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Abstract. The study of physiology demonstrates that the form (shape)
of anatomical structures dictates their functions, and analyzing the form
of anatomies plays a crucial role in clinical research. Statistical shape
modeling (SSM) is a widely used tool for quantitative analysis of forms
of anatomies, aiding in characterizing and identifying differences within
a population of subjects. Despite its utility, the conventional SSM con-
struction pipeline is often complex and time-consuming. Additionally,
reliance on linearity assumptions further limits the model from captur-
ing clinically relevant variations. Recent advancements in deep learning
solutions enable the direct inference of SSM from unsegmented medical
images, streamlining the process and improving accessibility. However,
the new methods of SSM from images do not adequately account for situ-
ations where the imaging data quality is poor or where only sparse infor-
mation is available. Moreover, quantifying aleatoric uncertainty, which
represents inherent data variability, is crucial in deploying deep learning
for clinical tasks to ensure reliable model predictions and robust decision-
making, especially in challenging imaging conditions. Therefore, we pro-
pose SPI-CorrNet, a unified model that predicts 3D correspondences
from sparse imaging data. It leverages a teacher network to regularize
feature learning and quantifies data-dependent aleatoric uncertainty by
adapting the network to predict intrinsic input variances. Experiments
on the LGE MRI left atrium dataset and Abdomen CT-1K liver datasets
demonstrate that our technique enhances the accuracy and robustness
of sparse image-driven SSM.

Keywords: Dense Correspondence Prediction - Aleatoric Uncertainty -
Sparse Unsegmented Images

1 Introduction

Understanding morphological variations influenced by pathology, gender, and
age is crucial for personalized treatment strategies in precision medicine, facil-
itating fast diagnosis and treatment [27J10]. Statistical Shape Modeling (SSM)
is pivotal in medical image analysis, enabling the identification of morphologi-
cal variations and quantitative assessment of geometric variability across pop-
ulations. SSM applications include lesion screening, surgical planning, implant
design [I8], and studying disease progression [23].
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SSM parameterizes shapes into numerical vectors for statistical analysis.
Methods for shape parameterization include implicit representations (e.g., de-
formation fields [12], level set methods [24]) and explicit representations such
as an ordered set of landmarks or correspondence points (aka point distribution
models, PDMs), which describe anatomically equivalent points across samples.
PDMs are favored for their ease of interpretation, computational efficiency, and
noise tolerance.

Correspondences in SSM can be established manually or automatically by
minimizing objective functions [S[TUTTI28|. Traditional methods are often com-
plex, computationally demanding, and require anatomical expertise, making
them inadequate for large datasets. Deep learning models [6] simplify the pro-
cess by training directly from unsegmented images, but they still depend on
computationally derived PDMs for supervision, which can bias and limit the
models.

High-quality medical images are crucial for accurate shape models, but cap-
turing dense, high-resolution images is challenging and costly. Sparse imaging,
with limited data points or slices, arises from acquisition time constraints, pa-
tient comfort, radiation dose considerations [25], or technical limitations [I5].
Enhancing image resolution through post-acquisition resampling can reduce di-
agnostic accuracy, making it essential to develop models that extract meaningful
information from sparse imaging content. Additionally, processing dense, high-
resolution imaging data requires significant computational resources and time.
Sparse imaging reduces data size and complexity, facilitating efficient shape mod-
eling [26] and benefiting real-time applications like intraoperative guidance or
rapid diagnostic assessments.

Uncertainty quantification is crucial in clinical applications to avoid overcon-
fident and unreliable estimates. Aleatoric uncertainty (data dependent), inherent
in sparse imaging due to noise and variability, must be accounted for in SSM
methods to produce robust and reliable shape models. Quantifying uncertainty
informs clinicians about the potential risks and limitations of the model’s out-
comes.

To address these challenges, we propose the Sparse Image-base probabilistic
Correspondence Network (SPI-CorrNet) for inferring 3D correspondences from
sparse, unsegmented medical images with incorporated aleatoric uncertainty es-
timates. Our model leverages the student-teacher framework from SCorP [16]
to learn a shape prior, which regularizes correspondence prediction and ensures
anatomical accuracy in reconstructed shapes. Notably, our approach does not
require ground PDMs for supervision, effectively managing variability and noise
in sparse imaging data.

