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Abstract. Statistical shape modeling is the computational process of
discovering significant shape parameters from segmented anatomies cap-
tured by medical images (such as MRI and CT scans), which can fully
describe subject-specific anatomy in the context of a population. The
presence of substantial non-linear variability in human anatomy often
makes the traditional shape modeling process challenging. Deep learning
techniques can learn complex non-linear representations of shapes and
generate statistical shape models that are more faithful to the under-
lying population-level variability. However, existing deep learning mod-
els still have limitations and require established/optimized shape mod-
els for training. We propose Mesh2SSM, a new approach that leverages
unsupervised, permutation-invariant representation learning to estimate
how to deform a template point cloud to subject-specific meshes, form-
ing a correspondence-based shape model. Mesh2SSM can also learn a
population-specific template, reducing any bias due to template selec-
tion. The proposed method operates directly on meshes and is computa-
tionally efficient, making it an attractive alternative to traditional and
deep learning-based SSM approaches.

Keywords: Statistical Shape Modeling · Representation Learning · Point
Distribution Models

1 Introduction

Statistical shape modeling (SSM) is a powerful tool in medical image analysis
and computational anatomy to quantify and study the variability of anatomical
structures within populations. SSM has shown great promise in medical research,
particularly in diagnosis [12,23], pathology detection [19,25], and treatment plan-
ning [27]. SSM has enabled researchers to better understand the underlying bio-
logical processes, leading to the development of more accurate and personalized
diagnostic and treatment plans [17,3,14,9].

Over the years, several SSM approaches have been developed that implicitly
represent the shapes (deformation fields [8], level set methods [22]) or explicitly
represent them as a ordered set of landmarks or correspondence points (aka point
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distribution models, PDMs). Here, we focus on the automated construction of
PDMs because, compared to deformation fields, point correspondences are easier
to interpret by clinicians, are computationally efficient for large datasets, and
less sensitive to noise and outliers than deformation fields [5].

SSM performance depends on the underlying process used to generate shape
correspondences and the quality of the input data. Various correspondence gener-
ation methods exist, including non-optimized landmark estimation and paramet-
ric and non-parametric correspondence optimization. Non-optimized methods
manually label a reference shape and warp the annotated landmarks using regis-
tration techniques [18,10,16]. Parametric methods use fixed geometrical bases to
establish correspondences [26], while group-wise non-parametric approaches find
correspondences by considering the variability of the entire cohort during the op-
timization process. Examples of non-parametric methods include particle-based
optimization [4] and Minimum Description Length (MDL) [7].

Traditional SSM methods assume that population variability follows a Gaus-
sian distribution, which implies that a linear combination of training shapes can
express unseen shapes. However, anatomical variability can be far more complex
than this linear approximation, in which case nonlinear variations normally ex-
ist (e.g., bending fingers, soft tissue deformations, and vertebrae with different
types). Furthermore, conventional SSM pipelines are computationally intensive,
where inferring PDMs on new samples entail an optimization process. Deep
learning-based approaches for SSM have emerged as a promising avenue to over-
coming these limitations. Deep learning models can learn complex non-linear
representations of the shapes, which can be used to generate SSMs. Moreover,
they can efficiently perform inference on new samples without computation over-
head or re-optimization. Recent works such as FlowSSM [15], ShapeFlow [11],
DeepSSM [2], and VIB-DeepSSM [1] have incorporated deep learning to generate
shape models. FlowSSM [15] and ShapeFlow [11] operate on surface meshes and
use neural networks to parameterize the deformations field between two shapes
in a low dimensional latent space and rely on an encoder-free setup. Encoder-free
methods randomly initialize the latent representations for each sample that are
then optimized to produce the optimal deformations. One major caveat of an
encoder-free setup is that inference on new meshes is no longer straightforward;
the latent representation has to be re-optimized for every new sample. On the
other hand, DeepSSM [2] and VIB-DeepSSM [1] learn the PDM directly from un-
segmented CT/MRI images, and hence alleviate the need for PDM optimization
given new samples and can bypass anatomy segmentation by operating directly
on unsegmented images. However, these methods require established/optimized
PDMs, assuming Gaussian shape distribution, for training.

