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FEM Solutions
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Fig. 1. 3D NACA wing example of vorticity before (left of the dashed line) and after (right) the application of our proposed approach.

Abstract—As the finite element method (FEM) and the finite volume method (FVM), both traditional and high-order variants, continue
their proliferation into various applied engineering disciplines, it is important that the visualization techniques and corresponding data
analysis tools that act on the results produced by these methods faithfully represent the underlying data. To state this in another way:
the interpretation of data generated by simulation needs to be consistent with the numerical schemes that underpin the specific solver
technology. As the verifiable visualization literature has demonstrated: visual artifacts produced by the introduction of either explicit or
implicit data transformations, such as data resampling, can sometimes distort or even obfuscate key scientific features in the data.
In this paper, we focus on the handling of elemental continuity, which is often only C0 continuous or piecewise discontinuous, when
visualizing primary or derived fields from FEM or FVM simulations. We demonstrate that traditional data handling and visualization
of these fields introduce visual errors. In addition, we show how the use of the recently proposed line-SIAC filter provides a way of
handling elemental continuity issues in an accuracy-conserving manner with the added benefit of casting the data in a smooth context
even if the representation is element discontinuous.

Index Terms—Flow Visualization, discontinuous Galerkin (dG) methods, continuous Galerkin (cG) methods, finite element meth-
ods (FEM), finite volume methods, filtering techniques, Scalar Field Data, Irregular and Unstructured Grids, Extraction of Sur-
faces(Isosurfaces)

1 INTRODUCTION

The use of unstructured finite element method (FEM) and finite vol-
ume method (FVM) technology continues to expand within both the
academic research world and industrial applications. Both the tradi-
tional and high-order variants of these methods are now being used in
areas ranging from Formula-1 race car design [16] to bioengineering
applications [2]. Simulation tools using these technologies are not used
in isolation, but are often part of a design pipeline including modeling,
meshing, simulation, and visualization. In light of this observation,
Kirby and Silva [15] called for “Verifiable Visualizations” – that is,
for visualizations that consider both the errors in the individual visual-
ization components within the design pipeline and also the interaction

• Ashok Jallepalli is with SCI Institute, University of Utah. E-mail:
ashokj@sci.utah.edu

• Julia Docampo-Sánchez is with School of Mathematics, University of East
Anglia. E-mail: J.Docampo@uea.ac.uk

• Jennifer K. Ryan is with School of Mathematics, University of East Anglia.
E-mail: jennifer.ryan@uea.ac.uk

• Robert Haimes is with Department of Aeronautics, MIT. E-mail:
haimes@mit.edu

• Robert M. Kirby is with SCI Institute, University of Utah. E-mail:
kirby@sci.utah.edu

between and interpretation of the accumulated errors generated in the
computational design pipeline, including the visualization and analysis
components. In the case of unstructured FEM and FVM data, several
challenges exist when applying the verifiable visualization philosophy,
ranging from the handling of unstructured data to the levels of field con-
tinuity available or assumed. The focus of this paper is on the handling
of FEM and FVM data in the verifiable visualization sense; that is, in
a way that we can be assured of the impact on the error budget when
employed within an engineering design pipeline. In particular we will
focus on the impact of inter-elemental continuity on the post-processing
(analysis and visualization) of principle and derived fields from FEM
and FVM methods.

To begin, let us review the relevant basic building blocks upon which
FEM and FVM technologies are based. In both methodologies, the
domain of interest as defined by the engineering application is decom-
posed into a collection of non-overlapping elements, the union of which
fills the domain. In two-dimensions, triangles and quadrilaterals are
the frequently used element types; in three-dimensions, tetrahedra, hex-
ahedra and prisms are most often used (with pyramids allowing for
transitioning within hybrid meshes). Over each element an approximat-
ing function is built, either using information solely at the vertices of
an element or in the case of high-order elements, via additional degrees
of freedom added to the element (as either nodal points within the
element or as modal information associated with the element). In an
elemental sense, evaluation and derived quantities (such as derivative
information) can be exactly computed once values at the degrees of
freedom on an element are specified. It is at this stage that FEM and
FVM bifurcate: traditional and high-order FEM fields are constructed
as the C0 continuous assembly of this elemental information, while
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FVM and their high-order variant, discontinuous Galerkin (dG) meth-
ods, operate on piecewise discontinuous fields. In either case, both
methodologies at best enforce only C0 continuity at element interfaces
for the primitive variables within the simulation; derivative quantities
in both methodologies exist only as piecewise discontinuous fields.
The definition of continuity at the interfaces of elements informs us, in
some sense, how many times a derivative can be taken over the field
before the results become piecewise discontinuous (the derivative of a
C1 field is C0, where the derivative of a C0 field becomes a piecewise
discontinuous field).

The lack of strong continuity requirements at element interfaces is
exploited in the mathematical and algorithmic developments of both
FEM and FVM simulations; however, as will be demonstrated in this
paper, it is a major challenge when attempting to analyze and visual-
ization both primitive and derived fields in a verifiable manner that
is true to the original data. When visualizing FEM and FVM results,
elemental continuity (or the lack thereof) can produce visual artifacts
which in the best case are only a distraction to the investigator but in
the worst case can either obfuscate what truly being represented within
the data or inhibit further analysis. Within the simulation community,
these issues are often handled through a combination of resampling
and explicit data sampling.

In this paper, we examine the traditional simulation-to-visualization
pipeline in light of how FEM and FVM data is handled: in particular,
focusing on the impact of inter-element continuity when analyzing and
visualizing simulation data. In the simulation-to-visualization pipeline,
simulation data is generated in a way consistent with the underlying
mathematical representations of the data used by the simulation; it is
then transformed into a representation which can be inputted into the
visualization system. This transformation from simulation output to
visualization input is in the best case an identity mapping; in these
situations, as demonstrated in [21–23], the underlying simulation rep-
resentations can be used to generate pixel-exact visualizations that
reduce in a verifiable way or eliminate any errors introduced in the
visualization process. However, to accommodate the use of general
visualization tools, many simulation packages export data transformed
into standardized low-order structured (lattice) or unstructured (tessel-
lation) formats with data values stored at the vertices. Mathematically,
such a transformation is considered an interpolation projection from
the original simulation data space to the representation space of the
visualization tool. As we will demonstrate, such transformations may
introduce visual artifacts or unquantified errors. In addition, any further
derived quantities computed within the visualization tool may not be as
accurate as natively computed quantities as the simulation representa-
tional metadata has been lost. Transforming from native simulation data
to representations that can be read by a large number of visualization
tools is not without its merits, which leads us to investigate alternative
means of transforming the data (beyond interpolation projections) in a
way consistent with the simulations.

Smoothness-Increasing Accuracy-Conserving (SIAC) filtering [3]
has been proposed within the FEM and FVM literature as a way of trans-
forming data to increase the level of inter-element smoothness while
conserving the accuracy of the original data. This is accomplished by
using the mathematical tools upon which FEM and FVM methods are
built, and hence provides a verifiable way (in the verifiable visualization
sense) of inserting a transformation into the simulation-to-visualization
pipeline in a mathematically consistent and quantifiable manner. The
term “filter”, when used in the context of the SIAC methodology, is not
filtering in the signal processing sense. In signal processing, “filtering”
has the connotation of changing the data stream. SIAC processing
does not degrade the solution, but in fact can enhance the order of
accuracy. SIAC filtering has already been demonstrated to be effective
for the visualization of streamlines through high-order FEM and FVM
data [28, 30]. There are, however, two downsides to the general SIAC
approach used thus far: 1) to construct filtering operators in 2D and
3D, tensor-products of one-dimensional filters are used. SIAC filtering
requires a combination of finding the geometric intersection between
the filtering lattice and the underlying mesh to generate a super-mesh
on which the solution is smooth and numerical quadrature on each

of the super-mesh element can be accomplished, traditional tensor-
product-based SIAC filtering is not practical in three-dimensions. 2)
When moving to general domains representing complex geometries,
it is often impossible to filter at all points within the domain using
the traditional SIAC filter due to its filter width overlap requirements
generated by the tensor-product footprint. These two limitations of
traditional SIAC filtering motivated the development of the line-SIAC
(LSIAC) filter [5], a family of one-dimensional SIAC filters (symmetric
and one-sided) that can filter along a segment in any direction within an
FEM or FVM field. In this paper, we argue that the LSIAC filter allows
us to transform arbitrary, unstructured high-order data over complex
geometries in a way that is consistent with the underlying simulation
data (and hence in a verifiable way) while remaining computationally
tractable.

In Section 2, we first present a brief review of the relevant literature
in this area. In Section 3, we then present the LSIAC filter. We start with
a description of the traditional one-dimensional SIAC filter upon which
both the LSIAC filter and the previously used tensor-product-based
SIAC filter is based; we then summarize the mathematical foundations
of the LSIAC filter; and we then provide a detailed explanation of how
one can implement the LSIAC filter as used in this paper. In Section 4,
we discuss several two-dimensional and three-dimensional examples
highlighting the problems with lack of inter-element continuity causes,
common ways by which the simulation community tries to get around
these issues when analyzing such data and its deficiencies, and then
lastly also shows how the LSIAC approach significantly improves
the analysis and visualization results of FEM and FVM fields. We
conclude in Section 5 with a summary of our work and comments on
future directions.

2 PREVIOUS WORK

The previous work that addresses the issues raised in this paper is sparse.
A literature review in this area shows that from the vantage point of
visualization systems, these issues do not arise as the input formats to
a particular system is well defined, and the system is designed to act
in a manner consistent with that data. For example, with respect to
unstructured high-order data, there has been clear work on refinement-
based approaches [27] and ray-traced solutions [21–23].

The problems discussed in this paper present themselves when taken
from the vantage point of the simulation-to-visualization pipeline. From
this perspective, although not directly applicable, the body of work
on verifiable visualization [9–11, 15] is relevant as it highlights the
need for understanding the relationships between simulation output
and visualization input in a quantifiable way. From the simulation
perspective, the transformation of data to allow it to be inputted into a
visualization system is a process/pipeline problem: it is acknowledged
that such transformations might be necessary, but the details as to what
has been done is often not fully documented. The work accomplished
in the area of reconstruction filters using splines such as [7, 8, 12] can
introduce C1 and C2 (and higher) continuity. These reconstruction
filters have been proven to work well for discrete data (as obtained in
image processing) and volumetric rendering; however, they cannot be
used for our purposes since they are not proven to respect the accuracy
of underlying simulation data. In the results section of this paper we
have summarized several of the canonical ways by which simulation
scientists transform their data for analysis and visualization. These
methods are used as the baseline for our comparisons.

3 METHODS

In this section we first review the family of one-dimensional SIAC
filters, and we then present the basic building blocks of the line-SIAC
(LSIAC) filter. We present this in two parts: a discussion of the basic
mathematics of the LSIAC family and then a discussion of how we
implemented the LSIAC filters over arbitrary elements.

