
1

Asynchronous BVH Construction for Ray Tracing

Dynamic Scenes

Thiago Ize, Ingo Wald and Steven G. Parker

UUSCI-2006-034

Scientific Computing and Imaging Institute
University of Utah

Salt Lake City, UT 84112 USA

November 13, 2006

Abstract:

Recent developments have produced several techniques for interactive ray tracing of dynamic
scenes. In particular, bounding volume hierarchies (BVHs) are efficient acceleration structures
that handle complex triangle distributions and can accommodate deformable scenes by updating
(refitting) the bounding primitive without restructuring the entire tree. Unfortunately, updating
only the bounding primitive can result in a degradation of the quality of the BVH, and in some
scenes will result in a dramatic deterioration of rendering performance. The typical method to
avoid this degradation is to rebuild the BVH when a heuristic determines the tree is no longer
efficient, but this rebuild results in a disruption of interactive system response.

We present a method that removes this gradual decline in performance while enabling consistently
fast BVH performance. We accomplish this by asynchronously rebuilding the BVH concurrently
with rendering and animation, allowing the BVH to be restructured within a handful of frames.



Asynchronous BVH Construction for Ray Tracing Dynamic Scenes

Thiago Ize Ingo Wald Steven G. Parker

SCI Institute, University of Utah
{thiago,wald,sparker}@sci.utah.edu

Abstract

Recent developments have produced several techniques for interac-
tive ray tracing of dynamic scenes. In particular, bounding volume
hierarchies (BVHs) are efficient acceleration structures that handle
complex triangle distributions and can accommodate deformable
scenes by updating (refitting) the bounding primitive without re-
structuring the entire tree. Unfortunately, updating only the bound-
ing primitive can result in a degradation of the quality of the BVH,
and in some scenes will result in a dramatic deterioration of render-
ing performance. The typical method to avoid this degradation is to
rebuild the BVH when a heuristic determines the tree is no longer
efficient, but this rebuild results in a disruption of interactive system
response.

We present a method that removes this gradual decline in perfor-
mance while enabling consistently fast BVH performance. We ac-
complish this by asynchronously rebuilding the BVH concurrently
with rendering and animation, allowing the BVH to be restructured
within a handful of frames.

1 Introduction

In the last decade, the graphics community has benefited from
tremendous improvements in the performance and capabilities of
PC based graphics cards, with GPUs now offering hundreds of Gi-
gaFlops and increasingly programmability. This demand for faster
and more programmable GPUs is driven mainly by the demanding
needs of video games for faster and more realistic graphics.

Along with the tremendous improvements in GPUs, CPUs are also
becoming much faster, especially with the current trend of increas-
ing the number of cores per chip. For instance, a standard 3 GHz
dual-core Opteron today has roughly 24 GFlops, a PlayStation 3’s
CELL processor has 180 GFlops, and Intel claims to have an 80
core processor prototype capable of TeraFLOP performance [Intel
2006].

The quest for increased quality, combined with increases in avail-
able compute power has led to improvements of rasterization-based
GPUs. This quest has also reignited an interest in ray tracing for
many applications. Ray tracing can fulfill the growing quality de-
mands, but the main limitation is that it is not efficient enough for
use in dynamic applications such as games. As long as compute
power continues to rise, ray tracing will eventually become real-
time.

With this in mind, many researchers have recently focused on re-
alizing real-time ray tracing, and, more recently, on ray tracing dy-
namic scenes. Today, real-time ray tracing with dynamic scenes
can be realized via either kd-trees, grids, or bounding volume hi-
erarchies (BVHs), but there are tradeoffs associated with each of
these data structures. Kd-trees seem to offer the highest ray trac-
ing performance, but are most costly to build [Wald and Havran
2006]; grids are efficient to build [Wald et al. 2006b], but rely on a
high degree of coherence which may not exist for complex scenes
and/or secondary rays. BVHs offer a compromise between per-
formance and the ability to handle complex scenes and secondary

Figure 1: Some example screenshots from our system. a-d) “BART
museum” objects of 66K triangles each; even though the scene de-
forms significantly over time, our approach allows for rendering
this scene without degradation over time, and without the freezes
introduced by on-demand BVH reconstruction. e) The “Fairy For-
est 2” scene (394K triangles total); on an 8-core 2.0 GHz Opteron
PC, this scene can be rendered with 19-23 frames per second
(1024×1024 pixels, simple shading) and up to 2 times faster than
with refitting alone.

rays, but are currently limited for many types of dynamic scenes. In
particular, BVH-based interactive ray tracing systems are currently
restricted to scenes that deform over time, and will deteriorate in
performance for unstructured motion or severe deformations.