In this paper, we introduce Mesh2SSM, a deep learning method that ad-
dresses the limitations of traditional and deep learning-based SSM approaches.
Mesh2SSM leverages unsupervised, permutation-invariant representation learn-
ing to learn the low dimensional nonlinear shape descriptor directly from mesh
data and uses the learned features to generate a correspondence model of the
population. Mesh2SSM also includes an analysis network that operates on the
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learned correspondences to obtain a data-driven template point cloud (i.e., tem-
plate point cloud), which can replace the initial template, and hence reducing
the bias that could arise from template selection. Furthermore, the learned rep-
resentation of meshes can be used for predicting related quantities that rely on
shape. Our main contributions are:

1. We introduce Mesh2SSM, a fully unsupervised correspondence generation
deep learning framework that operates directly on meshes. Mesh2SSM uses
an autoencoder to extract the shape descriptor of the mesh and uses this
descriptor to transform a template point cloud using IM-Net [6].

2. The proposed method uses an autoencoder that combines geodesic distance
features and EdgeConv [28] (dynamic graph convolution neural network) to
extract meaningful feature representation of each mesh that is permutation-
invariant.

3. Mesh2SSM also includes a variational autoencoder (VAE) [13,21] operating
on the learned correspondence points and trained end-to-end with correspon-
dence generation network. This VAE branch serves two purposes: (a) serves
as a shape analysis module for the non-linear shape variations and (b) learns
a data-specific template from the latent space of the correspondences that
is fed back to the correspondence generation network.

To motivate the need for the mesh feature encoder and study the effect of
the template selection, we considered the box-bump dataset, a synthetic dataset
of 3D shapes of boxes with a moving bump. In Figure 1, we compare Mesh2SSM
(sans the VAE analysis branch) with FlowSMM [15] since this approach is the
closest to Mesh2SSM. We performed experiments with three templates: medoid,
sphere, and box without the bump. Although both methods show some sensitiv-
ity to the choice of template, FlowSSM is more sensitive toward the choice of the
template than Mesh2SSM. Moreover, FlowSSM fails to identify the correct mode
of variation, the horizontal movement of the bump as the primary variation,
which can also be inferred by comparing the compactness curves in Figure 1.c.
Mesh2SSM performs best when the template is a medoid shape, which makes
the case for learning a data-specific template. Since Mesh2SSM model uses an
autoencoder, inference on unseen meshes only requires a single forward pass (1
second per sample); FlowSSM requires re-optimization, increasing the inference
time drastically and require a convergence criteria to determine the best number
of iterations per sample (0.15 seconds for one iterations per sample).

2 Method

The overview of the proposed pipeline is provided in Figure 2. This section
provides a brief description of each module.

2.1 Correspondence Generation

Given a set of N aligned surface meshes X = {X1, X2, ...XN}, each mesh
Xi = (Vi, Ei), where Vi and Ei represent the vertices and edge connectivity,
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Fig. 1. Top two PCA modes of variations identified by (a) Mesh2SSM and (b) FlowSSM
[15] with three templates: sphere, box without a bump, and medoid shape. FlowSSM
fails to capture the horizontal movement as the primary mode of variation. (c) The
compactness curves for both models with different templates.