3.1 The One-Dimensional SIAC Family of Filters

Given field data, the SIAC filtering technique is defined by the convo-
lution of the input field with a carefully constructed kernel function,

with the purpose of reducing the oscillations in the error and increas-
ing the order of accuracy of the original field. To compute the result
of the SIAC methodology acting on a piecewise C0 or discontinuous
approximation of degree k, we apply a filter containing a linear com-
bination of B-splines designed so that the filtering operation does not
destroy the accuracy of the original approximation. Traditionally, the
filter employed 2k+ 1 B-splines of order k+ 1 (i.e., degree k) since
this configuration can raise the convergence order of the field up to
2k+1 [3]. However, alternative configurations can still lead to error
reduction and smoothness recovery, even when building kernels using
fewer B-splines and of lower order [20]. Here, we present the kernel in
a general form and provide a brief introduction to this post-processing
technique in order to understand its extension to the LSIAC family.
For a more detailed discussion of the post-processor and its variants,
see [13, 18, 19, 24, 29].

For the one-dimensional case, the SIAC post-processor is defined
by:

u�(x) =
1
H

∫ ∞

−∞
K(r+1,n+1)

(
y− x

H

)
uh(y)dy, (1)

where u� is the post-processed solution, H is the characteristic length
of the filter often taken as a function of the input mesh h, i.e., H = m ·h.
In general, h is defined as maximum edge length in the neighborhood,
and

K(r+1,n+1)(x) =
r

∑
γ=0

c(r+1,n+1)
γ ψ(n+1)(x− x̄γ ). (2)

The functions ψ(n+1) denote B-splines of order n+1 (degree n) and
x̄γ denotes offset points (which in the symmetric case default to the
knot points of the B-splines). The knot positions of the B-splines
within the kernel superimposed against the elemental mesh generates
the super-mesh over which numerical integration is then performed.
The resulting field is then a piecewise polynomial function having the
same mesh macro-structure, for which the elemental polynomial degree
is increased and the inter-element continuity is increased.

The kernel coefficients, c(r+1,n+1)
γ , are determined by the following

property:
K � xp = xp, p = 0, . . . , r, (3)

i.e., the kernel must reproduce monomials up to degree r (which is
equivalent to maintaining consistency as well as moments up to degree
r). Assuming that the input data is a polynomial of degree k, imposing
r+1 ≥ k ensures that the filter preserves the accuracy of the original
data. Hence, for visualization applications, we build kernels using
r + 1 = k splines which improve the computational costs while not
fundamentally affecting any field features. Additionally, versions of
the filters in which the kernel coefficients have been modified to post-
process derivative quantities exist [25]. The derivative kernel is built
using higher-order B-splines (n+1 ≥ k) so that when computing field
derivatives together with a SIAC filter, the resulting approximation does
not become a lower order polynomial. The convolution is defined in a
similar way:

K(r+1,n+1+α) �Dα u = Dα K(r+1,n+1+α) �u, (4)

where u is the original field and Dα denotes the α-derivative. We
note that, although mathematically Equation 4 holds, [25] showed that
computationally, these operators do not necessarily commute. This fact
was taken into account during the experiments carried out in this paper.
Figure 2 illustrates a standard SIAC kernel and its derivative (α = 1)
version.

3.2 The Line SIAC (LSIAC) Family of Filters
As was mentioned earlier, the LSIAC family of filters was motivated
by the need for a flexible and yet computationally tractable SIAC filter
in multi-dimensions. The authors in [5] proposed that one-dimensional
SIAC filtering need not necessarily only be done in a way that is
aligned with the coordinate axes, but rather it could be implemented as
a rotationally-dependent one-dimensional filter for higher-dimensional
spaces. In their work they consider two-dimensional fields in which a
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Fig. 2. A symmetric SIAC kernel (left) for post-processing the solutoin of
a p=1 approximation and the corresponding derivative kernel (right).

single angle is needed to specify the orientation of the filter; in this work,
we extend their ideas to three-dimensions by allowing the user to choose
an orientation vector that specifies the direction in which the filter acts.
Like the traditional SIAC filter, the LSIAC family of filters contains
both symmetric and one-sided variants [26]. The fluid results presented
in this paper employed only symmetric LSIAC kernels. Furthermore,
derivative versions of the LSIAC filter also exist and will be used as
part of this paper since it allows for computing field quantities, such as
vorticity, without loosing approximation polynomial degrees by taking
derivatives.

There are two major challenges associated with the optimal de-
sign of the LSIAC filter: choosing the kernel characteristic length and
the rotation angle. Although the characteristic length choice is ob-
vious for uniform meshes (H = mesh size), there has been ongoing
work on finding the optimal value for non-uniform and unstructured
meshes [4,17,26]. In addition, introducing a rotation in the kernel leads
to the problem of determining the optimal orientation. The authors
in [5] link the rotation angle directly to the mesh, hence the optimal
rotation problem inherits all the limitations encountered by the opti-
mal characteristic length problem. In this paper, we demonstrate the
impact of the characteristic length and rotation choices and provide a
framework that, although not necessarily optimal, leads to satisfactory
results. It should be noted that the streamline extraction of [30] is, in
a sense, the precursor to LSIAC where one dimensional SIAC filters
were used to extract smooth and continuous traces from 3D dG data,
where the local streamline tangent was used as the filter direction.

The properties of the SIAC filter that are of importance to this work
that we inherit when moving to LSIAC are as follows [5]:

• LSIAC maintains all the (provable) error characteristics of the
tensor-product SIAC filter at significantly reduced computational
cost, and

• LSIAC increases the smoothness of the solution in all directions
provided the filter parameters are selected appropriately.

3.3 Implementation of LSIAC
We now discuss the implementation of LSIAC filtering to post-process
any position within in a vector field. The input choices for the imple-
mentation are the FEM or FVM fields to be filtered, the point P in the
field at which to post-process, the choice of a symmetric or derivative
variant of the filter, the direction�r along which to post-process, and the
characteristic length of the filter H needed to define the post-processing
kernel.

At a high level, we need to process the LSIAC filter with given field,
which is done by following the three steps below:

• Construct the LSIAC filter: We always choose to apply the sym-
metric LSIAC filter unless we are unable to do so due to the
LSIAC filter width impinging on a boundary of the simulation
mesh. For a more detailed explanation on setting up knots for
B-Splines and finding the coeffients of the kernel, we refer the
reader to [19, 20]. First, we compute the width of the symmetric
LSIAC filter by considering both the characteristic length of the
filter H and the footprint of the linear combination of B-splines
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FVM and their high-order variant, discontinuous Galerkin (dG) meth-
ods, operate on piecewise discontinuous fields. In either case, both
methodologies at best enforce only C0 continuity at element interfaces
for the primitive variables within the simulation; derivative quantities
in both methodologies exist only as piecewise discontinuous fields.
The definition of continuity at the interfaces of elements informs us, in
some sense, how many times a derivative can be taken over the field
before the results become piecewise discontinuous (the derivative of a
C1 field is C0, where the derivative of a C0 field becomes a piecewise
discontinuous field).

The lack of strong continuity requirements at element interfaces is
exploited in the mathematical and algorithmic developments of both
FEM and FVM simulations; however, as will be demonstrated in this
paper, it is a major challenge when attempting to analyze and visual-
ization both primitive and derived fields in a verifiable manner that
is true to the original data. When visualizing FEM and FVM results,
elemental continuity (or the lack thereof) can produce visual artifacts
which in the best case are only a distraction to the investigator but in
the worst case can either obfuscate what truly being represented within
the data or inhibit further analysis. Within the simulation community,
these issues are often handled through a combination of resampling
and explicit data sampling.

In this paper, we examine the traditional simulation-to-visualization
pipeline in light of how FEM and FVM data is handled: in particular,
focusing on the impact of inter-element continuity when analyzing and
visualizing simulation data. In the simulation-to-visualization pipeline,
simulation data is generated in a way consistent with the underlying
mathematical representations of the data used by the simulation; it is
then transformed into a representation which can be inputted into the
visualization system. This transformation from simulation output to
visualization input is in the best case an identity mapping; in these
situations, as demonstrated in [21–23], the underlying simulation rep-
resentations can be used to generate pixel-exact visualizations that
reduce in a verifiable way or eliminate any errors introduced in the
visualization process. However, to accommodate the use of general
visualization tools, many simulation packages export data transformed
into standardized low-order structured (lattice) or unstructured (tessel-
lation) formats with data values stored at the vertices. Mathematically,
such a transformation is considered an interpolation projection from
the original simulation data space to the representation space of the
visualization tool. As we will demonstrate, such transformations may
introduce visual artifacts or unquantified errors. In addition, any further
derived quantities computed within the visualization tool may not be as
accurate as natively computed quantities as the simulation representa-
tional metadata has been lost. Transforming from native simulation data
to representations that can be read by a large number of visualization
tools is not without its merits, which leads us to investigate alternative
means of transforming the data (beyond interpolation projections) in a
way consistent with the simulations.

Smoothness-Increasing Accuracy-Conserving (SIAC) filtering [3]
has been proposed within the FEM and FVM literature as a way of trans-
forming data to increase the level of inter-element smoothness while
conserving the accuracy of the original data. This is accomplished by
using the mathematical tools upon which FEM and FVM methods are
built, and hence provides a verifiable way (in the verifiable visualization
sense) of inserting a transformation into the simulation-to-visualization
pipeline in a mathematically consistent and quantifiable manner. The
term “filter”, when used in the context of the SIAC methodology, is not
filtering in the signal processing sense. In signal processing, “filtering”
has the connotation of changing the data stream. SIAC processing
does not degrade the solution, but in fact can enhance the order of
accuracy. SIAC filtering has already been demonstrated to be effective
for the visualization of streamlines through high-order FEM and FVM
data [28, 30]. There are, however, two downsides to the general SIAC
approach used thus far: 1) to construct filtering operators in 2D and
3D, tensor-products of one-dimensional filters are used. SIAC filtering
requires a combination of finding the geometric intersection between
the filtering lattice and the underlying mesh to generate a super-mesh
on which the solution is smooth and numerical quadrature on each

of the super-mesh element can be accomplished, traditional tensor-
product-based SIAC filtering is not practical in three-dimensions. 2)
When moving to general domains representing complex geometries,
it is often impossible to filter at all points within the domain using
the traditional SIAC filter due to its filter width overlap requirements
generated by the tensor-product footprint. These two limitations of
traditional SIAC filtering motivated the development of the line-SIAC
(LSIAC) filter [5], a family of one-dimensional SIAC filters (symmetric
and one-sided) that can filter along a segment in any direction within an
FEM or FVM field. In this paper, we argue that the LSIAC filter allows
us to transform arbitrary, unstructured high-order data over complex
geometries in a way that is consistent with the underlying simulation
data (and hence in a verifiable way) while remaining computationally
tractable.