In this paper, we propose a new approach for handling dynamic
scenes in a BVH-based ray tracer that is designed for highly parallel
architectures, and that handle scenes with large deformations over
time. In particular, we present an architecture where a subset of
CPUs continuously and asynchronously rebuild new BVHs (poten-
tially over the course of multiple frames) while the remaining CPUs
concurrently update and traverse the existing BVH. This reduces
BVH deterioration over time, while avoiding disruptive pauses at
BVH rebuild times.

2 Background

Real-Time Ray Tracing and Dynamic Scenes As early as
the 1990s, researchers achieved interactive ray tracing performance
with the use of large supercomputers [Parker et al. 1999; Muuss
1995; Green and Paddon 1990]. With the growing capabilities of
commodity architectures, researchers then turned their attention to
ray tracing on PCs, and PC clusters [Wald et al. 2001]. In particular,
since Reshetov’s “Multilevel Ray Traversal” [2005], PC based ray
tracers are—at least for very simple shading—able to achieve fully
interactive frame rates for non-trivial scenes on multi-core desktop
PCs. In parallel to Reshetovs MLRT approach, Woop et al. [2005]
demonstrated that real-time ray tracing can also be achieved by
building special purpose hardware.

Apart from low level optimizations, fast ray tracing depends on
using an efficient spatial acceleration structures, such as a BVH,
kd-tree, octree, or grid. While there is been a long-running de-
bate on which of these is best, by 2005 virtually all fast ray tracers
were built on kd-trees. Unfortunately, kd-trees are costly to build



and cannot easily be incrementally updated, and as such present
an obstacle to handling dynamic scenes. Thus, the debate is once
again open, with researchers actively exploring better ways to sup-
port dynamic scenes with other acceleration structures. For kd-
trees, Günther et al. [2006] proposed a “motion decomposition”
approach to updating the kd-tree, but this only works if the anima-
tion sequence is known in advance. Stoll et al. [2006] proposed a
lazy build mechanism that is aided by scenegraph information, but
no real-time data is yet available. For rendering general dynamic
scenes with a kd-tree, Popov et al. [2006] and Hunt et al. [2006]
have investigated fast approximate methods to rebuild kd-trees from
scratch; these, however, are still rather slow, and seem to parallelize
poorly ([Popov et al. 2006] reports no speedup for small models and
only a 2.4× speedup on 4 CPUs for a 10M triangle model).

As an alternative to kd-trees, Wald et al. [Wald et al. 2006b] have
proposed a grid-based approach to ray tracing dynamic scenes,
which can handle arbitrarily dynamic scenes by rebuilding the grid
every frame. Ize et al. [2006] have shown that the grid build can
be parallelized quite effectively, with interactive rebuild rates even
for complex scenes. Unfortunately, this grid-based approach relies
on highly coherent ray packets, and extensions for highly complex
scenes and/or secondary rays are not obvious.

BVH-based Dynamic Scene Ray Tracing In parallel to the
grid and kd-tree based approaches, several groups have investigated
the use of bounding volume hierarchies for ray tracing dynamic
scenes. Instead of subdividing space into “voxels” of triangle refer-
ences, BVHs build an object hierarchy tree, and in each tree node
store a bounding volume for that subtree’s geometry. In [2006a],
Wald et al. proposed a traversal algorithm for BVHs that achieved
performance similar to Reshetov’s MLRT system. Concurrently, a
similar approach was developed by Lauterbach et al. [Lauterbach
et al. 2006]. Other BVH inspired approaches have recently been
proposed by Havran et al. [2006], Woop et al. [2006], and Wächter
et al. [2006].

All of these BVH-based approaches make use of a BVH’s ability to
simply “refit” an existing BVH instead of rebuilding it. A BVH is
defined through two parts: the tree topology, and each tree node’s
bounding volume. Once the objects move, instead of rebuilding the
complete BVH from scratch, one can also leave the topology intact
and only refit the BVH by recomputing all its nodes’ bounding vol-
umes. While this refitted BVH may have a different tree structure
than one built from scratch, it will nonetheless always be correct.
Refitting a BVH is extremely fast, and often less costly than the
associated animation updates.

Handling BVH Deterioration While refitting a BVH is inex-
pensive, it does have several drawbacks. First, it is only applicable
for deformable scenes (scenes that do not change the vertex con-
nectivity). Second, refitting a BVH will result in a correct BVH,
but it will not necessarily be efficient. The refitted BVH retains the
original frame’s BVH topology, but as the scene deforms the tri-
angles might form a configuration for where a different structure
might yield better performance. This will eventually lead to a de-
terioration of BVH quality (and performance) as scene and BVH
become out of sync.