Fig. 2. Mesh2SSM: Architecture and loss of the proposed method.

respectively. The goal of the model is to predict a set Ci of M 3D correspon-
dence points that fully describe each surface Xi and are anatomically consistent
across all meshes. This goal is achieved by learning a low dimensional represen-
tation of the surface mesh zm ∈ RL using the mesh autoencoder and then zm is
used to transform the template point cloud via the implicit field decoder (IM-
Net) [6]. The network optimization is driven primarily by point-set to point-set
two-way Chamfer distance between the learned correspondence point sets Ci and
the vertex locations Vi of the original meshes. To ensure that the encoder learns
useful features for the task, we regularize the optimization using the vertex re-
construction loss of the autoencoder between the input Vi and the predicted V̂i.
The correspondence loss function is given by:

LC =

N∑
i=1

[
LL2Chamfer(Vi, Ci) + αLL1Chamfer(Vi, Ci) + γLMSE(Vi, V̂i)

]
(1)
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where α, γ are the hyperparameters. We consider a combination of L1 and L2

two-way Chamfer distance for numerical stability as the magnitude of L2 loss
can be low over epochs and L1 can compensate for it. The correspondence gen-
eration uses two networks:
Mesh Autoencoder (M-AE): We use EdgeConv [28] blocks, which are dy-
namic graph convolution neural network (DGCNN) blocks in the encoder and
decoder to capture local geometric features of the mesh. The model takes ver-
tices as input, computes an edge feature set of size k (using nearest neighbors)
for each vertex at an EdgeConv layer, and aggregates features within each set to
compute EdgeConv responses. The output features of the last EdgeConv layer
are then globally aggregated to form a 1D global descriptor zmi of the mesh.
The first EdgeConv block uses geodesic distance on the surface of the mesh to
calculate the k features. The dynamic feature creation property of EdgeConv
and the global pooling make this autoencoder permutation invariant.
Implicit field decoder (IM-NET): The IM-NET [6] architecture consists of
fully connected layers with non-linearity and skip-layer connections. This net-
work enforces the notion of correspondence across the samples. The network
takes in two inputs, the latent representation of the mesh zm and a template
point cloud (a set of unordered points). IM-NET estimates the deformation of
each point in the template required to deform the template to each sample, con-
ditioned on zm. Based on the learned deformation, IM-NET directly produces
the resultant displaced template point without the computational complexity of
the deformation fields. Correspondence is established since the same template is
deformed to all the samples.

2.2 Analysis

The Mesh2SSM model also consists of an analysis branch that acts as a shape
analysis module to capture non-linear shape variations identified by the learned
correspondences {Ci}Ni=1 and also learns a data-informed template from the la-
tent space of correspondences to be fed back into the correspondence generation
network during training. This branch uses one network module:
Point Variation Autoencoder (P-VAE): The VAE [13,21] is a latent variable
model parameterized by an encoder φ, decoder θ, and the prior p(zp) ∼ N (0, I).
The encoder maps the learned correspondence points C to the latent space and
the decoder reconstructs the correspondences from the latent representation zp.
By capturing the underlying structure of the PDM through a low-dimensional
representation, P-VAE allows for the estimation of the mean shape of the learned
correspondences. The P-VAE is trained using the loss function given by:

L(θ, φ) = −Eqφ(zpi |Ci) [log pθ(Ci|zpi )] +KL(qφ(zpi |Ci)||p(z
p
i )) (2)

2.3 Training

We begin with a burn-in stage, where only the correspondence generation module
is trained while the analysis module is frozen. After the burn-in stage, alternate
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optimization of the correspondence and analysis module begins. During the al-
ternate optimization phase, we generate the data-informed template from the
latent space of P-VAE at regular intervals. The learned data-informed template
is used in the correspondence generation module in the subsequent epochs. For
the learned template, we sample 500 samples from the prior p(zp) ∼ N (0, I) and
pass it through the decoder of P-VAE to get the reconstructed correspondence
point set. The mean template is defined by taking the average of these gener-
ated samples. Inference with unseen meshes is straight forward; the meshes are
passed through the mesh encoder and IM-NET of the correspondence generation
module to get the predicted correspondences. All hyperparameters and network
architecture details are mentioned in the supplementary material.