In Section 2, we first present a brief review of the relevant literature
in this area. In Section 3, we then present the LSIAC filter. We start with
a description of the traditional one-dimensional SIAC filter upon which
both the LSIAC filter and the previously used tensor-product-based
SIAC filter is based; we then summarize the mathematical foundations
of the LSIAC filter; and we then provide a detailed explanation of how
one can implement the LSIAC filter as used in this paper. In Section 4,
we discuss several two-dimensional and three-dimensional examples
highlighting the problems with lack of inter-element continuity causes,
common ways by which the simulation community tries to get around
these issues when analyzing such data and its deficiencies, and then
lastly also shows how the LSIAC approach significantly improves
the analysis and visualization results of FEM and FVM fields. We
conclude in Section 5 with a summary of our work and comments on
future directions.

2 PREVIOUS WORK

The previous work that addresses the issues raised in this paper is sparse.
A literature review in this area shows that from the vantage point of
visualization systems, these issues do not arise as the input formats to
a particular system is well defined, and the system is designed to act
in a manner consistent with that data. For example, with respect to
unstructured high-order data, there has been clear work on refinement-
based approaches [27] and ray-traced solutions [21–23].

The problems discussed in this paper present themselves when taken
from the vantage point of the simulation-to-visualization pipeline. From
this perspective, although not directly applicable, the body of work
on verifiable visualization [9–11, 15] is relevant as it highlights the
need for understanding the relationships between simulation output
and visualization input in a quantifiable way. From the simulation
perspective, the transformation of data to allow it to be inputted into a
visualization system is a process/pipeline problem: it is acknowledged
that such transformations might be necessary, but the details as to what
has been done is often not fully documented. The work accomplished
in the area of reconstruction filters using splines such as [7, 8, 12] can
introduce C1 and C2 (and higher) continuity. These reconstruction
filters have been proven to work well for discrete data (as obtained in
image processing) and volumetric rendering; however, they cannot be
used for our purposes since they are not proven to respect the accuracy
of underlying simulation data. In the results section of this paper we
have summarized several of the canonical ways by which simulation
scientists transform their data for analysis and visualization. These
methods are used as the baseline for our comparisons.

3 METHODS

In this section we first review the family of one-dimensional SIAC
filters, and we then present the basic building blocks of the line-SIAC
(LSIAC) filter. We present this in two parts: a discussion of the basic
mathematics of the LSIAC family and then a discussion of how we
implemented the LSIAC filters over arbitrary elements.

3.1 The One-Dimensional SIAC Family of Filters

Given field data, the SIAC filtering technique is defined by the convo-
lution of the input field with a carefully constructed kernel function,

with the purpose of reducing the oscillations in the error and increas-
ing the order of accuracy of the original field. To compute the result
of the SIAC methodology acting on a piecewise C0 or discontinuous
approximation of degree k, we apply a filter containing a linear com-
bination of B-splines designed so that the filtering operation does not
destroy the accuracy of the original approximation. Traditionally, the
filter employed 2k+ 1 B-splines of order k+ 1 (i.e., degree k) since
this configuration can raise the convergence order of the field up to
2k+1 [3]. However, alternative configurations can still lead to error
reduction and smoothness recovery, even when building kernels using
fewer B-splines and of lower order [20]. Here, we present the kernel in
a general form and provide a brief introduction to this post-processing
technique in order to understand its extension to the LSIAC family.
For a more detailed discussion of the post-processor and its variants,
see [13, 18, 19, 24, 29].

For the one-dimensional case, the SIAC post-processor is defined
by:

u�(x) =
1
H

∫ ∞

−∞
K(r+1,n+1)

(
y− x

H

)
uh(y)dy, (1)

where u� is the post-processed solution, H is the characteristic length
of the filter often taken as a function of the input mesh h, i.e., H = m ·h.
In general, h is defined as maximum edge length in the neighborhood,
and

K(r+1,n+1)(x) =
r

∑
γ=0

c(r+1,n+1)
γ ψ(n+1)(x− x̄γ ). (2)

The functions ψ(n+1) denote B-splines of order n+1 (degree n) and
x̄γ denotes offset points (which in the symmetric case default to the
knot points of the B-splines). The knot positions of the B-splines
within the kernel superimposed against the elemental mesh generates
the super-mesh over which numerical integration is then performed.
The resulting field is then a piecewise polynomial function having the
same mesh macro-structure, for which the elemental polynomial degree
is increased and the inter-element continuity is increased.

The kernel coefficients, c(r+1,n+1)
γ , are determined by the following

property:
K � xp = xp, p = 0, . . . , r, (3)

i.e., the kernel must reproduce monomials up to degree r (which is
equivalent to maintaining consistency as well as moments up to degree
r). Assuming that the input data is a polynomial of degree k, imposing
r+1 ≥ k ensures that the filter preserves the accuracy of the original
data. Hence, for visualization applications, we build kernels using
r + 1 = k splines which improve the computational costs while not
fundamentally affecting any field features. Additionally, versions of
the filters in which the kernel coefficients have been modified to post-
process derivative quantities exist [25]. The derivative kernel is built
using higher-order B-splines (n+1 ≥ k) so that when computing field
derivatives together with a SIAC filter, the resulting approximation does
not become a lower order polynomial. The convolution is defined in a
similar way:

K(r+1,n+1+α) �Dα u = Dα K(r+1,n+1+α) �u, (4)

where u is the original field and Dα denotes the α-derivative. We
note that, although mathematically Equation 4 holds, [25] showed that
computationally, these operators do not necessarily commute. This fact
was taken into account during the experiments carried out in this paper.
Figure 2 illustrates a standard SIAC kernel and its derivative (α = 1)
version.

3.2 The Line SIAC (LSIAC) Family of Filters
As was mentioned earlier, the LSIAC family of filters was motivated
by the need for a flexible and yet computationally tractable SIAC filter
in multi-dimensions. The authors in [5] proposed that one-dimensional
SIAC filtering need not necessarily only be done in a way that is
aligned with the coordinate axes, but rather it could be implemented as
a rotationally-dependent one-dimensional filter for higher-dimensional
spaces. In their work they consider two-dimensional fields in which a
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Fig. 2. A symmetric SIAC kernel (left) for post-processing the solutoin of
a p=1 approximation and the corresponding derivative kernel (right).

single angle is needed to specify the orientation of the filter; in this work,
we extend their ideas to three-dimensions by allowing the user to choose
an orientation vector that specifies the direction in which the filter acts.
Like the traditional SIAC filter, the LSIAC family of filters contains
both symmetric and one-sided variants [26]. The fluid results presented
in this paper employed only symmetric LSIAC kernels. Furthermore,
derivative versions of the LSIAC filter also exist and will be used as
part of this paper since it allows for computing field quantities, such as
vorticity, without loosing approximation polynomial degrees by taking
derivatives.

There are two major challenges associated with the optimal de-
sign of the LSIAC filter: choosing the kernel characteristic length and
the rotation angle. Although the characteristic length choice is ob-
vious for uniform meshes (H = mesh size), there has been ongoing
work on finding the optimal value for non-uniform and unstructured
meshes [4,17,26]. In addition, introducing a rotation in the kernel leads
to the problem of determining the optimal orientation. The authors
in [5] link the rotation angle directly to the mesh, hence the optimal
rotation problem inherits all the limitations encountered by the opti-
mal characteristic length problem. In this paper, we demonstrate the
impact of the characteristic length and rotation choices and provide a
framework that, although not necessarily optimal, leads to satisfactory
results. It should be noted that the streamline extraction of [30] is, in
a sense, the precursor to LSIAC where one dimensional SIAC filters
were used to extract smooth and continuous traces from 3D dG data,
where the local streamline tangent was used as the filter direction.

The properties of the SIAC filter that are of importance to this work
that we inherit when moving to LSIAC are as follows [5]:

• LSIAC maintains all the (provable) error characteristics of the
tensor-product SIAC filter at significantly reduced computational
cost, and

• LSIAC increases the smoothness of the solution in all directions
provided the filter parameters are selected appropriately.

3.3 Implementation of LSIAC
We now discuss the implementation of LSIAC filtering to post-process
any position within in a vector field. The input choices for the imple-
mentation are the FEM or FVM fields to be filtered, the point P in the
field at which to post-process, the choice of a symmetric or derivative
variant of the filter, the direction�r along which to post-process, and the
characteristic length of the filter H needed to define the post-processing
kernel.

At a high level, we need to process the LSIAC filter with given field,
which is done by following the three steps below:

• Construct the LSIAC filter: We always choose to apply the sym-
metric LSIAC filter unless we are unable to do so due to the
LSIAC filter width impinging on a boundary of the simulation
mesh. For a more detailed explanation on setting up knots for
B-Splines and finding the coeffients of the kernel, we refer the
reader to [19, 20]. First, we compute the width of the symmetric
LSIAC filter by considering both the characteristic length of the
filter H and the footprint of the linear combination of B-splines
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that make up the kernel; we then shift the center of LSIAC ker-
nel to the evaluation position P, and then rotate the LSIAC filter
by the given direction�r. If the line segment does not cross any
domain domain boundaries, we proceed to the next step.

• Dividing LSIAC into integrable segments: In order to perform the
convolution, the elements overlapped by the line segment of the
filter must be respected to isolate regions over which polynomial
integration can be made exact (to machine precision). Given
that the LSIAC filter is constructed via a linear combination of
B-splines, which are piecewise polynomials at their knot values,
these relative positions along the segment can be marked. The
input field also consists of piecewise polynomials in between
element boundaries, so the intersection of the element boundaries
and the filter segment are also marked. Next, all marked positions
in the parametric space of the LSIAC filter are sorted and the
LSIAC’s filter is divided into line segments.

• Integrate each segment: Perform the convolution by sampling
each line segment on LSIAC’s kernel against the field at the
quadrature points in the line segment; that is, use quadrature rules
to integrate the product of the LSIAC kernel and field values for
each line segment. In the final step, perform the summation over
all the line segments to set the updated value of the field at the
point.

We have implemented the above algorithm in C++ and have
used high-order FEM and FVM fields generated by Nektar++ [1]
in our examples using simulation data. On a structured mesh, as
there is no need to search for adjacent elements: the complexity of
the above algorithm depends on computing the LSIAC coefficients
(LSIACCoe f f s), dividing LSIAC into line segments, and convolving
the filter against the elements. Hence, if K is the maximum number
of line segments, E is the complexity of evaluating the field at any
given point and P is the combination of the LSIAC order and the order
of the given field, the complexity of the algorithm on a structured
mesh to evaluate a given point is O(LSIACCoe f f s +K ·P ·E). In the
case of an unstructured mesh, there is an additional computation
required for finding the adjacent elements (unless this information is
available in the mesh or from the solver). We utilize R-trees for finding
the intersection of line-segments with the unstructured mesh. The
complexity of finding these intersections are O(log(N)), where N is the
total number of elements. Hence in the case of an unstructured mesh,
our implementation complexity is O(log(N)+LSIACCoe f f s+K ·P ·E).
When we are evaluating multiple points, we optimize by saving the
coefficients of symmetric LSIAC. Hence, the complexity is, in general,
no more than O(log(N)+K ·P ·E).