As pointed out by Lauterbach et al. [2006], deforming a BVH usu-
ally works for at least some number of frames, and instead of re-
building a BVH every frame, one could rebuild only every few
frames, with the frames in-between handled by BVH deformations.

In order to do these rebuilds when they are most effective, Lauter-
bach et al. [2006] have proposed a “rebuild heuristic” that detects
BVH degradation, and rebuilds the BVH if and only if the quality
degradation has reached a given threshold. This allows for striking

a balance between total rebuild cost and render cost, and can yield
a significantly reduced average frame time in an animation.

Unfortunately, a lower average frame time is not always helpful in
an interactive setting. In an offline animation the infrequent rebuilds
can be amortized over all frames of the animation, yielding a low
average time per frame; in an interactive setting, however, amorti-
zation does not apply, and system responsiveness is disrupted while
a rebuild is performed, which hurts the user’s ability to interact with
the environment. For interactive applications, removing large varia-
tions in frame rate is often more important than having a moderately
faster average frame time [Watson et al. 1998].

3 Asynchronous Dynamic BVHs

As discussed in the previous section, BVHs hold promise for ray
tracing dynamic scenes, but the refits eventually lead to degraded
performance, and rebuilds result in disturbing pauses. These prob-
lems will likely become exacerbated by future ray tracing systems
running on architectures with a large number of cores, since the re-
building does not scale as well as the rendering, thus further wors-
ening the effect of the disruptions.

In this paper, we propose combining fast and asynchronous single-
threaded BVH builds with parallel and scalable refitting and ren-
dering. We continuously and asynchronously build new BVHs as
fast as possible in a dedicated thread while all other threads are
kept busy with rendering. Even with fast build algorithms, a BVH
will usually take more than one frame to build; but since building is
asynchronous, rather than wait for the build to finish, the rendering
threads can refit the previous BVH and continue rendering, which
can easily be done in parallel. As soon as a new BVH is available,
the rendering threads switch to the new BVH, and rebuilding starts
anew. Using this approach, BVH deterioration is avoided since no
BVH is deformed for more than a couple of frames; and because no
dependencies between building and rendering are introduced, the
rendering threads are never stalled, producing good scalability and
avoiding disruptions altogether (see Figure 2).

3.1 Asynchronous Build

To allow multiple threads to work asynchronously on the same data,
we must double buffer the shared data, which consists of the vertex
positions (which are updated each frame by the renderer) and, of
course, the BVH nodes. All other data, like triangle connectivity,
triangle acceleration structures, vertex normals, texture coordinates,
etc are not touched by the builder, and so are not replicated. This
results in roughly 50 bytes extra storage per triangle, which for most
scenes has a minor impact.

Whenever a new BVH is finished, the rebuilder passes it to the ren-
derers, and grabs a new set of vertices to work on. This naturally
occurs between when the render threads finish their current frame
and before they start refitting the BVH for the next frame. While
we could wait for the new vertex positions to be calculated before
exchanging the data, this would require an expensive copy of those
values to the rebuilder, which is especially problematic since the
render threads must be blocked waiting for the copy to finish before
they can use the new data. This critical section hurts the system’s
scalability. Instead, before the new vertex positions are calculated,
the rebuilder blocks the other render threads, does a couple quick
pointer swaps of its vertex and BVH buffer with the renderers, and
releases the renderers so that they can calculate the new vertex po-
sitions and render the next frame with the new BVH. While the



f

Rebuild

Render

Thread 1 Thread NThread 2 Thread N-1

Render Render

Vertex Update Vertex Update Vertex Update

Seeder

Barrier

...

...

BVH Refit BVH Refit

merge

BVH Refit

Triangle Update
Triangle Update

Triangle Update

Barrier

Barrier

...

...

...

Render Render Render

Vertex Update
Vertex Update Vertex Update

Seeder

Barrier

...

BVH Refit

merge

BVH Refit
BVH Refit

Triangle Update
Triangle Update

Triangle Update

Barrier

Barrier

...

...

...

Barrier
Vertex Data and BVH Swap

RebuildVertex Update Vertex Update Vertex Update

Seeder
...

