, rotation, and
scaling operations. The measured epicardial potential and the
sites of stimulation were registered to this epi-endocardial
model, to provide reference data for evaluation. The inverse
imaging results were evaluated by MSE, SCC, and TCC
metrics against the measured epicardial potentials.

We carried out cross validation by leaving out the signals

This article has been accepted for publication in IEEE Transactions on Medical Imaging. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TMI.2022.3218170

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: The University of Utah. Downloaded on November 01,2022 at 17:37:51 UTC from IEEE Xplore.  Restrictions apply. 



X. JIANG et al.: IMPROVING GENERALIZATION BY LEARNING GEOMETRY-DEPENDENT AND PHYSICS-BASED RECONSTRUCTION OF IMAGE SEQUENCES
11

Fig. 14. Performance of comparison models on measured data: A) Convergence of fine-tuned vs. retrained model; B) Final accuracy of various
models.

Fig. 15. Examples of reconstructed electrical activation sequences stimulated from A) LV base and B) LV free wall. The SCC value is shown for
each model at each timestep. The fine-tuned model and the retrained model at epoch = 200 had similar performance.

from one stimulated activation sequence (5 sequences) each
time. We first directly applied a model trained on simulated
data, considering a subset from those described in Section IV-
A including 72 different combinations of activation origins
and scar tissues. We then fine-tuned the trained model using
measured signals from the remaining four stimulation sites
(20 sequences). Finally, we retrained the same model from
scratch using the same experimental data. Fig. 14A illustrates
the quantitative metrics on the test data, averaged over the
cross-validation folds as the training of the fine-tuned and
re-trained models converged. Similar to the results presented
in Section IV-C, the fine-tuned model took many fewer
epochs (80 epochs) to converge than the retrained model (200
epochs). Fig. 14B summarizes quantitative metrics obtained by
these models. As shown, all metrics of the fine-tuned model
were significant better than the retrained model at epoch 80
(p = 0.05 (MSE), 0.013 (SCC), and 0.001 (TCC), paired t-
tests), and moderately better than the retrained model after
convergence (p = 0.32 (MSE), 0.10 (SCC), and 0.14 (TCC),
paired t-tests). Fig. 15 provides visual examples of two paced
activations. The fine-tuned model and the retrained model at
epoch = 200 had similar performance on the prediction of

propagation of activation.

VI. DISCUSSION AND CONCLUSIONS

We have presented a novel non-Euclidean network for learn-
ing geometry-dependent and physics-based inverse mapping
between spatiotemporal variables mapped to 3D geometrical
domains. We demonstrated its ability to improve generaliza-
tion to unseen geometrical variations in comparison to its
Euclidean alternatives, to directly apply to new geometry in
a way that is not possible with Euclidean approaches, and
to be quickly fine-tuned to a new geometry using a small
amount of data. To our knowledge, this is the first report of a
geometry-dependent non-Euclidean inverse imaging network.
Our method is general for problems with spatiotemporal data
living on graphs and linked with a linear imaging operator.
Future studies will extend its application to other problems that
fall into this category as well as to incorporate more general
physics. Furthermore, as observed in the results using data
from experiments, there is still a performance gap between
models based on simulation and measured data, even after
fine-tuning. Given the challenges in obtaining labeled data in
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the types of application considered in this study (e.g., measure-
ment of whole-heart electrical potential), there is considerable
motivation to investigate how to supervise the network with
the governing physics in addition to data-driven losses.

Several aspects of the presented ST-GCNN could also be
further investigated. One of the challenging factors lies in the
hierarchical graph representations of the heart-torso mesh. One
critical consideration in this problem is to prevent non-physical
spatial propagation of signals, which requires the coarsened
graph in hierarchical graph representations to preserve the
topology of the geometry. Unlike down-sampling strategies
on 2D Euclidean spaces, there is no established automatic
method for down-sampling node features on realistic geomet-
rical spaces. Existing graph pooling methods use clustering
method based on graph topological structure to coarsen the
graph [47], [48]. However, we found significant structural
information loss that, for instance, introduced holes on the
right ventricle (RV) of the coarsened heart mesh. We also
noticed that the activation did not always propagate over
the surface on the coarsened heart. Therefore, we adopted a
specialized mesh-coarsening approach from CGAL [37], to
preserve the topological information of the coarsened heart
and torso mesh. This mesh coarsening method also allowed us
to control the down-sampling rate to prevent the unacceptable
loss of structural information.

There are various choices of source models to represent the
electrical activity of the heart in existing ECGI approaches,
including heart surface potentials [11]–[13], or transmembrane
potential defined on the volumetric mesh of the heart [6],
[7], [14], [19], [49]. We based this study on the former
because this is the most common formulation and the one
used in commercial systems and also because surface-based
methods are more straightforward to implement. Any further
extension of the ST-GCNN to the more complete volumetric
representation of the cardiac electrical sources will require
appropriate hierarchical graph representations, which will cer-
tainly become more challenging. Furthermore, the size of the
graph and thus the computational cost of training the ST-
GCNN can also be expected to increase substantially.

There are many sources of geometric variation that we did
not evaluate; in addition to variations between subjects, breath-
ing can expand and contract the torso and alter the location of
the heart relative to the torso; the heart geometry and position
changes every time the heart beats; regular human posture and
activities may also cause slight transition or rotation of the
heart. Considering all these scenarios of geometrical variation
in any data-driven method could be challenging, given the
volume and variation in the required geometric and signal
information required for training. In this study, we simplified
the geometrical variation to heart rotations, following the most
common settings in the previous reports [14].
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