To give insight into the performance of our methodology, we com-
pare the cost of evaluating the traditional tensor-product SIAC as used
in [28] and LSIAC as used in this work. The cost of 2D SIAC applied
over a field of N elements is (C1Pd +C2P), versus C3P, which is the
complexity of applying LSIAC over a field on N elements. Here P is
the polynomial degree of field, d is the dimension and C1,C2,C3 are
constants independent of degree. Additionally, in the case of SIAC
filtering, the intersection between filter and meshes needs to be handled
differently for every type of mesh element, which is not the case with
LSIAC.

4 RESULTS AND DISCUSSION

In this section, we examine how different sampling schemes, used
for both visualization and data analysis, effect the interpretation of
FEM and FVM field data. The sampling schemes include what has
traditionally been done to examine both piecewise C0 continuous (FEM)
and piecewise discontinuous (FVM) results and are contrasted with
LSIAC filtered results. The cases presented herein are discussed both
qualitatively through imagery and quantitatively where metrics exist.

4.1 2D Vortical flow over a cylinder
The Nektar++ [1] solver suite, and in particular the incompressible
Navier-Stokes solver, was used to generate the fluid flow results that

Fig. 3. The two-dimensional hybrid (triangle and quadrilateral) mesh
used for all the cylinder flow examples herein.

are visualized throughout. Flow past a circular cylinder at the viscosity
examined is a transient problem, but only a single snapshot (in time)
is shown. The mesh used for this simulation is shown in Fig. 3, which
contains polynomial degree two (P2) elements: 500 triangles and 330
quadrilaterals found primarily in the wake region behind the circle. A
continuous Galerkin (FEM) methodology was used which provides C2

(P2 polynomials) within the element and C0 at the element interfaces.
The Reynolds number was set at Re = 500, and the flow solver was
run until shedding behind the cylinder generates consistently shaped
vortices. These vortices are displayed using different techniques as
described below.

Note that the boxed region (in red) in Fig. 3 will be used for the sub-
sequent contour images shown for this case. In the text that follows and
in keeping with the mathematical methodology terminology, we will
use the term cG (continuous Galerkin) as shorthand for piecewise C0

FEM fields and dG (discontinuous Galerkin) as shorthand for piecewise
discontinuous FVM fields.

4.1.1 Raw dG vorticity

Though the simulation is cG, when taking the derivative of the velocity
field (to get the vorticity field), the continuity is reduced by one degree,
resulting in a dG field. Vorticity is displayed in Fig. 4.

Fig. 4. Raw dG Vorticity Case: Contours of vorticity in the wake of the
2D cylinder (left); line plot of the vorticity extracted along the dashed line
shown on the contour image (right). Elements in the one-dimensional
plot are colored to help the reader see the continuity between elements.

The contour image seen on the left-hand side of Fig. 4 is calculated
on a per-element basis with the value of vorticity computed from the
dG field directly. There are two important features to note: 1) the
contour lines are discontinuous at the element boundaries (that is, all
lines of constant color do not continue across the element boundaries)
and 2) the contour lines are linear. The first feature highlights the jumps
(the word “jumps” as used in the fluid’s community refers to a field
discontinuity) seen at the element interfaces. The linear contours are
a result of the field now being P1 (due to a derivative being taken). It
should also be noted that the contour colors used in this figure represent
the same values for all of the figures for this 2D vorticity case.

The line plot on the right-hand-side of Fig. 4 depicts a vertical slice
through the data and further highlights the discontinuity at element
interfaces. The dG vorticity field is sampled along the dashed line
(bottom to top) of the contour image with 8000 points. The different
colors indicate a line passing through different elements and the tick
marks along the X-axis depict the element interfaces crossed.

4.1.2 Vorticity sampled on a regular lattice
Vorticity is calculated on a lattice from the velocity field that is a regular
sampling of the original data. This is consistent with how higher-
order data is transformed so that it can be inputted into traditional
visualization systems and is usually used when the mesh is relatively
isotropic. Vorticity is then calculated from velocity using centered finite
differences on the lattice. The lattice spacing is calculated by taking the
length of the smallest side of the smallest element and dividing it by P+
2 where P denotes the element degree (i.e., smallestEdgeLength/4 =
0.1 for this mesh). We sample the velocity component in x (i.e. the u
component of the velocity) and the velocity component in y (i.e. the v
component of the velocity) uniformly with this finite interval. We then
use finite differencing of u and v in the y and x directions respectively
to calculate vx −uy.

Fig. 5. Lattice-based Vorticity Case: Contours of vorticity in the wake of
the 2D cylinder (left); line plot of the vorticity extracted along the dashed
line shown on the contour image (right).

The left-hand-side of Fig. 5 displays the contours resulting from the
lattice sampling. The ticks along the boundary of the image indicate the
lattice spacing. The graphical aliasing due to the lattice aligning with
the structured portion of the computational mesh is evident, but the
jumps have been removed. This is an artifact of the regular sampling
and the linear interpolation performed between lattice points.

The line plot seen on the right of Fig. 5 represents the same slice
through the data as seen on the right-hand-side of Fig. 4. The tick
marks on the bottom axis display the lattice resolution. The tick marks
along the top of the plot show the mesh boundary intersections, where
the value of vorticity is seen on the plot’s Y-axis.

The line plot of vorticity is now continuous but not smooth. The
aliasing at (what were) the jumps is evident by the smaller peaks along
the flanks of the vortex center.

4.1.3 Vorticity calculated using velocity at collocation point
Another common technique used to map higher-order FEM results to
field data consistent with most visualization systems is to breakup the
elements into subelements where linear interpolation is then performed.
This produces a finer (denser) mesh for visualization and is more
appropriate for complex geometries and when the elements tend to
be multi-scale or anisotropic. Figure 6 depicts the mesh used for this
sampling method where the collocation points interior to the elements
are used in the subdivision. (Note: the collocation points and quadrature
points are co-located in the Nektar++ software implementation). The
subdivision is performed while preserving self-replicating structure
inside the element.

In order to compute vorticity in a manner consistent with a tradi-
tional visualization system where linear interpolation has been assumed
throughout, the following procedure is used:

Fig. 6. Figure showing the element subdivision mesh based upon the
collocation points.

1. Place the velocity at all of the vertices (element bounds and
interior) as seen in Figure 6.

2. The velocity derivative components (ux,uy,vx,vy) at mesh vertices
are computed as:

(a) The velocity derivatives are calculated for each triangular
subelement (note that quadrilaterals are further split into
triangles). The result will be a constant (i.e., P0 dG) for
each triangle.

(b) To move the velocity derivatives back to the vertices, area
weighted sums are accumulated at each vertex that supports
the triangle, along with the total area touching the vertex.

(c) After all triangles are sampled the vertex-based velocity
derivative sums are divided by the areas accumulated.

3. Vorticity is then computed as vx −uy at every collocation/vertex
point.

Fig. 7. Elemental Subdivision-based Vorticity Case 1: Contours of vor-
ticity in the wake of the 2D cylinder computed within the visualization
system based upon velocity information at the vertices (left); line plot of
the vorticity extracted along the dashed line shown on the contour image
(right).

Because the velocities are originally cG and the derivatives are taken
in a way that produces a continuous (though area averaged) result, no
jumps are evident in Fig. 7. The boxy nature of the contour image and
the stair step vortex seen on the right-hand-line plot indicates that the
result is not smooth. The tick marks seen on the bottom of the line
plot indicate the intersection of the line with the subelements where the
ticks on the top show the boundaries of the original elements.

4.1.4 Vorticity at the element collocation points
If the dG velocity derivatives are available, they can be used on the
subdivided mesh (as seen in Fig 6). This scheme is included for com-
pleteness and to contrast with the method seen in Section 4.1.3. A
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that make up the kernel; we then shift the center of LSIAC ker-
nel to the evaluation position P, and then rotate the LSIAC filter
by the given direction�r. If the line segment does not cross any
domain domain boundaries, we proceed to the next step.

• Dividing LSIAC into integrable segments: In order to perform the
convolution, the elements overlapped by the line segment of the
filter must be respected to isolate regions over which polynomial
integration can be made exact (to machine precision). Given
that the LSIAC filter is constructed via a linear combination of
B-splines, which are piecewise polynomials at their knot values,
these relative positions along the segment can be marked. The
input field also consists of piecewise polynomials in between
element boundaries, so the intersection of the element boundaries
and the filter segment are also marked. Next, all marked positions
in the parametric space of the LSIAC filter are sorted and the
LSIAC’s filter is divided into line segments.

• Integrate each segment: Perform the convolution by sampling
each line segment on LSIAC’s kernel against the field at the
quadrature points in the line segment; that is, use quadrature rules
to integrate the product of the LSIAC kernel and field values for
each line segment. In the final step, perform the summation over
all the line segments to set the updated value of the field at the
point.

We have implemented the above algorithm in C++ and have
used high-order FEM and FVM fields generated by Nektar++ [1]
in our examples using simulation data. On a structured mesh, as
there is no need to search for adjacent elements: the complexity of
the above algorithm depends on computing the LSIAC coefficients
(LSIACCoe f f s), dividing LSIAC into line segments, and convolving
the filter against the elements. Hence, if K is the maximum number
of line segments, E is the complexity of evaluating the field at any
given point and P is the combination of the LSIAC order and the order
of the given field, the complexity of the algorithm on a structured
mesh to evaluate a given point is O(LSIACCoe f f s +K ·P ·E). In the
case of an unstructured mesh, there is an additional computation
required for finding the adjacent elements (unless this information is
available in the mesh or from the solver). We utilize R-trees for finding
the intersection of line-segments with the unstructured mesh. The
complexity of finding these intersections are O(log(N)), where N is the
total number of elements. Hence in the case of an unstructured mesh,
our implementation complexity is O(log(N)+LSIACCoe f f s+K ·P ·E).
When we are evaluating multiple points, we optimize by saving the
coefficients of symmetric LSIAC. Hence, the complexity is, in general,
no more than O(log(N)+K ·P ·E).

To give insight into the performance of our methodology, we com-
pare the cost of evaluating the traditional tensor-product SIAC as used
in [28] and LSIAC as used in this work. The cost of 2D SIAC applied
over a field of N elements is (C1Pd +C2P), versus C3P, which is the
complexity of applying LSIAC over a field on N elements. Here P is
the polynomial degree of field, d is the dimension and C1,C2,C3 are
constants independent of degree. Additionally, in the case of SIAC
filtering, the intersection between filter and meshes needs to be handled
differently for every type of mesh element, which is not the case with
LSIAC.

4 RESULTS AND DISCUSSION

In this section, we examine how different sampling schemes, used
for both visualization and data analysis, effect the interpretation of
FEM and FVM field data. The sampling schemes include what has
traditionally been done to examine both piecewise C0 continuous (FEM)
and piecewise discontinuous (FVM) results and are contrasted with
LSIAC filtered results. The cases presented herein are discussed both
qualitatively through imagery and quantitatively where metrics exist.