Vertex Data and BVH Swap

Render Render Render...
Rebuild

f+1

f+2

f-1

Frame

Figure 2: Given a highly parallel architecture with N parallel
threads, we spend N-1 cores on parallel rendering and BVH refit-
ting. The N’th thread works asynchronously and builds new BVHs
as fast as possible, potentially over multiple frames (2 in this exam-
ple); in the meantime, the render threads rely on deforming the most
recently finished BVH. BVHs are never deformed for more than a
couple of frames, and both scalability bottlenecks and pauses are
avoided altogether.

pointer swapping requires that the BVH builder work on already-
outdated vertices, since it will take several frames before the new
BVH is available, anyway, that BVH will be outdated by the time
it is finished, so building the BVH with vertex positions that are
outdated by one frame is equivalent to the build taking one frame
longer to complete—which is a minor cost for ensuring good scal-
ability. In addition, while the swapping could be performed during
the actual rendering, this would require extra synchronization dur-
ing rendering, which would probably hurt performance more than
is made up by having the newer BVH as soon as it is available.

3.2 Parallel Update and BVH Refitting

With the poorly parallelizable BVH build moved to its own asyn-
chronous thread, the rendering stage itself can be kept highly paral-
lel. In particular, the operations to be performed per frame are up-
dating the vertices, refitting the most recently built BVH, updating
the triangle acceleration data, and ray tracing. On a machine with
N cores, we reserve one thread for the BVH build, and dedicate the
remaining N−1 threads for parallel updating and rendering.

Vertex Generation The first task is to get the new frame’s ver-
tex positions, which are required by the other update steps. Vertices
are usually generated by the application using, for example, a vertex
shader or linear interpolation. Since for non-trivial scenes even gen-
erating the vertices can be quite costly compared to refitting a BVH

or rendering a frame, ensuring good system scalability requires ei-
ther parallelizing the vertex generation, or having the application
generate the vertices asynchronously to rendering. In our current
framework, we compute vertices by linearly interpolating between
fixed timesteps, which we do in parallel on N−1 threads.

Parallel BVH Refit Once the new vertex positions are known we
can start refitting the most recently finished BVH’s bounding vol-
umes; this again has to be done in parallel. One way of doing so is
a static work assignment, in which each thread works on one of the
top N−1 independent subtrees of the BVH. While for two threads
Lauterbach et al. [2006] reported good results for that approach, we
found that for significantly more threads, and for complex models
with uneven geometry distributions, this did not load balance well.

Therefore, we use a three-way dynamic load-balancing scheme for
the update. In the first phase, one “seeder” thread traverses the
upper k levels of the BVH and records the node IDs of all the
leaf nodes encountered and the node IDs of the k’th level subtrees.
Though no other thread can start refitting until this seeding is done,
there is no scalability issue as the seeding has to traverse only a very
small number of nodes, is thus extremely cheap, and so can be run
by one of the update threads before the thread continues with its
load balanced vertex updating. This ensures that the seeding cost is
load balanced with the vertex updates.

Once all the N − 1 update threads are done updating the vertices
and seeding, they synchronize on a barrier, and then switch to BVH
refitting. We dynamically load-balance by having each thread take
a node ID from the list, refit that subtree, and repeat. As soon as a
thread finds no more subtrees to refit, it immediately goes on to per-
forming triangle updates. The last thread to finish a subtree update
also performs the final “merge” of the refit subtrees.

Triangle Update For ray-triangle intersection, we use the
method outlined in [Wald 2004]. This method uses a precomputed
set of data values for each triangle, which for an animated scene has
to be recomputed every frame. Due to imbalances in the BVH refit-
ting phase (i.e., the last thread having to merge the subtrees), the up-
date threads can enter that phase at different times. We compensate
by dynamically load balancing the triangle updates. In this way,
all of the individual operations—vertex update, serial subtree seed,
parallel subtree update, serial subtree merge, and triangle update—
are fully interleaved, ensuring that all CPUs remain constantly uti-
lized and finish at the same time.

Parallel Rendering Once all N−1 render threads have finished
updating, they synchronize themselves via a barrier, and then ren-
der the scene using a standard tile-based dynamic load balancing
scheme, as used by Wald [2004; 2006a].

Note that the entire per-frame rendering phase—update and
render—is dynamically load-balanced at all stages, uses all N− 1
threads all the time, and performs only three barrier operations
per frame: after vertex updates, after all threads have completed
updating, and once all tiles have been rendered. The only non-
parallelizable stage is the time between the end of the current and
the start of the next frame, in which the application processes user
input, displays the image, and if applicable, swaps the rebuild data.

