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ABSTRACT

Many biomedical image analysis applications require seg-

mentation. Convolutional neural networks (CNN) have be-

come a promising approach to segment biomedical images;

however, the accuracy of these methods is highly dependent

on the training data. We focus on biomedical image segmen-

tation in the context where there is variation between source

and target datasets and ground truth for the target dataset is

very limited or non-existent. We use an adversarial based

training approach to train CNNs to achieve good accuracy

on the target domain. We use the DRIVE and STARE eye

vasculture segmentation datasets and show that our approach

can significantly improve results where we only use labels of

one domain in training and test on the other domain. We also

show improvements on membrane detection between MIC-

CAI 2016 CREMI challenge and ISBI 2013 EM segmentation

challenge datasets.

Index Terms— Convolutional Neural Networks, Domain

Adaptation, Adversarial Training

1. INTRODUCTION

Recently CNNs have been the method of choice for many

visual tasks, including but not limited to image classifica-

tion [1, 2], image segmentation [3, 4] and object detection

[5, 6]. Although CNNs are not new [7], they became popular

after their success due to the high computational capability

of modern graphical processing units and massive amount of

training data provided by datasets such as ImageNet [8] and

MSCOCO [9].

However, the success of CNNs is limited to the supervised

training using manually annotated datasets. This type of train-

ing usually achieves very good results on the testing data if

both the training and testing data come from the same distri-

bution. On the other hand, if these distributions differ, accu-

racy on the test data is lower. The variation between the train-

ing data (source domain) and testing data (target domain) is

a fundamental and common issue called domain shift. In the

context of biomedical applications, domain shift and dataset

bias could be due to different reasons such as image acquisi-

tion techniques, acquisition device noise, imaging resolution

or even more fundamental differences like variations in the

tissue structures that are imaged. Researchers are interested

Fig. 1. Our approach: Images from both source and target do-

main are fed to the segmentor. Supervised pixel-wise loss is

calculated for the source images and backpropagated through

the segmentor. Outputs of the segmentor are labeled regard-

ing whether they come from source (label = 1) or target (la-

bel = 0) domain and fed to the second network which learns

to classify the source vs. target domains. This domain loss

is backpropagated through the whole network, first the do-

main classifier and after passing a gradient reversal layer [10]

through the segmentor.

in common models that are capable of producing reasonable

results regardless of the domain the data is coming from. This

usually can be achieved by finetuning the network with the

supervised target data, however it comes at the cost of anno-

tating the target domain data.

Annotating data for the purpose of training is an expensive

and time consuming task. This task becomes more costly in

the field of biomedical applications if the data should be an-

notated by experts rather than crowdsourcing platforms like

Amazon Mechanical Turk. Furthermore, annotating data for

the task of segmentation is much more laborious since fine

grained pixel-level annotations are needed compared to other

tasks like image classification. Therefore, research to adapt

the learning based segmentation approaches to perform ac-
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curately when the target domain is different than the source

domain is imperative. We propose a domain classifier in an

adversarial setting on top of a segmentor network (Figure 1)

to enforce domain invariance in the feature representations of

the segmentor which results in a higher accuracy segmenta-

tion when testing data is different from the training data.

2. RELATED WORK

2.1. Image Segmentation

One of the early works that applied CNNs to biomedical

images is [11] which uses a sliding window approach and

extracts a patch around each pixel and feeds it to a CNN that

outputs a class probability. The process is repeated for all

pixels in the image to produce the class probability map for

the whole image. This approach results in a highly localized

output; however, the redundancy due to overlapping patches

makes this algorithm inefficient. Another mainstream ap-

proach for biomedical image segmentation using CNNs is

based on Fully Convolutional Networks (FCN) [3]. FCNs do

not have any fully connected layers and the output is an image

of class probability vectors that is the same size as the input

image. FCNs are highly efficient as they share features ex-

tracted by the network for neighboring pixels; however, there

is a trade off between localization accuracy and utilization

of context in these networks. The deeper the network, more

maxpooling layers are used which promote the use of context.

On the other hand, these pooling layers reduce the localiza-

tion capacity of the network. To overcome this drawback,

U-net [12], a popular FCN for biomedical applications, uses

skip connections between the encoder and decoder part of the

network that have the same resolution to preserve localiza-

tion and granularity of the output. Other works such as [13]

extract specialized layer features from different resolutions

of a base network to perform eye vasculture segmentation on

eye fundus images. Fakhry et al. [14] use residual connec-

tions between the encoder and decoder parts of a network

similar to U-net to accurately reconstruct neurons in electron

microscopy images.