2 Related Work

Various methods are used in shape analysis to establish correspondences. Non-
optimized methods involve manual annotation and warping landmarks using
registration techniques [22JT14], producing inconsistent results for larger popula-
tions. Parametric methods like SPHARM-PDM [28] use fixed geometrical bases
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for pairwise correspondences but struggle with complex shapes. Group-wise non-
parametric approaches, such as particle-based shape modeling (PSM) [8[7] and
minimum description length (MDL) [IT], consider cohort variability and opti-
mize data-driven objectives. Deep learning models simplify conventional SSM
pipelines by performing supervised correspondence prediction directly from un-
segmented images (TL-DeepSSM and DeepSSM [6]).

In clinical applications, uncertainty quantification is essential for evaluat-
ing tool reliability. Recent advancements include aleatoric (data-dependent) and
epistemic (model-dependent) uncertainty estimation. Aleatoric uncertainty is
modeled by a probability distribution over the outputs, while epistemic uncer-
tainty is captured using Bayesian neural networks [13] or ensemble methods.
Uncertain DeepSSM [I] includes both types of uncertainty estimation but, it
relies on a shape prior in the form of a supervised latent encoding pre-computed
using principal component analysis (PCA). Similarly, other models were pro-
posed for probabilistic 2D surface reconstruction using PCA scores as a prior
[30], which was also extended to probabilistic 3D surface reconstruction from
sparse 2D images [29]. Although these approaches provide shape segmentation
with aleatoric uncertainty measures, they do not offer a shape representation
readily usable for population-level statistical analysis. VIB-DeepSSM [2] relaxes
the PCA assumption using a variational information bottleneck (VIB) [5] for
latent encoding learning, improving aleatoric uncertainty estimation and gen-
eralization, but cannot measure epistemic uncertainty fully. The fully Bayesian
BVIB-DeepSSM [4] addresses this by quantifying both uncertainties and predict-
ing probabilistic shapes from images. But BVIV-DeepSSM and VIB-DeepSSM
continue to rely on established PDM for supervision.

Recent models like FlowSSM [19], Point2SSM [3], Mesh2SSM [17], and SCorP
[16] predict correspondences from various data modalities without requiring
PDMs for supervision. Particularly, SCorP [16] incorporates a shape prior learned
from surface meshes in a student-teacher framework for regularizing feature
learning from images without supervised PDM loss, but these approaches lack
uncertainty estimation.

Existing methods for probabilistic correspondence prediction face limitations
such as imposing a linear relationship between latent and output spaces and re-
liance on predefined PDMs for training. Additionally, sparse data is not utilized
for building shape models. The proposed framework aims to directly predict cor-
respondences and estimate uncertainty from sparse, unsegmented images without
predefined PDMs during training.

3 Background

Our work builds upon the model SCorP [16]. This section provides an overview
of SCorP, setting the stage for our proposed method in Section [4]

SCorP Overview

Consider a training dataset S = {S1,52,..., Sy} comprising N aligned surface
meshes, and their corresponding aligned volumetric images, Z = {I,Io,...,Ix}.
Each surface mesh S; = (V;,&;) consists of vertices V; and edge connectivity
&;. The primary objective of SCorP is to establish a shape prior (teacher) by
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predicting a set of M correspondence points CJ-S ={cj1),:Cj(2),---»Cjm)} with

Cj(m) € R3, which accurately represent the anatomy described by surface mesh

S;. This shape prior is then used to guide the image encoder (student) in learning
I

image representation z; conducive to predicting a corresponding set of points

C]I = {cj(1),Cj(2),---,Cj(m)} directly from the associated image I;. SCorP’s

model architecture Fig[I]A
4 Proposed Model

Our goal is to predict probabilistic 3D correspondence from sparse imaging.
Specifically, we consider an input set of images Z = {I;,Io,...,Iy}, where
each image I; consists of axial, coronal, and sagittal orthogonal slices (I, =
{I;‘X, I]S G, IJCR ). To accommodate sparse imaging, we modify the student branch
image encoder using three separate 2D CNNs to extract features from the three
orthogonal slices. These features are concatenated and passed through an im-
age feature aggregator network (fully connected layers) to predict a single latent
vector z§ representing the entire sample. This modification ensures that we can
adopt the student-teacher framework and use the same training strategy pro-
posed by SCorP [16]. The modified student branch for SPI-CorrNet is shown in

Fig[1]B.
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Fig. 1. Architecture: (A) Base model SCorP [16] with the teacher (surface autoen-
coder and IM-NET decoder) and student (image encoder) network. Proposed modifi-
cations for SPI-CorrNet: student network to handle (B) orthogonal image slices with
a probabilistic image encoder and (C) full images with a probabilistic image encoder.