3.3 BVH Build Method

The choice of BVH build method is orthogonal to our approach,
allowing any build method to be used with asynchronous rebuilds.
Since building a BVH over multiple frames is explicitly allowed in
our framework, one could in principle use very costly BVH builds



Figure 3: Five frames each from the “BART museum” and “Fairy Forest 2” scenes used in our experiments (using t=0s,3.125s, 6.25s, 9.375s,
12.5s, 15.625s 18.75s, 21.875s and 25s for the museum scene, and t=0s, 8s, 16s, 24s, and 31s for the Fairy scene, respectively).

that try to achieve the best possible BVH quality. However, when
building asynchronously, a BVH will always be outdated by as
many frames as it took to build this BVH. Thus, there is still a
trade-off between a build method’s resulting BVH quality and the
time to achieve that quality, as longer builds potentially suffer worse
from deterioration. We currently support the N log N sweep method
outlined in [Wald et al. 2006a] and a centroid-based spatial median
method in the spirit of [Wächter and Keller 2006]. By default we
use the very fast to build centroid-based spatial median method.

4 Results and Discussion

For our experiments we use a 4 processor, dual core Opteron 870
PC with 16GB of RAM. Unless otherwise noted, we use all 8
cores in our tests. We use two test scenes: the “Fairy Forest 2”
and the “BART museum” (see Figure 1). The Fairy Forest 2 has
394K triangles, most of which are deforming every frame, and re-
sembles a game-like scene. The 64K triangle BART museum is
part of the BART benchmark [Lext et al. 2000] and is intention-
ally designed to stress test large deformations. Because it deforms
heavily by morphing into wildly varying shapes (see Figure 3), it
provides a challenge where standard BVH refitting quickly breaks
down (see [Wald et al. 2006a; Lauterbach et al. 2006]). All mea-
surements were performed using the packet/frustum ray tracer used
in [Wald et al. 2006a] at 1024×1024 pixels, with simple lambertian
shading and no textures. We do not use shadows or other secondary
rays, such as reflection, refraction, and so on; these would not influ-
ence scalability or build times at all, and would only affect render
times.

Using the centroid-based spatial median build method on a single
Opteron core, we can build a new BVH in roughly 25ms for the
BART scene, and in roughly 225 ms for the Fair Forest 2 scene.

Deterioration and Disruptions In Figure 4 we compare our
method with the standard “refit only” method which uses no re-
builds, and with Lauterbach’s rebuild heuristic.

Both scenes show that simply refitting leads to severe performance
deterioration, with about a 3× drop for the Fairy scene, and a nearly
complete standstill for the BART scene. Lauterbach’s approach is
clearly superior to refitting only; it avoids the BART scene’s ex-
treme deterioration, and achieves consistently higher frame rates
for the Fairy scene. Furthermore, with only three rebuilds triggered
for the Fairy scene, it achieves a nearly constant frame rate that is
up to 2.5× that of the refitting only approach.

While these experiments confirm Lauterbach’s method is superior
over deforming only, they also show its weaknesses: the high varia-
tion in frame rate caused by rebuilds and varying rates of deteriora-
tion, the “sawtooth” effect of deterioration until a new build is trig-
gered, and in particular, the disruptions in which the system freezes
until a new BVH is ready. That last effect is particularly visible in
the fairy scene, where the otherwise nearly constant frame rate of
20-25Hz is unexpectedly interrupted three times, during which the
system freezes for roughly 5 ordinary frames.

Compared to Lauterbach’s method, our approach does not achieve
the same peak performance, as we consistently “lose” one CPU to
building BVHs, but we are generally quite close to it. In addition,
our method achieves a significantly smoother frame rate without
disruptions, and with a significantly reduced sawtooth effect.

Impact of Number of Cores While continuously rebuilding
the BVH results in a faster to traverse BVH compared to a refit-
ted BVH, the downside is that one core is always busy with build-
ing BVHs and cannot contribute to rendering. Thus, we consis-

 0
 1
 2
 3
 4
 5
 6
 7
 8

30s25s20s15s10s5sT=0s

2 CPUs

 0
 2
 4
 6
 8

 10
 12
 14

30s25s20s15s10s5sT=0s

4 CPUs

 0

 5

 10

 15

 20

 25

 30

30s25s20s15s10s5sT=0s

8 CPUs

Figure 5: As the number of available CPUs increases, the advantage
of asynchronous rebuilds increases.