2.2. Domain Adaptation

There has been extensive work on domain adaptation and

transfer learning to overcome dataset bias and domain shift

problem in learning systems, especially CNNs. As men-

tioned one approach to mitigate this problem is finetuning

the learned networks with few samples of the target domain,

however this needs annotations. Domain adaptation tech-

niques usually try to alleviate the shift between the source

and target domains by reducing some quantification of it.

Minimum Mean Discrepancy (MMD) [15] and correlation

distances [16] are common measurements which are opti-

mized to achieve this goal. The network learns to map both

source and target domain features into a common feature

space. In an alternative approach Ghifary et al. [17] propose

to reconstruct the target domain data from the source do-

main representation which enforces the the network to learn

features that are common between both domains.

Domain adaptation techniques based on adversarial train-

ing [18] usually consist of two networks, one task specific

and one domain specific. The goal is to train the task spe-

cific model with reasonable accuracy such that the domain

specific model is not able to distinguish if the output of the

task specific model is coming from the source or target do-

main. This idea has been used extensively in the literature to

perform adaptation for recognition tasks. Liu et al. [19] pro-

pose a coupled generative adversarial network which learns a

joint distribution of multi-domain images. Tzeng et al. [20]

add a domain classifier to predict domain labels for the in-

put data and use a domain confusion loss to train the domain

classifier such that the output labels will have a uniform distri-

bution. Bousmalis et al. [21] propose an unsupervised trans-

formation in the pixel space on the source domain images to

be transfered to the target domain and perform classification

in the target domain. Ganin et al. [10] introduce a gradient

reversal layer that can easily train augmented architectures

to learn representations that are discriminative for the main

learning task and at the same time are invariant to the source

or target domain. While domain adaptation has been used

extensively for image classification, we present a novel archi-

tecture to learn features that are invariant to the domain and

are discriminative for the task of segmentation. In a recent

work Hoffman et al. [22] introduce a framework for pixel-

wise domain adaptation which minimizes the global domain

distribution distances through adversarial training and at the

same time optimize a category specific multiple instance loss.

This work is different from our approach in the sense that

they use small regions corresponding to the natural field of

view of the spatial units in the last layer and in the feature

space whereas we consider the statistics of the whole output

probability map for domain classification.

3. APPROACH

Our proposed architecture consists of two networks. An FCN

which performs segmentation on the input images, we call

this network segmentor, and a CNN which performs classi-

fication on the outputs of the segmentor, we call this net-

work the domain classifier. These two networks are connected

through a gradient reversal layer [10] which enables adver-

sarial training. The gradient reversal layer passes its input

intact without any modification in the forward pass, however

it negates the gradients in the backward pass. This negation

of the gradients will update the weights of the segmentor such

that it will produce segmentations that are harder for the do-

main classifier to discriminate. Essentially the segmentor is

forced to extract representations that are invariant to the do-

main while being restricted to accurate segmentations by the

supervised pixel-wise loss which is enforced directly to the

segmentor.
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Fig. 2. Results for eye vasculture segmentation in eye fundus image. The first column is the original image, the second column
is the results of the segmentor without domain classifier (trained on the source training set and tested on target testing set), the

third column is the output of the segmentor when jointly trained with the domain classifier (proposed architecture), the fourth

column is the ground truth. The examples in the first row belong to the STARE dataset (source: DRIVE, target: STARE) and

images in the second row belong to the DRIVE dataset (source: STARE, target: DRIVE).

Let images from source domain be Xs with pixel-wise

labels Ys and let the target domain images be Xt. We feed

Xs and Xt to the segmentor which we call U(X). The out-
puts from the source domain, U(Xs) are fed into the softmax
loss layer Losssup(U(Xs), Ys) with their corresponding la-

bel ground truth. Note that since we do not have the labels for

Xt we exclude them from the supervised loss, therefore no er-

ror is backpropagated for the target domain input in this case.

The outputs from the segmentor, U(Xs) and U(Xt) are then
labeled according to the domain they come from, respectively

1 and 0. Pairs (U(Xs), 1) and (U(Xt), 0) are used to train

the domain classifier network which we call D(X). D(X)
will be responsible for discriminating between the domains

of the segmentations produced by U(X). Let’s call the do-
main classification loss Lossdc. The final loss to optimize for
the network is:

Losssup(Xs) + β Lossdc(Xs, Xt)

where Losssup is only calculated for the source domain im-
ages and only updates the segmentor network whereasLossdc
is applied to both source and target domain images. The latter

backpropagates through both domain classifier and segmen-

tor network with the difference that the gradients applied to

the segmentor are the negated gradients.

The intuition behind the proposed architecture comes

from the observation that, if there is domain shift, the output

segmentation maps for testing images will contain errors that

create a visual appearance that is different than the appear-

ance of the segmented structures in training images. More

specifically, they can contain background structures detected

as false positives and foreground structures that are missed,

i.e. false negatives. These will affect the geometry and

topology of the output; therefore, they are detectable by the

domain classifier. Hence, the segmentor is forced to generate

results in the target domain that do not differ visually from

the results in the source domain.