4.1 2D Vortical flow over a cylinder
The Nektar++ [1] solver suite, and in particular the incompressible
Navier-Stokes solver, was used to generate the fluid flow results that

Fig. 3. The two-dimensional hybrid (triangle and quadrilateral) mesh
used for all the cylinder flow examples herein.

are visualized throughout. Flow past a circular cylinder at the viscosity
examined is a transient problem, but only a single snapshot (in time)
is shown. The mesh used for this simulation is shown in Fig. 3, which
contains polynomial degree two (P2) elements: 500 triangles and 330
quadrilaterals found primarily in the wake region behind the circle. A
continuous Galerkin (FEM) methodology was used which provides C2

(P2 polynomials) within the element and C0 at the element interfaces.
The Reynolds number was set at Re = 500, and the flow solver was
run until shedding behind the cylinder generates consistently shaped
vortices. These vortices are displayed using different techniques as
described below.

Note that the boxed region (in red) in Fig. 3 will be used for the sub-
sequent contour images shown for this case. In the text that follows and
in keeping with the mathematical methodology terminology, we will
use the term cG (continuous Galerkin) as shorthand for piecewise C0

FEM fields and dG (discontinuous Galerkin) as shorthand for piecewise
discontinuous FVM fields.

4.1.1 Raw dG vorticity

Though the simulation is cG, when taking the derivative of the velocity
field (to get the vorticity field), the continuity is reduced by one degree,
resulting in a dG field. Vorticity is displayed in Fig. 4.

Fig. 4. Raw dG Vorticity Case: Contours of vorticity in the wake of the
2D cylinder (left); line plot of the vorticity extracted along the dashed line
shown on the contour image (right). Elements in the one-dimensional
plot are colored to help the reader see the continuity between elements.

The contour image seen on the left-hand side of Fig. 4 is calculated
on a per-element basis with the value of vorticity computed from the
dG field directly. There are two important features to note: 1) the
contour lines are discontinuous at the element boundaries (that is, all
lines of constant color do not continue across the element boundaries)
and 2) the contour lines are linear. The first feature highlights the jumps
(the word “jumps” as used in the fluid’s community refers to a field
discontinuity) seen at the element interfaces. The linear contours are
a result of the field now being P1 (due to a derivative being taken). It
should also be noted that the contour colors used in this figure represent
the same values for all of the figures for this 2D vorticity case.

The line plot on the right-hand-side of Fig. 4 depicts a vertical slice
through the data and further highlights the discontinuity at element
interfaces. The dG vorticity field is sampled along the dashed line
(bottom to top) of the contour image with 8000 points. The different
colors indicate a line passing through different elements and the tick
marks along the X-axis depict the element interfaces crossed.

4.1.2 Vorticity sampled on a regular lattice
Vorticity is calculated on a lattice from the velocity field that is a regular
sampling of the original data. This is consistent with how higher-
order data is transformed so that it can be inputted into traditional
visualization systems and is usually used when the mesh is relatively
isotropic. Vorticity is then calculated from velocity using centered finite
differences on the lattice. The lattice spacing is calculated by taking the
length of the smallest side of the smallest element and dividing it by P+
2 where P denotes the element degree (i.e., smallestEdgeLength/4 =
0.1 for this mesh). We sample the velocity component in x (i.e. the u
component of the velocity) and the velocity component in y (i.e. the v
component of the velocity) uniformly with this finite interval. We then
use finite differencing of u and v in the y and x directions respectively
to calculate vx −uy.

Fig. 5. Lattice-based Vorticity Case: Contours of vorticity in the wake of
the 2D cylinder (left); line plot of the vorticity extracted along the dashed
line shown on the contour image (right).

The left-hand-side of Fig. 5 displays the contours resulting from the
lattice sampling. The ticks along the boundary of the image indicate the
lattice spacing. The graphical aliasing due to the lattice aligning with
the structured portion of the computational mesh is evident, but the
jumps have been removed. This is an artifact of the regular sampling
and the linear interpolation performed between lattice points.

The line plot seen on the right of Fig. 5 represents the same slice
through the data as seen on the right-hand-side of Fig. 4. The tick
marks on the bottom axis display the lattice resolution. The tick marks
along the top of the plot show the mesh boundary intersections, where
the value of vorticity is seen on the plot’s Y-axis.

The line plot of vorticity is now continuous but not smooth. The
aliasing at (what were) the jumps is evident by the smaller peaks along
the flanks of the vortex center.

4.1.3 Vorticity calculated using velocity at collocation point
Another common technique used to map higher-order FEM results to
field data consistent with most visualization systems is to breakup the
elements into subelements where linear interpolation is then performed.
This produces a finer (denser) mesh for visualization and is more
appropriate for complex geometries and when the elements tend to
be multi-scale or anisotropic. Figure 6 depicts the mesh used for this
sampling method where the collocation points interior to the elements
are used in the subdivision. (Note: the collocation points and quadrature
points are co-located in the Nektar++ software implementation). The
subdivision is performed while preserving self-replicating structure
inside the element.

In order to compute vorticity in a manner consistent with a tradi-
tional visualization system where linear interpolation has been assumed
throughout, the following procedure is used:

Fig. 6. Figure showing the element subdivision mesh based upon the
collocation points.

1. Place the velocity at all of the vertices (element bounds and
interior) as seen in Figure 6.

2. The velocity derivative components (ux,uy,vx,vy) at mesh vertices
are computed as:

(a) The velocity derivatives are calculated for each triangular
subelement (note that quadrilaterals are further split into
triangles). The result will be a constant (i.e., P0 dG) for
each triangle.

(b) To move the velocity derivatives back to the vertices, area
weighted sums are accumulated at each vertex that supports
the triangle, along with the total area touching the vertex.

(c) After all triangles are sampled the vertex-based velocity
derivative sums are divided by the areas accumulated.

3. Vorticity is then computed as vx −uy at every collocation/vertex
point.

Fig. 7. Elemental Subdivision-based Vorticity Case 1: Contours of vor-
ticity in the wake of the 2D cylinder computed within the visualization
system based upon velocity information at the vertices (left); line plot of
the vorticity extracted along the dashed line shown on the contour image
(right).

Because the velocities are originally cG and the derivatives are taken
in a way that produces a continuous (though area averaged) result, no
jumps are evident in Fig. 7. The boxy nature of the contour image and
the stair step vortex seen on the right-hand-line plot indicates that the
result is not smooth. The tick marks seen on the bottom of the line
plot indicate the intersection of the line with the subelements where the
ticks on the top show the boundaries of the original elements.

4.1.4 Vorticity at the element collocation points
If the dG velocity derivatives are available, they can be used on the
subdivided mesh (as seen in Fig 6). This scheme is included for com-
pleteness and to contrast with the method seen in Section 4.1.3. A
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visualization system would need to be able to deal with the native
FEM results directly or the solver provide the derivative field at the
collocation points.

It should be noted that there will be multiple values of vorticity at
the bounds of the elements (due to the C0 nature of the velocity field
at these vertices). These are simply averaged in order to generate a
continuous vorticity field.

Fig. 8. Elemental Subdivision-based Vorticity Case 2: Contours of vortic-
ity in the wake of the 2D cylinder computed directed within the simulation
system and outputted to the visualization system (left); line plot of the
vorticity extracted along the dashed line shown on the contour image
(right).

The contour plot seen on the left-hand-side of Fig. 8 is similar to
the one seen in Fig. 7. The primary differences are that the vorticity
minima and maxima are larger here. Also note that there is less noise
away from the vortices. The line plot seen in Fig. 8 is a result of the
intersection the indicated dashed line in the contour plot. Again this is
similar to the line plot of Fig. 7.

It should be noted that the data manipulations due to the sampling
and averaging used in this technique (and the sampling techniques seen
in Sections 4.1.2 and 4.1.3) do not ensure maintenance of certain fluid
properties that result from the solution of either the Euler or Navier-
Stokes equations. For example mass will most-likely not be conserved
when dealing with the primitive field quantity density.

4.1.5 Vorticity using LSIAC filtering
In order to display the results of using LSIAC filtering, the box seen
in Fig. 3 is sampled using a mesh consisting of 80×80 quadrilateral
elements. Vorticity is computed at all the points by using the derivative
variant of the LSIAC filter employing a 0 and 90 degree angle from the
x-coordinate axis to calculate u∗y and v∗x respectively. The derivative
LSIAC filter parameters used are B-splines of order two (D1K(3,3))
and a characteristic length of H = 0.675, which is the largest edge of
rectangular mesh elements. To give some indication of performance:
the time taken to compute the derivative LSIAC at a single position in
space is 0.95 milliseconds measured on a machine with a 2.4GHz (Intel
CPU E-7-4870) processor.

The results can be seen in the Figure 9 where linear interpolation
between mesh points has been employed to make the contour plot,
although we note that the actual data is of higher-order. From a quanti-
tative perspective the contours of vorticity are what would be expected
from this type of simulation. That is, the contours produced are con-
centric and are relatively smooth.

The right-hand portion of Fig. 9 was computed by sampling the data
along the indicated line by employing 8000 points and vorticity was
computed at these locations by post-processing using the LSIAC filter
(unlike the other previous figures where the data was sampled from
the visualization mesh, with the exception of Section 4.1.1). The line
segments are colored from each element differently to highlight the
removal of jumps. The ticks on the bottom indicate the intersection of
mesh with sampled line to help with the visualization. This image is in
stark contrast to that seen in Fig. 4 where the jumps are now gone and
the plots smooth. There is also little background noise away from the
vortices.

Fig. 9. LSIAC Vorticity Case: Contours of vorticity in the wake of the 2D
cylinder (left); line plot of the vorticity extracted along the dashed line
shown on the contour image (right). Elements in the one-dimensional
plot are colored to help the reader see the continuity between elements.

Unlike the traditional sampling schemes (seen in Sections 4.1.2
and 4.1.3) the results using the LSIAC filter, if properly utilized, can
preserve fluid properties [5]. This is due to the explicit accuracy con-
serving nature of the post-processing scheme on cG and dG simulation
data.

4.2 LSIAC Validation Study
Designing a LSIAC filter implies a proper selection of several kernel
parameters. Hence, for completeness, we present the methodology that
we followed in order to produce the data presented in Section 4.1.5.

Fig. 10. Filter a particular field region by applying different kernels with
rotation angles θ = 0◦, 45◦, 90◦ respectively (first three images) directly
on the field vorticity. Apply a derivative filter (right-most image, after the
double dotted line) prior to computing the field vorticity.