3 Experiments and Discussion

Dataset: We use the publicly available Decath-Pancreas dataset of 273 seg-
mentations from patients who underwent pancreatic mass resection [24]. The
shapes of the pancreas are highly variable and have thin structures, making it
a good candidate for non-linear SSM analysis. The segmentations were isotropi-
cally resampled, smoothed, centered, and converted to meshes with roughly 2000
vertices. Although the DGCNN mesh autoencoder used in Mesh2SSM does not
require the same number of vertices, uniformity across the dataset makes it com-
putationally efficient; hence, we pad the smallest mesh by randomly repeating
the vertices (akin to padding image for convolutions). The samples were ran-
domly divided, with 218 used for training, 26 for validation, and 27 for testing.

3.1 Results

We perform experiments with two templates: sphere and medoid. We compare
the performance of FlowSSM [15] with Mesh2SSM with the template feedback
loop. For Mesh2SSM template, we use 256 points uniformly spread across the
surface of the sample. Mesh2SSM and FlowSSM do not have a equivalent la-
tent space for comparison of the shape models, hence, we consider the deformed
mesh vertices of FlowSSM as correspondences and perform PCA analysis. Fig-
ure 3 shows the top three PCA modes of variations identified by Mesh2SSM
and FlowSSM. Similar to the observations made box-bump dataset, FlowSSM is
affected by the choice of the template, and the modes of variation differ as the
template changes. On the other hand, PDM predicted by Mesh2SSM identifies
the same primary modes consistently. Pancreatic cancer mainly presents itself
on the head of the structure [20] and for the Decath dataset, we can see the
first mode identifies the change in the shape of the head. We evaluate the mod-
els based on compactness, generalization, and specificity. Compactness measures
the ability of the model to reconstruct new shape instances with fewer param-
eters using PCA explained variance. Generalization measures the average sur-
face distance between all test shapes and their reconstructions, and specificity
measures the distance between randomly generated PCA samples. Figure 4.a



Mesh2SSM: From Surface Meshes to Statistical Shape Models of Anatomy 7

Fig. 3. Top three PCA modes of variations identified by (a) Mesh2SSM and (b)
FlowSSM [15] with two templates: sphere, medoid. The color map and arrows show
the signed distance and direction from the mean shape.

Table 1. Distance metrics (measured in mm) of the testing samples and their recon-
structions for the pancreas dataset

Mesh2SSM FlowSSM [15]

Metrics
Template

Medoid Sphere Medoid Sphere

L1 Chamfer 0.033 ± 0.002 0.035 ± 0.002 0.391 ± 0.162 1.91 ± 0.687
Surface-to-Surface 2.378 ± 0.7325 5.436 ± 2.232 5.918 ± 2.026 4.918 ± 1.925

shows the metrics for the pancreas dataset. Mesh2SSM outperforms FlowSSM
in all three metrics, despite using only 256 correspondence points compared to
FlowSSM’s ∼2000 vertices. Mesh2SSM correspondence generation module effi-
ciently parameterizes the surface of the pancreas with a minimum number of
parameters. Mesh2SSM template, shown in Figure 4.b, becomes more detailed
as optimization continues, regardless of the starting template. The model can
learn correct deformations in the correspondence generation module and identify
the correct mean shape in the latent space of P-VAE in the analysis module.
Using the analysis module of Mesh2SSM, we visualized the top three modes of
variation identified by by sorting the latent dimensions of P-VAE based on the
standard deviations of the latent embeddings of the training dataset. Variations
are generated by perturbing the latent representation of a sample in three direc-
tions, resulting in non-linear modes such as changes in the size and shape of the
pancreas head and narrowing of the neck and body. This is shown in Figure 4.c
for MeshSSM model with medoid starting template. The distance metrics for
the reconstructions of the testing samples were also computed. The results of
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Fig. 4. (a) Shape statistics of pancreas dataset: compactness (higher is better), gen-
eralization (lower is better), and specificity (lower is better). (b) Mesh2SSM Learned
template across epochs for pancreas dataset. (c) Non-linear modes of variations iden-
tified by Mesh2SSM.

the metrics are summarized in Table 1. The calculation involved the L1 Chamfer
loss between the predicted points (correspondences in the case of Mesh2SSM and
the deformed mesh vertices in the case of FlowSSM) and the original mesh ver-
tices. Additionally, the surface to surface distance of the mesh reconstructions
(using the correspondences in Mesh2SSM and deformed meshes in FlowSSM)
was included. For the pancreas dataset with the medoid as the initial template,
Mesh2SSM with the template feedback produced more precise models.