Similar to SCorP, SPI-CorrNet comprises a teacher network and a student
network. The teacher network includes a surface autoencoder and an implicit
field decoder. The surface autoencoder learns a low-dimensional ZJS , permutation
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invariant representation of each surface mesh using dynamic graph convolution
with EdgeConv blocks [31], while the IM-NET decoder [9] uses this latent repre-
sentation z}s to predict a set of correspondence points Cf , ensuring consistency
across the dataset by transforming a template point cloud to match each sample.
The student network consists of the modified image encoder branch that learns
a compact representation z§ for sparse image slices, capable of predicting a set
of correspondence points CJI guided by the shape prior from the teacher network.
Training occurs in three phases similar to SCorP: (a) surface branch training
to develop the shape prior where surface autoencoder and implicit decoder are
jointly trained to minimize loss
N
Lg :Z [ﬁCD(Vj,C]'S)+Oz£MSE(Vj,Vj)} (1)

j=1

where ]}j are the reconstructed vertex locations and « is the weighting parame-
ter, (b) image branch embedding alignment to align image encoder features with
those of the surface encoder with loss function

Lon = %Z [l06(515,) = £, 1L @

and (c) image branch prediction refinement to improve correspondence predic-
tion accuracy with loss combination of Lpgr + Lga where

N
Ler =) Lr,op(V;,C)) (3)

j=1
Uncertainty Estimation: To incorporate probabilistic correspondence predic-
tion for aleatoric uncertainty estimation, we propose making the student branch
image encoder probabilistic. The encoder, f,, (comprising 3D convolutional and
densely connected layers for full images Fig[[]C and separate image slice encoder
and image feature aggregator for sparse images Fig lB maps the input image I;
to a Gaussian latent distribution: N'(z”|p,r,log 0,1). Posterior samples z] are ac-
quired from this predicted latent distribution using the reparameterization trick
to enable gradient calculation. This modification captures aleatoric uncertainty
as the variance of the p(CJI |z!) distribution, computed by sampling multiple la-
tent encodings from N'(z|p,r,logo,r) and passing them through the implicit
decoder to get a sampled distribution of predictions. A Gaussian distribution
is estimated from these samples: N (CJI |, log o). The estimated o captures the
aleatoric uncertainty.

5 Dataset and Evaluation
5.1 Datasets
We selected the left atrium and liver datasets for our experiments due to their

highly variable shapes. The left atrium (LA) dataset consists of 923 anonymized
Late Gadolinium Enhancement (LGE) MRIs from distinct patients, manually
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segmented by cardiovascular medicine experts. Post-segmentation, the images
were cropped around the region of interest. The AbdomenCT-1K liver dataset
[20] includes 1132 3D CT scans and their corresponding liver segmentations. Af-
ter visually assessing the quality of the images and segmentations, we selected
833 samples. These images were aligned and cropped around the region of inter-
est. We randomly split both datasets into training, validation, and test sets as
80%/10%/10%. More details about the datasets, hyperparameters of the models,
and training details are provided in the supplementary material.

5.2 Metrics

Chamfer Distance (CD): Measures the average bidirectional distance between
points in two sets (V; and C; ), assessing dissimilarity between them. Point-to-
Mesh Distance (P2M): Calculates the sum of point-to-mesh face distance and
face-to-point distance for the predicted correspondences (C JI ) and the mesh faces
defined by vertices and edges (V;,&;). Surface-to-Surface (S2S) Distance:
Measured between the original surface mesh and the generated mesh from pre-
dicted correspondences. To obtain the reconstructed mesh, correspondences are
mapped to the mean shape, and the warp between the points is applied to its
mesh. SSM Metrics used to evaluate correspondence [2I]: Compactness: Rep-
resents the training data distribution with minimal parameters, measured by the
number of PCA modes needed to capture 95% of the variation in correspondence
points. Generalization: Evaluates how well the SSM extrapolates from training
to unseen examples, gauged by the reconstruction error (L2) between held-out
and training SSM-reconstructed correspondence points. Specificity: Measures
the SSM’s ability to generate valid instances of the trained shape class, quan-
tified by the average distance between sampled SSM correspondences and the
nearest existing training correspondences. Aleatoric Uncertainty: Reflects in-
herent data noise and variability, expected to correlate with P2M error (high
Pearson r). Aids in out-of-distribution detection, indicating model reliability.