In Section 3 we discussed the challenges associated with the choices
of kernel rotation and of characteristic length. Figure 10 shows the
same vortex after applying several LSIAC filters. The first three im-
ages correspond to three different filter orientations using higher-order
kernels once the field vorticity is computed (left-hand-side of Equation
4). On the other hand, the last image shows the result of applying a
derivative kernel (right-hand-side of Equation 4) and calculating the
vorticity afterwards. In the latter case, in order to obtain vx and uy,
we have taken advantage of the directions in which the derivatives are
computed and applied a zero and a ninety degree kernel respectively.
The decomposition of the velocity field in the x− and y− directions
suggested such filtering choice and enabled relatively easy computa-
tions, but we readily admit that alternatively, a higher order kernel with
a particular direction applied directly on the field vorticity could lead to
similar and even improved results. However, such an approach would
require a theoretical orientation, and since it is not possible to deter-
mine the optimal one, throughout this paper we have applied derivative

Fig. 11. Vorticity (first three images) after applying a derivative filter
for three different kernel characteristic lengths corresponding to H =
0.3375, 0.675, 1.0125, respectively. The right-hand plot (taken from [14])
shows the global errors from a numerical experiment where a SIAC filter
was applied for several characteristic lengths [14].

kernels in the direction of the field derivatives. This choice allows
for recovering smoothness in all directions and produces satisfactory
results.

Regarding the kernel characteristic length, [14, 17] used the formula
H = m ·h, with h being the largest element size, and performed global
error analyses on known analytic fields for different values of m. They
showed that asymptotically, the value m = 1 lead to optimal results. We
performed a similar experiment and in Figure 11 we show the same
filtered vortex after applying different characteristic lengths where
one can appreciate that the value H = 0.675 (m = 1) gives the most
satisfactory results. Observe that for the smallest characteristic length
H = 0.3375 (m = 0.5), the filtered solution does not eliminate the
noise. On the other hand, applying the largest characteristic length
(H = 1.0125) results in smoothness recovery but reduced accuracy if
compared to the intermediate value. For an examination of the accuracy
conserving nature of LSIAC with regards to the characteristic length H,
we refer the reader to Section 4.4

4.3 Preservation of critical point locations
A difficult task in filtering and sampling is the ability to maintain the
position of critical points that may be in the field. A critical point is
where the velocity vanishes in the vector field, so it is easy to upset the
location if minima in the solution are effected by any transformations.
We utilize a synthetic 2D analytical vector field from [28] and project
the vector field onto a mesh of 20×20 P1 dG quadrilateral elements.
Our objective is to quantitatively compute the error in the location
of critical points introduced by post-processing the data through the
different sampling schemes used for visualization.

The manufactured vector field can be see in Fig. 12 and is given by
the following equation:

z = x+ ıy

u = Re(r)

v = −Im(r).

r = (z− (0.74+0.35ı))(z− (0.68−0.59ı))

(z− (−0.11−0.72ı))(z̄− (−0.58+0.64ı))

(z̄− (0.51−0.27ı))(z̄− (−0.12+0.84ı))2

which results in the six critical points marked by the red dots in Fig. 12.
Most iterative schemes that find critical points need seed locations.

It is difficult to balance the number of seed locations and where to seed
given that, in general, one does not know where and how many points
may be in the field. In this comparison, we only care about the accuracy
of the location, so we will seed at the known critical point positions.

4.3.1 Finding critical points using FEM derivatives
If we can access the derivatives of the vector field directly, then a
Newton-Raphson scheme can be used to find the zeros in the field. As
can be seen in the Derivative column of Table 1, all points are found
with relatively small errors. This is a best case scenario, in that the
mesh is conceived in a contrived manner so that all critical points are in
the interior of the elements. When the critical point is near an element

Fig. 12. Synthetic velocity field with known critical points (shown as red
dots).

interface, the derivatives tend to be inaccurate, which can send the
iterative scheme abruptly away from the zero resulting in missing the
location.

4.3.2 Finding critical points using lattice sampling
Again, to emulate what a traditional visualization system may do to
find the critical point, we follow this procedure:

1. The 20 × 20 mesh is subsampled with on a regular lattice of
60×60 elements.

2. Evaluate the velocity at the vertices of the lattice from the dG
solution.

3. Calculate ux,uy,vx,vy at the lattice points using central differ-
ences.

4. Employ the Newton-Raphson critical point finder seeded from
the actual location.

As can be seen in the lattice column of Table 1, the error in the
location is roughly the same as using the FEM derivatives directly.

4.3.3 Finding critical points using subdivided elements
In order to simulate finding critical points as a post-processing step
within a traditional visualization system, we subdivide the elements as
discussed in Section 4.1.3. The procedure used is:

1. Construct a subdivided subelement mesh from the dG elements
using the collocation points as vertices. Divide all the subelements
into triangles.

2. Compute ux,uy,vx,vy at mesh vertices by:

(a) The velocity derivatives are calculated for each triangular
subelement. The result will be a constant for each triangle.

(b) To move the velocity derivatives back to the vertices, area
weighted sums are accumulated at each vertex that supports
the triangle, along with the total area touching the vertex.

(c) After all triangles are sampled the vertex-based velocity
derivative sums are divided by the areas

3. Employ the Newton-Raphson critical point finder seeded from
the actual location.

In this case, there is a critical point that is not found and is marked
without an error in Table 1 .

4.3.4 Finding critical points using LSIAC
The LSIAC filtering is performed on the base 20×20 dG velocity mesh.
A LSIAC derivative filter is used on the velocity at 0 degrees from the
x-coordinate axis to form ux and vx at all mesh vertices. Then another
LSIAC derivative filter is used at 90 degrees from the x-coordinate axis
to generate the velocity derivative components uy and vy through the
entire mesh. The Newton-Raphson critical point finder is seeded from
the actual location and the results can be seen in the LSIAC column of
Table 1.
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visualization system would need to be able to deal with the native
FEM results directly or the solver provide the derivative field at the
collocation points.

It should be noted that there will be multiple values of vorticity at
the bounds of the elements (due to the C0 nature of the velocity field
at these vertices). These are simply averaged in order to generate a
continuous vorticity field.

Fig. 8. Elemental Subdivision-based Vorticity Case 2: Contours of vortic-
ity in the wake of the 2D cylinder computed directed within the simulation
system and outputted to the visualization system (left); line plot of the
vorticity extracted along the dashed line shown on the contour image
(right).

The contour plot seen on the left-hand-side of Fig. 8 is similar to
the one seen in Fig. 7. The primary differences are that the vorticity
minima and maxima are larger here. Also note that there is less noise
away from the vortices. The line plot seen in Fig. 8 is a result of the
intersection the indicated dashed line in the contour plot. Again this is
similar to the line plot of Fig. 7.

It should be noted that the data manipulations due to the sampling
and averaging used in this technique (and the sampling techniques seen
in Sections 4.1.2 and 4.1.3) do not ensure maintenance of certain fluid
properties that result from the solution of either the Euler or Navier-
Stokes equations. For example mass will most-likely not be conserved
when dealing with the primitive field quantity density.

4.1.5 Vorticity using LSIAC filtering
In order to display the results of using LSIAC filtering, the box seen
in Fig. 3 is sampled using a mesh consisting of 80×80 quadrilateral
elements. Vorticity is computed at all the points by using the derivative
variant of the LSIAC filter employing a 0 and 90 degree angle from the
x-coordinate axis to calculate u∗y and v∗x respectively. The derivative
LSIAC filter parameters used are B-splines of order two (D1K(3,3))
and a characteristic length of H = 0.675, which is the largest edge of
rectangular mesh elements. To give some indication of performance:
the time taken to compute the derivative LSIAC at a single position in
space is 0.95 milliseconds measured on a machine with a 2.4GHz (Intel
CPU E-7-4870) processor.

The results can be seen in the Figure 9 where linear interpolation
between mesh points has been employed to make the contour plot,
although we note that the actual data is of higher-order. From a quanti-
tative perspective the contours of vorticity are what would be expected
from this type of simulation. That is, the contours produced are con-
centric and are relatively smooth.

The right-hand portion of Fig. 9 was computed by sampling the data
along the indicated line by employing 8000 points and vorticity was
computed at these locations by post-processing using the LSIAC filter
(unlike the other previous figures where the data was sampled from
the visualization mesh, with the exception of Section 4.1.1). The line
segments are colored from each element differently to highlight the
removal of jumps. The ticks on the bottom indicate the intersection of
mesh with sampled line to help with the visualization. This image is in
stark contrast to that seen in Fig. 4 where the jumps are now gone and
the plots smooth. There is also little background noise away from the
vortices.

Fig. 9. LSIAC Vorticity Case: Contours of vorticity in the wake of the 2D
cylinder (left); line plot of the vorticity extracted along the dashed line
shown on the contour image (right). Elements in the one-dimensional
plot are colored to help the reader see the continuity between elements.

Unlike the traditional sampling schemes (seen in Sections 4.1.2
and 4.1.3) the results using the LSIAC filter, if properly utilized, can
preserve fluid properties [5]. This is due to the explicit accuracy con-
serving nature of the post-processing scheme on cG and dG simulation
data.

4.2 LSIAC Validation Study
Designing a LSIAC filter implies a proper selection of several kernel
parameters. Hence, for completeness, we present the methodology that
we followed in order to produce the data presented in Section 4.1.5.

Fig. 10. Filter a particular field region by applying different kernels with
rotation angles θ = 0◦, 45◦, 90◦ respectively (first three images) directly
on the field vorticity. Apply a derivative filter (right-most image, after the
double dotted line) prior to computing the field vorticity.

In Section 3 we discussed the challenges associated with the choices
of kernel rotation and of characteristic length. Figure 10 shows the
same vortex after applying several LSIAC filters. The first three im-
ages correspond to three different filter orientations using higher-order
kernels once the field vorticity is computed (left-hand-side of Equation
4). On the other hand, the last image shows the result of applying a
derivative kernel (right-hand-side of Equation 4) and calculating the
vorticity afterwards. In the latter case, in order to obtain vx and uy,
we have taken advantage of the directions in which the derivatives are
computed and applied a zero and a ninety degree kernel respectively.
The decomposition of the velocity field in the x− and y− directions
suggested such filtering choice and enabled relatively easy computa-
tions, but we readily admit that alternatively, a higher order kernel with
a particular direction applied directly on the field vorticity could lead to
similar and even improved results. However, such an approach would
require a theoretical orientation, and since it is not possible to deter-
mine the optimal one, throughout this paper we have applied derivative

Fig. 11. Vorticity (first three images) after applying a derivative filter
for three different kernel characteristic lengths corresponding to H =
0.3375, 0.675, 1.0125, respectively. The right-hand plot (taken from [14])
shows the global errors from a numerical experiment where a SIAC filter
was applied for several characteristic lengths [14].

kernels in the direction of the field derivatives. This choice allows
for recovering smoothness in all directions and produces satisfactory
results.

Regarding the kernel characteristic length, [14, 17] used the formula
H = m ·h, with h being the largest element size, and performed global
error analyses on known analytic fields for different values of m. They
showed that asymptotically, the value m = 1 lead to optimal results. We
performed a similar experiment and in Figure 11 we show the same
filtered vortex after applying different characteristic lengths where
one can appreciate that the value H = 0.675 (m = 1) gives the most
satisfactory results. Observe that for the smallest characteristic length
H = 0.3375 (m = 0.5), the filtered solution does not eliminate the
noise. On the other hand, applying the largest characteristic length
(H = 1.0125) results in smoothness recovery but reduced accuracy if
compared to the intermediate value. For an examination of the accuracy
conserving nature of LSIAC with regards to the characteristic length H,
we refer the reader to Section 4.4

4.3 Preservation of critical point locations
A difficult task in filtering and sampling is the ability to maintain the
position of critical points that may be in the field. A critical point is
where the velocity vanishes in the vector field, so it is easy to upset the
location if minima in the solution are effected by any transformations.
We utilize a synthetic 2D analytical vector field from [28] and project
the vector field onto a mesh of 20×20 P1 dG quadrilateral elements.
Our objective is to quantitatively compute the error in the location
of critical points introduced by post-processing the data through the
different sampling schemes used for visualization.