4. EXPERIMENTS

4.1. Eye Fundus Images

We use two popular eye vasculture segmentation datasets for

validation. The DRIVE dataset [23] consists of 40 images

with corresponding pixel labeled ground truth images. We

use the standard split of 20 training and 20 testing for this

dataset. The STARE dataset [24] contains 20 annotated im-

ages, we use 10 for training and 10 for testing. We use U-

net as our baseline network in this paper. First the baseline

models where we only use the segmentor with Losssup(Xs)
on the source domain and test on the other dataset’s testing

data. Second, we train the proposed networks jointly using

Losssup(Xs)+β Lossdc(Xs, Xt) on both the source and tar-
get domain data. We use the training data for both source and

target (note that the training data for the source is labeled but

the target is not) to train and test on the target’s testing data.

We calculate the f-score value for all the testing results and

report them in Table 1.
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Fig. 3. Results for membrane detection in EM images. The first image is the original image from ISBI challenge, the second

image is the results of the segmentor without domain classifier (trained on the MICCAI and tested on ISBI), the third image is

the output of the segmentor when jointly trained with the domain classifier (proposed architecture), the fourth image is where

we have used 1 labeled images from the target domain (1 out of 100). The last image is the ground truth.

Table 1. The f-score for segmentation results are given for

source → target. The first column is the baseline and second

column is the proposed approach.

Baseline Our Approach

STARE→ DRIVE 62.45 67.09

DRIVE→ STARE 67.86 76.75

The first column corresponds to the baseline experiments

with only the supervised loss. The last column corresponds

to the proposed architecture in this paper where we exploit

the unlabeled training data from the target domain as well as

the labeled training data of the source domain. Using the pro-

posed approach we are able to improve testing accuracy of the

DRIVE dataset from 62.45 to 67.09 and the testing accuracy

of the STARE dataset from 67.86 to 76.75. Visual results are

shown in Figure 2. We should note that when we train our

baseline model with the target training data on STARE we

achieve a 77.08 testing accuracy and when trained on DRIVE

we get a 80.68 testing accuracy. These numbers could be con-

sidered as the upper bound that can be achieved.

4.2. Electron Microscopy Images

We also validate our approach on an electron microscopy

image segmentation task. In these images the goal is to detect

the membranes of each individual neuron so that we are able

to fully reconstruct the neuron. We use two datasets for this

task. The ISBI 2013 EM segmentation challenge provides

100 images of size 1024x1024 with corresponding connected

component ground truth for each individual neuron. The

MICCAI 2016 CREMI challenge provides 3 volumes from

different parts, we choose volume C to perform our experi-

ments. This volume contains 125 images of size 1250x1250

with corresponding connected component ground truth for

each neuron. We dilate each connected component corre-

sponding to neurons on both datasets to obtain the ground

truth for membrane detection as the removed pixels. We per-

form the same set of experiments as we did on eye fundus

images. Results are given in Table 2.

Table 2. The f-score for segmentation results are given for

source → target. The first column is the baseline and second

column is the proposed approach. The * indicates the semi-

supervised experiments where we include one labeled image

from the target domain in the training with source domain.

Baseline Our Approach

ISBI→MICCAI 35.36 42.60

ISBI→MICCAI* 47.50 73.68

MICCAI→ ISBI 13.16 39.11

MICCAI→ ISBI* 66.42 77.40

Although we have already shown improvements in Table

2, we note that source and target domain data in EM exper-

iments have a very large domain shift, therefore we include

one labeled ground truth image from the target domain in the

supervised loss in addition to the source images in a semi-

supervised setting and repeat the experiments (we exclude la-

beled target image used in training from testing). We observe

an improved f-score from 47.50, using only the supervised

loss (source image + 1 labeled target image), to 73.68 using

the proposed approach on the MICCAI data as the target and

an improvement from 66.42 to 77.40 on ISBI. We achieve an

f-score of 80.63 as an upperbound on MICCAI and 83.91 on
ISBI using our baseline trained on target training data.

5. CONCLUSION

We proposed a new architecture to perform segmentation in

biomedical images where we have no access to any labeled

ground truth for the target domain. We propose a model to

adversarially train on a similar source domain dataset against

the target domain data. This forces the network to learn fea-

ture representations that are invariant to the domain and are

at the same time discriminative enough for the segmentation

task. We show improvement of target domain testing accu-

racy using the proposed architecture against the baseline. We

also note that the results are to demonstrate proof of concept

and results in each experiment could be improved by utilizing

application specific baselines.
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