 0

 5

 10

 15

 20

 25

 30

30s25s20s15s10s5sT=0s

Fairy Forest

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

25s20s15s10s5sT=0s

Bart

Figure 4: Impact on rendering performance for the three BVH build/update strategies: update only (blue), using Lauterbach et al.’s update
heuristic (green), and using our asynchronous rebuilding strategy (red). Data is given for the “Fairy Forest 2” (394k triangles, 31sec animation)
and the “BART museum” (66K triangles, 25sec animation), and are measured on a 4 processor dual-core Opteron PC. Since updating
only leads to performance deterioration, both our and Lauterbach’s approach work significantly better than updating only. Compared to
Lauterbach’s approach, we achieve slightly inferior peak performance (since we always spend some time on rebuilding), but maintain much
more stable frame rates, and in particular, avoid the disturbing “freezes” that occur whenever Lauterbach’s rebuild heuristic triggers a rebuild.

tently have one thread less for rendering than when using the re-
build heuristic or refitting only. As expected, Figure 5 shows that
this effect is particularly severe for two cores (in which case we
spend half our compute potential on BVH construction), but dimin-
ishes for more cores. Increasing the number of CPUs used by our
method reduces the fraction of CPU time spent on rebuilding, and
thus reduces our method’s overhead.

Interestingly, even for the worst case of 2 threads our worst frame
time is still better than that of either Lauterbach or refitting only,
even if the average frame time is far worse. For 8 cores, this over-
head is nearly gone; while one would expect our peak performance
to be 1/8th lower than the rebuild heuristic’s performance, in prac-
tice the difference is much smaller due to the overhead in computing
the rebuild heuristic.

When adding more cores, the frame rate will improve, but the build
time will not. Consequently, we will render more frames during one
build cycle, and have to deform the existing BVH more often before
a new one is available. Though this might seem problematic at first,
it is not in practice. Virtually all interactive animations, such as
games, operate in world time, and a higher frame rate simply means
a smoother animation by taking smaller timesteps and rendering
the same animation with more frames. As such, the deformation
accumulated by the time the new BVH is ready is independent of
the number of cores or frame rate.

Impact of Build Method and Build Time As mentioned in
Section 3.3, a better build method will result in a higher quality
BVH, which in principle will translate to higher render perfor-
mance; but, the longer to build method also means that the BVH
will have degraded more by the time it is ready to be used and will
degrade even more while the next BVH is being built, potentially
leading to severe degradation.

To quantify that effect we have run our two animation sequences
with two different build methods: a very fast approximate build as
described by Wächter et al. [2006], and the SAH sweep method
outlined in [Wald et al. 2006a]. For our two scenes, the sweep
method’s BVHs usually had a≈ 1.5× lower expected traversal cost,
for the frame it was built for, but took roughly 18× as long to build.

As can be see in Figure 6, both of the above mentioned effects are
clearly visible in form of a “sawtooth” pattern in frame rate. The
sweep method does reach a higher peak performance at the begin-
ning, and when the rate of deformations is low, but as the deforma-
tion rate increases the slow to build sweep method clearly performs
worse. This clearly argues for the faster to build methods, even if
the build can be done asynchronously.

4.1 Practicability for Future Ray Tracing Systems

While the previous results have shown that our approach can in-
deed produce better results than current approaches based on either

 0

 5

 10

 15

 20

 25

30s25s20s15s10s5sT=0s

Fairy Forest

 0

 10

 20

 30

 40

 50

 60

 70

 80

25s20s15s10s5sT=0s

Bart

Figure 6: High-quality sweep-build (green) vs fast approximate
build (red). The sweep build generates better BVH quality, but
takes significantly longer to build. Due to the longer build times,
the sweep build exhibits a “sawtooth” effect: longer builds imply
longer times of deformation, leading to noticeable degradation over
time in the BART scene. The sweep build sometimes even produces
lower frame rates than the approximate build, since its BVHs are al-
ready significantly outdated by the time they are finished building.



refitting or rebuild heuristics, its practicability for future ray tracing
applications will depend on how adaptable it is to different hard-
ware architectures, to the growing demands on scene size, types of
animation, and render quality.

Higher per-core performance A potentially higher perfor-
mance per core (e.g., through a higher clock rate) would increase
the frame rate, but would also result in higher build performance.
Thus, as argued in the previous paragraph, the absolute time we
have to rely on deformation will go down, effectively increasing
the practicability of our method.

Impact of render cost per pixel Just like changing the num-
ber of cores, by increasing the cost per pixel (e.g., by tracing more
rays for advanced effects) we merely change the ratio of build time
to render time, and has the same effect as reducing the number of
cores: the frame rate goes down, but the absolute time we have to
rely on deforming an old BVH isn’t affected. In fact, the argument
can be reversed: if future ray tracers will spend more rays per pixel,
and if future chips will have more cores, then we can use the addi-
tional cores for tracing more rays per pixel at the same frame rate,
and without negatively affecting the dependence on deformation at
all.