The manufactured vector field can be see in Fig. 12 and is given by
the following equation:

z = x+ ıy

u = Re(r)

v = −Im(r).

r = (z− (0.74+0.35ı))(z− (0.68−0.59ı))

(z− (−0.11−0.72ı))(z̄− (−0.58+0.64ı))

(z̄− (0.51−0.27ı))(z̄− (−0.12+0.84ı))2

which results in the six critical points marked by the red dots in Fig. 12.
Most iterative schemes that find critical points need seed locations.

It is difficult to balance the number of seed locations and where to seed
given that, in general, one does not know where and how many points
may be in the field. In this comparison, we only care about the accuracy
of the location, so we will seed at the known critical point positions.

4.3.1 Finding critical points using FEM derivatives
If we can access the derivatives of the vector field directly, then a
Newton-Raphson scheme can be used to find the zeros in the field. As
can be seen in the Derivative column of Table 1, all points are found
with relatively small errors. This is a best case scenario, in that the
mesh is conceived in a contrived manner so that all critical points are in
the interior of the elements. When the critical point is near an element

Fig. 12. Synthetic velocity field with known critical points (shown as red
dots).

interface, the derivatives tend to be inaccurate, which can send the
iterative scheme abruptly away from the zero resulting in missing the
location.

4.3.2 Finding critical points using lattice sampling
Again, to emulate what a traditional visualization system may do to
find the critical point, we follow this procedure:

1. The 20 × 20 mesh is subsampled with on a regular lattice of
60×60 elements.

2. Evaluate the velocity at the vertices of the lattice from the dG
solution.

3. Calculate ux,uy,vx,vy at the lattice points using central differ-
ences.

4. Employ the Newton-Raphson critical point finder seeded from
the actual location.

As can be seen in the lattice column of Table 1, the error in the
location is roughly the same as using the FEM derivatives directly.

4.3.3 Finding critical points using subdivided elements
In order to simulate finding critical points as a post-processing step
within a traditional visualization system, we subdivide the elements as
discussed in Section 4.1.3. The procedure used is:

1. Construct a subdivided subelement mesh from the dG elements
using the collocation points as vertices. Divide all the subelements
into triangles.

2. Compute ux,uy,vx,vy at mesh vertices by:

(a) The velocity derivatives are calculated for each triangular
subelement. The result will be a constant for each triangle.

(b) To move the velocity derivatives back to the vertices, area
weighted sums are accumulated at each vertex that supports
the triangle, along with the total area touching the vertex.

(c) After all triangles are sampled the vertex-based velocity
derivative sums are divided by the areas

3. Employ the Newton-Raphson critical point finder seeded from
the actual location.

In this case, there is a critical point that is not found and is marked
without an error in Table 1 .

4.3.4 Finding critical points using LSIAC
The LSIAC filtering is performed on the base 20×20 dG velocity mesh.
A LSIAC derivative filter is used on the velocity at 0 degrees from the
x-coordinate axis to form ux and vx at all mesh vertices. Then another
LSIAC derivative filter is used at 90 degrees from the x-coordinate axis
to generate the velocity derivative components uy and vy through the
entire mesh. The Newton-Raphson critical point finder is seeded from
the actual location and the results can be seen in the LSIAC column of
Table 1.
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Position Derivatives Lattice SubElement LSIAC
(0.74,0.35) 0.0081 0.0082 0.0095 0.0048

(0.68,−0.59) 0.0020 0.0033 0.0049 0.0006
(−0.11,−0.72) 0.1183 0.0137 0.0265 0.0095
(−0.58,−0.64) 0.0006 0.0006 0.0089 0.0021

(0.51,0.27) 0.0024 0.0025 0.0038 0.0019
(−0.12,−0.84) 0.0103 0.0723 – 0.0317

Table 1. Errors in the critical point locations.

We note that errors produced by using the LSIAC filter are, in
general, better than the other techniques. It should also be noted that
we do not expect the error to be zero, because the process of projecting
the analytic vector field onto the dG mesh introduces a projection error.

Though the LSIAC results are not substantially better than the other
techniques, it does provide the following distinct advantages:

• As shown in [13], SIAC preserves the critical points near bound-
aries.

• Since the SIAC derivatives are continuous across elements, the
Newton-Raphson technique can cross elements in search of criti-
cal points making seeding algorithms more efficient.

Additional studies of field features such as streamline visualization
on analytical fields were performed in [6]. In these examples, it was
shown that in cases where the dG approximation diverged from the
exact streamline, the LSIAC post-processed dG solution converged to
the expected solution.

4.4 Impact of characteristic length on accuracy
The effect of the characteristic length on the accuracy of the LSIAC
filter is examined by comparing the vorticity computed using dG deriva-
tives and LSIAC derivatives of different characteristic lengths through
quantitative metrics. We project the synthetic 2D analytical vector field
from [28], used to generate Figure 12 on both 20× 20 and 40× 40
P1 dG quadrilateral element meshes. For calculating vorticity using
LSIAC, we obtain vx and uy using zero and ninety-degree derivative
kernels (D1K(3,3)) respectively. The errors introduced in calculating
vorticity using dG and LSIAC derivatives as compared to ground truth
are shown in Table 2.

Mesh Res 20 40
Errors L2 L∞ L2 L∞

dG 5.996 31.04 2.504 15.93
LSIAC (H = m ·h)

m H L2 L∞ H L2 L∞

0.5 0.05 1.4175 6.8179 0.025 0.7006 3.4803
1.0 0.1 0.0979 0.7005 0.05 0.0249 0.1868
2.0 0.2 0.1202 0.7795 0.1 0.0253 0.1917
4.0 0.4 1.1471 2.0391 0.2 0.7551 0.2708
8.0 0.8 18.314 22.2474 0.4 1.1447 1.5369
16.0 1.6 293.04 347.86 0.8 18.3147 21.839

Table 2. Errors for calculating vorticity on a P1 dG field.

Note the following observations from the results in Table 2:

• The large dG errors are due to dG derivatives not using informa-
tion beyond the element boundaries; this also results in large error
at element boundaries. We can see this effect in Section 4.1.1.

• The minimum error occurs when LSIAC’s characteristic length is
equal to maximum edge length (i.e., m = 1.0) as stated in [14,17].

• The vorticity computed using LSIAC for a kernel scaling be-
tween 0.5 and 4.0 have significantly lower errors compared to dG
derivatives.

• LSIAC reduces the error in both the L2 and L∞ norms; this is an
indication that there is a benefit “on average” (i.e., in the integral
sense) and in a point-wise sense.

4.5 NACA 0012 wing simulation

Fig. 13. 3D NACA wing case example of vorticity (before filtering). The
box shown in the wake denotes the region within the field over which the
results will be compared.

To qualitatively show the use of LSIAC post-processing in a
realistically-sized 3D fluids setting, we will use another Nektar++ simu-
lation example. In Lombard et al. [16] the authors perform Large-Eddy
Simulation (LES) for the formation and evolution of a wingtip vor-
tex. The wing is a 3D extrusion of a NACA 0012 airfoil section with
a rounded wing tip and a blunt trailing edge. The simulation mesh
contains 211180 polynomial degree five (P5) tetrahedra and 38680
P5 prisms, where the prism elements are stacked and graded away
from the wing surface in order to best capture the boundary layer. A
cG discretization was used and executed using a Reynolds number of
1.2×106 and the angle of attack α is 12 degrees for the case shown.

Figure 13 shows the wing and solution with the vortex generated
from the wing tip and its convection downstream. The cube shown in
the vortex, downstream from the tip, indicates the selected region that
will be used to more closely examine the vorticity field. It should be
noted that because this box is away from the wing, all elements are
tetrahedra.

To produce the upper image of Figure 14, the box is sampled and
vorticity is computed at a resolution of 90×90×90. This 3D lattice is
then iso-surfaced to generate the vortex tube, which suffers from the
same problems as seen in the 2D flow of Figure 4. Seen on the lower
portion of the figure is the data from a 2D slice, which in this case is
computed from the data in an 103 ×103 lattice. This has the same form
as the left-hand-side of Figure 4 with abrupt jumps, but in this case the
contour lines are curved (the vorticity field is P5 within each element).

We now calculate the vorticity of the field in same subset using
the LSIAC methodology proposed in this work. All of the deriva-
tives required, u∗y ,u

∗
z ,v

∗
x ,v

∗
z ,w

∗
x ,w

∗
y , are computed using a LSIAC filter,

where u,v,w are the components of velocity in the given dG vector
field. The parameters used for the LSIAC filter are B-splines of order
two (D1K(3,3)) and a characteristic length is H = 0.05. We calculate
the magnitude of vorticity at all the sampled points and generate the
iso-surface of vorticity at same value used for dG data (20 units) and
draw the contours on the plane at the same location we selected for
dG data. The results are shown in Figure 15. We notice all the jumps
are completely removed; the contours are continuous and concentric as
expected. To give some indication of performance: the time taken to
compute the derivative LSIAC at a single position in space is 11.4 mil-
liseconds measured on a machine with a 2.4GHz (Intel CPU E-7-4870)
processor.

5 SUMMARY AND FUTURE WORK

Our motivation in this work was to investigate the challenges arising
from the analysis and visualization of unstructured (possibly high-
order) FEM and FVM data; in particular, to focus on the issues arising
from the weak imposition or lack of continuity at element interfaces.
We have shown that the traditional simulation-to-visualization pipeline,
and in particular interpolation projections to either lattices or refined
unstructured data may appear to ameliorate these issues, but at the
cost of maintaining important features of the data. In the past, the
SIAC filtering methodology was proposed as an alternative solution.
Unlike traditional filtering stemming from a signal or image processing
perspective, the SIAC methodology is built upon the mathematical
building blocks of the FEM and FVM technologies themselves, and de-
livers increased smoothness in the solution without loss of accuracy. As

Fig. 14. 3D NACA Raw Data Case: Iso-contour of vorticity extracted
from the field (top). Contour lines showing the vorticity field extracted
over the plane shown in the upper figure (bottom).

such, the SIAC methodology fits nicely into the verifiable visualization
framework, and it acts as a data transformation that allows for analysis
and visualization while still remaining faithful to the underlying numer-
ical properties of the FEM and FVM schemes. In fact, in cases where
the physics of the problem dictates that the solution is smooth and FEM
and FVM methods relax this constraint for approximation reasons, the
SIAC methodology removes these artificial numerical constraints (and
their corresponding visual artifacts) without upsetting the accuracy of
the solution data.