6 Results

We compare five SPI-CorrNet variants using different input types: full volume
(like SCorP), sparse images (orthogonal slices: axial, coronal, sagittal), and in-
dividual slices (axial, sagittal, coronal). This comparison identifies the most ef-
fective approach for probabilistic correspondence prediction. As shown in Fig[2]
the full volume model outperforms others across CD, P2M, and S2S metrics.
However, the proposed orthogonal slices model demonstrates competitive per-
formance and is the second-best for both datasets. Notably, the axial slice model
performs similarly to the three-slice model for the LA dataset, likely due to its
effective capture of essential LA shape features such as length and appendage.
Additionally, training the orthogonal slices model is 1.5x faster than the full
volume model which highlights the utility of using sparse imaging for SSM ap-
plications.

All models exhibit similar performance in SSM metrics (generalization, speci-
ficity, and compactness) as shown in Fig [2| indicating they capture signifi-
cant shape variability while maintaining high fidelity to the original shapes.
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Fig. 2. Performance metrics: Boxplots show performance metrics for held-out test
samples from the LA and liver datasets. Compactness plots show cumulative variation
captured by PCA modes. Comp = Compactness, Spec = Specificity, Gen = General-
ization.
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Fig. 3. Uncertainty Calibration: Scatter plots and Pearson R coefficients show the
correlation between estimated uncertainty and P2S error across test sets. Heatmaps on
a representative mesh display average P2S error and aleatoric uncertainty, highlighting
spatial correlation.

The compactness plots suggest an efficient representation of population variance
with fewer PCA modes. Specificity and generalization metrics confirm that SPI-
CorrNet generates valid instances and effectively extrapolates to unseen data,
regardless of input type. The full-volume model shows the best SSM metrics for
the liver dataset, likely due to higher image quality and greater variation within
the dataset.

We experimented with the orthogonal slice dataset obtained from volumes
of varying thickness levels to demonstrate the utility of using sparse images. As
shown in Fig[d B, the performance metrics indicate that the model performs sim-
ilarly across these versions, providing consistent aleatoric estimates, as evidenced
by the r-scores in Fig[4C.

Fig[3]illustrates the point-wise correlation between predicted uncertainty val-
ues and P2S distance error across the test set. Higher uncertainty is expected for
points further from the true shape surface. The Pearson R correlation coefficients
show that using orthogonal images does not degrade uncertainty estimation, as
indicated by the similar average uncertainty heatmaps. However, individual slices
reduce uncertainty calibration due to information loss. The spatial correlation
between P2S error and uncertainty heatmaps highlights the value of probabilistic
frameworks in assessing prediction reliability. For the LA dataset, the correlation
between P2S error and aleatoric uncertainty using the axial image is comparable
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to that of orthogonal and full-volume images, consistent with the SSM metrics

in Fig
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Fig.4. Ablation Experiments: (A) Box plots illustrate performance metrics for
inliers, image outliers, and shape outliers, with example image slices. (B) Box plots
compare performance metrics across varying slice thickness. (C) r-score for correlation
between estimated uncertainty and P2S error for different slice thickness models. (D)
Liver outlier detection results, with slices of outlier images and a plot showing total
prediction uncertainty and P2S error, averaged across each shape. High-error, low-
uncertainty outliers are highlighted in red.
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Using the method described in BVIB-DeepSSM [4], we selected outlier cases
for the test set based on an outlier degree computed from images and meshes.
This resulted in a test set with 40 shape outliers, 78 image outliers, and 92
randomly selected inliers. Fig [lA shows that predicted uncertainty is higher
for outlier test sets, particularly extreme shape outliers, as illustrated by the
examples of outliers which display high variability and differ from the inliers
significantly.

For the liver dataset, we examined the correlation between sample-wise aleatoric
estimates and sample-wise P2M distance. Fig[dD highlights three samples with
high P2M distance and low uncertainty, indicating confident but incorrect pre-
dictions. These errors are attributed to poor contrast and lack of clear organ
definition in the image slices of these outliers, as observed in the example outlier
image slices.

7 Conclusion

SPI-CorrNet demonstrates substantial potential by providing a straightforward
approach for directly inferring probabilistic correspondences from raw images
without needing pre-optimized shape models. Leveraging shape priors from vari-
ous representations and integrating aleatoric uncertainty quantification methods,
SPI-CorrNet effectively accommodates sparse images, significantly enhancing its
reliability and applicability in clinical settings. The current model relies on pre-
cise image alignment for optimal performance; future work on developing robust
alignment algorithms or alignment-free methods holds promise for increasing
its versatility across diverse datasets and clinical scenarios. This streamlined
approach to shape model generation marks a significant step forward in person-
alized medicine and clinical decision support, promising substantial progress and
broader applicability.
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A Appendix

A.1 Dataset Details

— Left Atrium (LA)

923 anonymized Late Gadolinium Enhancement (LGE) MRIs from dis-
tinct patients.