3.2 Limitations and Future Scope

As SSM is included a part of diagnostic clinical support systems, it is crucial to
address the drawbacks of the models. Like most deep learning models, perfor-
mance of Mesh2SSM could be affected by small dataset size, and it can produce
overconfident estimates. An augmentation scheme and a layer uncertainty cali-
bration are could improve its usability in medical scenarios. Additionally, enforc-
ing disentanglement in the latent space of P-VAE can make the analysis module
interpretable and allow for effective non-linear shape analysis by clinicians.

4 Conclusion

The paper presents a new systematic approach of generating non-linear statis-
tical shape models using deep learning directly from meshes, which overcomes
the limitations of traditional SSM and current deep learning approaches. The
use of an autoencoder for meaningful feature extraction of meshes to learn the
PDM provides a versatile and scalable framework for SSM. Incorporating tem-
plate feedback loop via VAE [13,21] analysis module helps in mitigating bias and
capturing non-linear characteristics of the data. The method is demonstrated to
have superior performance in identifying shape variations using fewer parame-
ters on synthetic and clinical datasets. To conclude, our method of generating
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highly accurate and detailed models of complex anatomical structures with re-
duced computational complexity has the potential to establish statistical shape
modeling from non-invasive imaging as a powerful diagnostic tool.

5 Supplementary

5.1 Architecture

1. FlowSSM: Used the official implementation provided by the authors at
github.com/davecasp/flowssm

2. Mesh2SSM:
Netowrk: See Figure 5 for network for (a) mesh autoencoder (MAE), (b)
IM-NET, and (c) point VAE (P-VAE). All networks use leaky RELU.
Hyper-parameters:

(a) Learning rate MAE 0.01 with
step scheduler

(b) Learning rate P-VAE 0.0009 with
step scheduler

(c) Batch size 10
(d) Latent dim zm and zp = 32 (box-

bump), 64 (pancreas), 128 (left
atrium)

(e) Epochs: 1000

(f) MAE: α = 0.01 increased gradu-
ally to 1, γ = 0.01

(g) GPU: NVIDIA GeForce RTX
2080 Ti

(h) Adam optimizer

Fig. 5. Architecture for (a) mesh autoencoder where each convolutional block is fol-
lowed by non-linear activation and batch normalization, (b) IM-NET where each fully
connected layer is followed by activation function, and (c) point variational autoen-
coder. M: max-pool, A: average-pool, T: each point from the template point cloud.
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Fig. 6. Top eight PCA modes of variations identified by Mesh2SSM and FlowSSM with
medoid as template shown from the (a) top view and (b) anterior view. The color map
and arrows show the signed distance and direction from the mean shape.

5.2 Results: Left Atrium

Left atrium dataset: 1102 anonymized segmented LGE MRI images from unique
atrial fibrillation patients with spatial resolution 0.65 × 0.65 × 2.5mm3. Train,
test, validation split: 900/66/136 samples.

Table 2. Distance metrics (measured in mm) of the testing samples and their recon-
structions for the left atrium dataset with medoid template

Metrics Mesh2SSM FlowSSM

L1 Chamfer 0.0383 ± 0.0026 0.2547 ± 0.0532
Surface-to-Surface 3.9439 ± 0.6997 0.2512 ± 0.0505

Fig. 7. (a) Shape statistics of left atrium dataset: compactness (higher is better), gen-
eralization (lower is better), and specificity (lower is better). (b) First dominant non-
linear mode of variation identified by Mesh2SSM.
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