Scene Complexity and Animation Speed While most current
games do not use more triangles than our 394K triangle Fairy For-
est 2 scene, if significantly larger scenes were used, the O(N logN)
build method would require that we rely longer on deformation be-
fore a new BVH is available. This, and increasing the animation
speed, is similar in spirit to using a slower to build BVH as men-
tioned above and would share the same results. Furthermore, if
a scenegraph is available, which is often the case in games, the
scene could be easily decomposed into subsets which could each
be rebuilt asynchronously on separate cores. On the other hand,
many researchers argue that future games might make heavy use of
freeform or subdivision geometry, and would therefore need signif-
icantly less primitives than are used today [Stoll et al. 2006]. In that
case, our build times would shrink as well.

Remaining limitations While we significantly reduce the de-
pendence on refitting, we still refit for at least one frame. As such,
completely unstructured motion with near-randomly changing ge-
ometry every frame cannot be supported. However, practical appli-
cations for such completely random scenes are probably rare, and
more likely effects, such as explosions, are arguably not worse than
what happens in the BART scene, which our method handles well.

Similarly, changing scene topology is currently not supported.
However, most scenes can be structured to avoid topology changes,
for example, by translating a character out of or into a scene, and
when that is not possible, it might be possible to predict the need
for a topology change and asynchronously build the new BVH in
another thread.

Application to non-CPU architectures Though we have only
talked about standard multi-core CPU architectures so far, our
method is also applicable to other architectures. On a CELL [Ben-
thin et al. 2006], for example, the rebuild could happen on the Pow-
erPC core, with the render threads running on the SPEs. Even more
interesting, the method could also be used for ray tracers running
on GPUs, or for special-purpose ray tracing hardware as proposed
by Woop et al. [2006]. For these architectures, rendering and BVH
updating can easily be performed in parallel on the respective hard-
ware architectures [Woop et al. 2006], but rebuilding doesn’t easily
map to such architectures. Using our method, the update would
run on the respective SPE, GPU, or RPU, while the rebuild is asyn-
chronously performed on the host CPU.

5 Conclusion

In this paper, we have presented a new approach to handling dy-
namic scenes in a highly parallel ray tracing architecture. Instead
of trying to do a full BVH rebuild per frame, we avoid any kind
of scalability issues by rebuilding asynchronously over the course
of multiple frames, and in the meantime rely on refitting, which
parallelizes quite well.

The method is particularly designed for highly parallel architectures
with multiple parallel cores, be it CPU cores, GPU cores, CELL
SPE, or even special purpose hardware. While increasing paral-
lelism is a problem for pure rebuilding, our method in fact benefits
from more cores, as the relative overhead decreases. As argued in
the previous section, the currently foreseeable trends towards hav-
ing many more cores, slightly more performance per core, and more
rays per pixel do not negatively affect our method’s practicability.

Our method’s advantage over existing methods depends on the
scene, and on the amount of deformation in a scene. If the defor-
mation is sufficiently small, simply refitting every frame may suf-
fice, rendering our method superfluous; the same is true if the scene
is sufficiently small to be rebuilt per frame. Compared to Lauter-
bach’s update heuristic, we usually achieve a somewhat lower aver-
age performance (due to rebuild overhead), but avoid performance
degradations and system response disruptions, which is important
for truly interactive applications like games.

Since we still depend on a scene’s deformability for at least short
periods of time, we cannot currently handle randomly deforming
scenes, or scenes with changing topology; for such severe scenes,
another data structure such as Wald’s “Coherent Grid Traver-
sal” [2006b] may be more applicable.

In future work, we will look into different BVH build methods that
offer a good trade-off between build time and BVH quality. More
importantly, we would like to see our framework applied to systems
like the RPU, or to a CELL based ray tracer. Ideally, this would
happen in a truly dynamic environment, such as in a real game.

References

BENTHIN, C., WALD, I., SCHERBAUM, M., AND FRIEDRICH, H. 2006.
Ray Tracing on the CELL Processor. In Proceedings of the IEEE Sym-
posium on Interactive Ray Tracing.

GREEN, S. A., AND PADDON, D. J. 1990. A Highly Flexible Multipro-
cessor Solution for Ray Tracing. The Visual Computer 6, 2, 62–73.

GÜNTHER, J., FRIEDRICH, H., WALD, I., SEIDEL, H.-P., AND
SLUSALLEK, P. 2006. Ray Tracing Animated Scenes using Motion
Decomposition. In Proceedings of Eurographics.