Investigators using FEM and FVM schemes that produce discon-
tinuous results (either from derived and/or derivative fields) may be
confused by imagery produced from the raw data. The physics may
dictate smooth and continuous results but due to the numerics the data
is not. The use of LSIAC post-processing removes the jumps found at
element boundaries and recovers the expected continuous data. This
means that the investigator need not be an expert in FEM discretizations
and can better understand the results of the simulation without being
encumbered by the errors generated by sampling or the artifacts seen
in the raw simulation data.

As discussed in this paper, the principal challenge for the traditional
SIAC filter in multi-dimensions made it infeasible for general use; these
issues have been overcome by LSIAC. In this paper, we have demon-
strated that the LSIAC approach for filtering two-dimensional and
three-dimensional fields provides us the benefits of the SIAC method-
ology in a computationally tractable way. In particular LSIAC does

Fig. 15. 3D NACA LSIAC Case: Iso-contour of vorticity extracted from
the field (top). Contour lines showing the vorticity field extracted over the
plane shown in the upper figure (bottom).

not have the curse of dimensionality as experienced with SIAC post-
processing (i.e, encountering boundaries is considerably simpler in the
LSIAC case).

There is still future work in this area to be accomplished. We have
not addressed the question of optimally selecting the LSIAC charac-
teristic length H or the direction in which the filter is applied. In all
our applications, we used default choices from the literature for the
characteristic length (H) and we selected directions that were consis-
tent with the derived quantities being investigated. A general strategy
for selecting the filter direction based upon the field characteristics,
mesh and polynomial degree used, and the quantity of interest being
examined requires further investigation. Furthermore, we have only
demonstrated the LSIAC methodology for the post-processing of pri-
mary and derivative-based derived fields; future work would be to
incorporate the LSIAC work into vector field topology, feature detec-
tion and extraction algorithms as almost all such algorithms are built
upon the computing of derivatives of the field.
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Position Derivatives Lattice SubElement LSIAC
(0.74,0.35) 0.0081 0.0082 0.0095 0.0048

(0.68,−0.59) 0.0020 0.0033 0.0049 0.0006
(−0.11,−0.72) 0.1183 0.0137 0.0265 0.0095
(−0.58,−0.64) 0.0006 0.0006 0.0089 0.0021

(0.51,0.27) 0.0024 0.0025 0.0038 0.0019
(−0.12,−0.84) 0.0103 0.0723 – 0.0317

Table 1. Errors in the critical point locations.

We note that errors produced by using the LSIAC filter are, in
general, better than the other techniques. It should also be noted that
we do not expect the error to be zero, because the process of projecting
the analytic vector field onto the dG mesh introduces a projection error.

Though the LSIAC results are not substantially better than the other
techniques, it does provide the following distinct advantages:

• As shown in [13], SIAC preserves the critical points near bound-
aries.

• Since the SIAC derivatives are continuous across elements, the
Newton-Raphson technique can cross elements in search of criti-
cal points making seeding algorithms more efficient.

Additional studies of field features such as streamline visualization
on analytical fields were performed in [6]. In these examples, it was
shown that in cases where the dG approximation diverged from the
exact streamline, the LSIAC post-processed dG solution converged to
the expected solution.

4.4 Impact of characteristic length on accuracy
The effect of the characteristic length on the accuracy of the LSIAC
filter is examined by comparing the vorticity computed using dG deriva-
tives and LSIAC derivatives of different characteristic lengths through
quantitative metrics. We project the synthetic 2D analytical vector field
from [28], used to generate Figure 12 on both 20× 20 and 40× 40
P1 dG quadrilateral element meshes. For calculating vorticity using
LSIAC, we obtain vx and uy using zero and ninety-degree derivative
kernels (D1K(3,3)) respectively. The errors introduced in calculating
vorticity using dG and LSIAC derivatives as compared to ground truth
are shown in Table 2.

Mesh Res 20 40
Errors L2 L∞ L2 L∞

dG 5.996 31.04 2.504 15.93
LSIAC (H = m ·h)

m H L2 L∞ H L2 L∞

0.5 0.05 1.4175 6.8179 0.025 0.7006 3.4803
1.0 0.1 0.0979 0.7005 0.05 0.0249 0.1868
2.0 0.2 0.1202 0.7795 0.1 0.0253 0.1917
4.0 0.4 1.1471 2.0391 0.2 0.7551 0.2708
8.0 0.8 18.314 22.2474 0.4 1.1447 1.5369
16.0 1.6 293.04 347.86 0.8 18.3147 21.839

Table 2. Errors for calculating vorticity on a P1 dG field.

Note the following observations from the results in Table 2:

• The large dG errors are due to dG derivatives not using informa-
tion beyond the element boundaries; this also results in large error
at element boundaries. We can see this effect in Section 4.1.1.

• The minimum error occurs when LSIAC’s characteristic length is
equal to maximum edge length (i.e., m = 1.0) as stated in [14,17].

• The vorticity computed using LSIAC for a kernel scaling be-
tween 0.5 and 4.0 have significantly lower errors compared to dG
derivatives.

• LSIAC reduces the error in both the L2 and L∞ norms; this is an
indication that there is a benefit “on average” (i.e., in the integral
sense) and in a point-wise sense.

4.5 NACA 0012 wing simulation

Fig. 13. 3D NACA wing case example of vorticity (before filtering). The
box shown in the wake denotes the region within the field over which the
results will be compared.

To qualitatively show the use of LSIAC post-processing in a
realistically-sized 3D fluids setting, we will use another Nektar++ simu-
lation example. In Lombard et al. [16] the authors perform Large-Eddy
Simulation (LES) for the formation and evolution of a wingtip vor-
tex. The wing is a 3D extrusion of a NACA 0012 airfoil section with
a rounded wing tip and a blunt trailing edge. The simulation mesh
contains 211180 polynomial degree five (P5) tetrahedra and 38680
P5 prisms, where the prism elements are stacked and graded away
from the wing surface in order to best capture the boundary layer. A
cG discretization was used and executed using a Reynolds number of
1.2×106 and the angle of attack α is 12 degrees for the case shown.

Figure 13 shows the wing and solution with the vortex generated
from the wing tip and its convection downstream. The cube shown in
the vortex, downstream from the tip, indicates the selected region that
will be used to more closely examine the vorticity field. It should be
noted that because this box is away from the wing, all elements are
tetrahedra.

To produce the upper image of Figure 14, the box is sampled and
vorticity is computed at a resolution of 90×90×90. This 3D lattice is
then iso-surfaced to generate the vortex tube, which suffers from the
same problems as seen in the 2D flow of Figure 4. Seen on the lower
portion of the figure is the data from a 2D slice, which in this case is
computed from the data in an 103 ×103 lattice. This has the same form
as the left-hand-side of Figure 4 with abrupt jumps, but in this case the
contour lines are curved (the vorticity field is P5 within each element).

We now calculate the vorticity of the field in same subset using
the LSIAC methodology proposed in this work. All of the deriva-
tives required, u∗y ,u

∗
z ,v

∗
x ,v

∗
z ,w

∗
x ,w

∗
y , are computed using a LSIAC filter,

where u,v,w are the components of velocity in the given dG vector
field. The parameters used for the LSIAC filter are B-splines of order
two (D1K(3,3)) and a characteristic length is H = 0.05. We calculate
the magnitude of vorticity at all the sampled points and generate the
iso-surface of vorticity at same value used for dG data (20 units) and
draw the contours on the plane at the same location we selected for
dG data. The results are shown in Figure 15. We notice all the jumps
are completely removed; the contours are continuous and concentric as
expected. To give some indication of performance: the time taken to
compute the derivative LSIAC at a single position in space is 11.4 mil-
liseconds measured on a machine with a 2.4GHz (Intel CPU E-7-4870)
processor.

5 SUMMARY AND FUTURE WORK

Our motivation in this work was to investigate the challenges arising
from the analysis and visualization of unstructured (possibly high-
order) FEM and FVM data; in particular, to focus on the issues arising
from the weak imposition or lack of continuity at element interfaces.
We have shown that the traditional simulation-to-visualization pipeline,
and in particular interpolation projections to either lattices or refined
unstructured data may appear to ameliorate these issues, but at the
cost of maintaining important features of the data. In the past, the
SIAC filtering methodology was proposed as an alternative solution.
Unlike traditional filtering stemming from a signal or image processing
perspective, the SIAC methodology is built upon the mathematical
building blocks of the FEM and FVM technologies themselves, and de-
livers increased smoothness in the solution without loss of accuracy. As

Fig. 14. 3D NACA Raw Data Case: Iso-contour of vorticity extracted
from the field (top). Contour lines showing the vorticity field extracted
over the plane shown in the upper figure (bottom).

such, the SIAC methodology fits nicely into the verifiable visualization
framework, and it acts as a data transformation that allows for analysis
and visualization while still remaining faithful to the underlying numer-
ical properties of the FEM and FVM schemes. In fact, in cases where
the physics of the problem dictates that the solution is smooth and FEM
and FVM methods relax this constraint for approximation reasons, the
SIAC methodology removes these artificial numerical constraints (and
their corresponding visual artifacts) without upsetting the accuracy of
the solution data.

Investigators using FEM and FVM schemes that produce discon-
tinuous results (either from derived and/or derivative fields) may be
confused by imagery produced from the raw data. The physics may
dictate smooth and continuous results but due to the numerics the data
is not. The use of LSIAC post-processing removes the jumps found at
element boundaries and recovers the expected continuous data. This
means that the investigator need not be an expert in FEM discretizations
and can better understand the results of the simulation without being
encumbered by the errors generated by sampling or the artifacts seen
in the raw simulation data.

As discussed in this paper, the principal challenge for the traditional
SIAC filter in multi-dimensions made it infeasible for general use; these
issues have been overcome by LSIAC. In this paper, we have demon-
strated that the LSIAC approach for filtering two-dimensional and
three-dimensional fields provides us the benefits of the SIAC method-
ology in a computationally tractable way. In particular LSIAC does

Fig. 15. 3D NACA LSIAC Case: Iso-contour of vorticity extracted from
the field (top). Contour lines showing the vorticity field extracted over the
plane shown in the upper figure (bottom).

not have the curse of dimensionality as experienced with SIAC post-
processing (i.e, encountering boundaries is considerably simpler in the
LSIAC case).

There is still future work in this area to be accomplished. We have
not addressed the question of optimally selecting the LSIAC charac-
teristic length H or the direction in which the filter is applied. In all
our applications, we used default choices from the literature for the
characteristic length (H) and we selected directions that were consis-
tent with the derived quantities being investigated. A general strategy
for selecting the filter direction based upon the field characteristics,
mesh and polynomial degree used, and the quantity of interest being
examined requires further investigation. Furthermore, we have only
demonstrated the LSIAC methodology for the post-processing of pri-
mary and derivative-based derived fields; future work would be to
incorporate the LSIAC work into vector field topology, feature detec-
tion and extraction algorithms as almost all such algorithms are built
upon the computing of derivatives of the field.
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