Manually segmented by cardiovascular medicine experts at the (anony-
mous) Cardiovascular Medicine.

e The endocardial wall was used to cut off pulmonary veins.
o Spatial resolution: 0.65 x 0.65 x 2.5 mm3.
e Images were cropped around the region of interest and downsampled by

a factor of 0.8.
Resulting input image size: 166 x 120 x 125.

— Liver

Dataset includes CT scans and segmentations of liver, kidney, spleen,
and pancreas.

1132 3D CT scans from various public datasets with segmentation veri-
fied and refined by experienced radiologists.

e Used CT scans and corresponding liver segmentations for experiments.
e CT scans have resolutions of 512 x 512 pixels with varying pixel sizes

and slice thicknesses between 1.25-5 mm.

Utilized 833 samples after visual quality assessment of images and seg-
mentations.

Images were cropped around the region of interest using segmentations
and downsampled by a factor of 3.5.

Downsampled volume size: 144 x 156 x 115 with isotropic voxel spacing
of 2 mm.

A.2 Hyperparamters

All models were trained on NVIDIA GeForce RTX 2080 Ti.
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Parameter Description Value
B Batch size 6
LR Learning rate le™®
M Number of correspondences 1024
ES Early stopping patience epochs 200
L Latent dimension for SPI-CorrNet | 256
K Size of neighbourhood for EdgeConv| 27
NV Number of vertices in the mesh 5000

Table 1. Hyperparameters for SPI-CorrNet

A.3 Architecture

1.

2.

=~

Orthogonal Encoder: The Orthogonal Encoder processes three orthogonal
2D slices (axial, sagittal, and coronal) from a 3D medical image volume.

— Slice Encoders: Separate 2D convolutional backbones are used for each
of the three slices: axial, sagittal, and coronal. Each backbone processes
its respective slice using Conv2d layers with 5 x 5 filters and the following
numbers of filters: [12, 24,48, 96, 192]. Batch normalization and ReLU ac-
tivation functions are applied after each Conv2d layer, with max-pooling
layers incorporated to reduce spatial dimensions.

— Fully Connected Layer: The combined features are passed through a
fully connected (FC) layer stack. This stack includes two linear layers:
[256 x 3 — 256] and [256 — z_dim], with a Parametric ReLU (PReLU)
activation function in between.

— Output:

e If the encoder is deterministic, the output is directly the features
from the FC layer.

e If the encoder is non-deterministic, the output is split into mean and
log variance for Gaussian sampling, producing the required number
of samples.

3D Image encoder: The encoder architecture utilizes Conv2d layers with
5 x 5 filters and the following numbers of filters: [12,24,48,96,192]. After
each Conv2d layer, batch normalization and ReLLU activation functions are
applied. Max pooling layers are incorporated to reduce spatial dimensions.
The feature maps are then flattened and passed to the fully connected layers.
The fully connected (FC) layer stack consists of linear layers with different
input and output feature dimensions: [193536— > 384], [384— > 96], [96— >
256]. Each linear layer is followed by a Parametric ReLU (PReLU) activation
function.

2D Orthogonal Slice Image encoder:

Image Feature Aggregator:

Surface Autoencoder: We use the DGCNN_semseg s3dis model from
the original DGCNN |Github repository.

IM-Net: We use the original implementation of IM-Net from the |Github
repository.


https://github.com/antao97/dgcnn.pytorch/
https://github.com/czq142857/IM-NET-pytorch

SPI-CorrNet 13

A.4 SSM Metrics

1. Compactness: We quantify compactness as the number of PCA modes that
are required to capture 95% of the total variation in the output training
cohort correspondence points.

2. Specificity: We quantify specificity by randomly generating J samples from
the shape space using the eigenvectors and eigenvalues that capture 95% vari-
ability of the training cohort. Specificity is computed as the average squared
Fuclidean distance between these generated samples and their closest train-
ing sample.

5= cec,enerarea lIC = Crrainll’

3. Generalization: We quantify generalization by assessing the average approx-
imation errors across a set of unseen instances. Generalization is defined as
the mean approximation errors between the original unseen shape instance
and reconstruction of the shape constructed using the raining cohort PCA
eigenvalues and vectors that preserve 95% variability.

G= Z;J:l ||C; — C;|3 for J unseen shapes.
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