HAVRAN, V., HERZOG, R., AND SEIDEL, H.-P. 2006. On Fast Construc-
tion of Spatial Hierarchies for Ray Tracing. In Proceedings of the 2006
IEEE Symposium on Interactive Ray Tracing.

HUNT, W., STOLL, G., AND MARK, W. 2006. Fast kd-tree Construction
with an Adaptive Error-Bounded Heuristic. In Proceedings of the 2006
IEEE Symposium on Interactive Ray Tracing.

INTEL, 2006. http://www.intel.com/go/terascale/.

IZE, T., WALD, I., ROBERTSON, C., AND PARKER, S. G. 2006. An Evalu-
ation of Parallel Grid Construction for Ray Tracing Dynamic Scenes. In
Proceedings of the 2006 IEEE Symposium on Interactive Ray Tracing,
I. Wald and S. G. Parker, Eds., 47–55.

LAUTERBACH, C., YOON, S.-E., TUFT, D., AND MANOCHA, D. 2006.
RT-DEFORM: Interactive Ray Tracing of Dynamic Scenes using BVHs.
In Proceedings of the 2006 IEEE Symposium on Interactive Ray Tracing.



LEXT, J., ASSARSSON, U., AND MÖLLER, T. 2000. BART: A benchmark
for animated ray tracing. Tech. rep., Department of Computer Engineer-
ing, Chalmers University of Technology, Göteborg, Sweden, May.

MUUSS, M. 1995. Towards real-time ray-tracing of combinatorial solid
geometric models. In Proceedings of BRL-CAD Symposium.

PARKER, S. G., MARTIN, W., SLOAN, P.-P. J., SHIRLEY, P., SMITS,
B. E., AND HANSEN, C. D. 1999. Interactive ray tracing. In Proceed-
ings of Interactive 3D Graphics, 119–126.

POPOV, S., GÜNTHER, J., SEIDEL, H.-P., AND SLUSALLEK, P. 2006.
Experiences with Streaming Construction of SAH KD-Trees. In Pro-
ceedings of the 2006 IEEE Symposium on Interactive Ray Tracing.

RESHETOV, A., SOUPIKOV, A., AND HURLEY, J. 2005. Multi-Level Ray
Tracing Algorithm. ACM Transaction on Graphics 24, 3, 1176–1185.
(Proceedings of ACM SIGGRAPH 2005).

STOLL, G., MARK, W. R., DJEU, P., WANG, R., AND ELHASSAN, I.
2006. Razor: An Architecture for Dynamic Multiresolution Ray Tracing.
Tech. Rep. 06-21, University of Texas at Austin Dep. of Comp. Science.

WÄCHTER, C., AND KELLER, A. 2006. Instant Ray Tracing: The Bound-
ing Interval Hierarchy. In Proceedings of the 17th Eurographics Sympo-
sium on Rendering.

WALD, I., AND HAVRAN, V. 2006. On building fast kd-trees for ray
tracing, and on doing that in O(N log N). In Proceedings of the 2006
IEEE Symposium on Interactive Ray Tracing.

WALD, I., SLUSALLEK, P., BENTHIN, C., AND WAGNER, M. 2001. Inter-
active Rendering with Coherent Ray Tracing. Computer Graphics Forum
20, 3, 153–164. (Proceedings of Eurographics).

WALD, I., BOULOS, S., AND SHIRLEY, P. 2006. Ray Tracing Deformable
Scenes using Dynamic Bounding Volume Hierarchies. ACM Transac-
tions on Graphics (conditionally accepted). Available as SCI Institute,
University of Utah Tech.Rep. UUSCI-2006-023.

WALD, I., IZE, T., KENSLER, A., KNOLL, A., AND PARKER, S. G.
2006. Ray Tracing Animated Scenes using Coherent Grid Traversal.
ACM Transactions on Graphics 25, 3, 485–493. (Proceedings of ACM
SIGGRAPH 2006).

WALD, I. 2004. Realtime Ray Tracing and Interactive Global Illumination.
PhD thesis, Saarland University.

WATSON, B., WALKER, N., RIBARSKY, W., AND SPAULDING, V. 1998.
Effects of Variation in System Responsiveness on User Performance in
Virtual Environments. Human Factors 40, 3, 403–404.

WOOP, S., SCHMITTLER, J., AND SLUSALLEK, P. 2005. RPU: A pro-
grammable ray processing unit for realtime ray tracing. In Proceedings
of SIGGRAPH, 434–444.

WOOP, S., MARMITT, G., AND SLUSALLEK, P. 2006. B-KD Trees for
Hardware Accelerated Ray Tracing of Dynamic Scenes. In Proceedings
of Graphics Hardware.


