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Abstract. Statistical shape modeling (SSM) is a valuable and powerful
tool to generate a detailed representation of complex anatomy that en-
ables quantitative analysis and the comparison of shapes and their vari-
ations. SSM applies mathematics, statistics, and computing to parse the
shape into a quantitative representation (such as correspondence points
or landmarks) that will help answer various questions about the anatomi-
cal variations across the population. Complex anatomical structures have
many diverse parts with varying interactions or intricate architecture.
For example, the heart is a four-chambered anatomy with several shared
boundaries between chambers. Coordinated and efficient contraction of
the chambers of the heart is necessary to adequately perfuse end organs
throughout the body. Subtle shape changes within these shared bound-
aries of the heart can indicate potential pathological changes that lead to
uncoordinated contraction and poor end-organ perfusion. Early detection
and robust quantification could provide insight into ideal treatment tech-
niques and intervention timing. However, existing SSM approaches fall
short of explicitly modeling the statistics of shared boundaries. In this pa-
per, we present a general and flexible data-driven approach for building
statistical shape models of multi-organ anatomies with shared bound-
aries that captures morphological and alignment changes of individual
anatomies and their shared boundary surfaces throughout the popula-
tion. We demonstrate the effectiveness of the proposed methods using a
biventricular heart dataset by developing shape models that consistently
parameterize the cardiac biventricular structure and the interventricular
septum (shared boundary surface) across the population data.
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Heart Workshop at MICCAI 2022
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1 Introduction

Statistical shape modeling (SSM) is an important computational tool employed
to discover significant shape parameters directly from medical data (such as
MRI and CT scans) that can fully describe complex anatomy in the context of
a population. SSM is used in biomedical research to visualize organs [18], bones
[16], and tumors [15], aid surgical planning and guidance [1], monitor disease
progression [25,9], and implant design [11].

Traditionally, SSM approaches have focused on generating organ or disease-
specific models of single-organ anatomy. However, the human body consists of
complex organs and systems that are functionally, spatially, and physically con-
nected [2,17,20]. Recent research in computational anatomy has shifted focus
towards modeling multi-organ anatomies [6]. The motivation for modeling mul-
tiple organs stems from the need to consider joint statistical shape analysis to
quantify meaningful shape variations and contextual information when studying
the group differences and identifying the shape differences occurring due to a
particular pathology affecting multiple interacting organs. Such comprehensive
analysis of multiple organs and their interactions can be incredibly beneficial in
diagnosing and providing timely therapeutic assistance [14,12,21]. Specifically,
in the case of cardiology, the interventricular septum (IVS) has been shown to
change shape during various cardiomyopathies. Others have described the flat-
tening and reversal of curvature in patients with significant right ventricular
pathologies [24]. Therefore, it is crucial to model the left and right ventricle
together and also the changes at the interventricular septum, or the shared
boundary.

Shapes can be represented using an implicit (deformation fields [8], level set
methods [19]) or explicit (landmarks/points) representation. Explicit parame-
terization, such as landmarks, is one of the most popular techniques used to
represent shapes because of its simplicity and ability to represent multiple ob-
jects easily [6]. Hence, in this work, we focus on point distribution models (PDM)
for representation as PDMs are suitable for the statistical analysis of models with
shared boundaries. To enable comparison and to obtain shape statistics in an
ensemble of shapes, points of the same anatomical position must be established
consistently across shape populations. These points are called correspondences.
Multiple methods for correspondence generation have been proposed, which in-
clude non-optimized landmark estimation, parametric, and non-parametric cor-
respondence optimization. Non-optimized methods entail manually annotating
the reference shape and warping these landmarks on the population data, and
they employ hard surface constraints to distribute points on a shape. Parametric
methods use fixed geometrical basis (e.g., spheres) [22] to parameterize objects
and generate correspondences. The correspondence model obtained using man-
ual or parametric techniques is not optimal and can prove to be incapable of
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handling complex anatomies. On the other hand, non-parametric methods pro-
vide a robust and general framework as they use a PDM without relying on
a specific geometric basis. Methods that follow group-wise approach find the
correspondence by considering the variability of entire data in the optimization
process (e.g., particle-based optimization [3], Minimum Description Length -
MDL [7]). The group-wise SSM approaches have been extended to model multi-
organ anatomies. These approaches either parameterize each object separately,
sacrificing anatomical integrity [6], or minimize the combined cost function to
generate correspondences assuming a global statistical model [4,8].

To the best of our knowledge, none of the existing SSM methods have ex-
plicitly incorporated nuanced interactions such as shared surfaces between mul-
tiple anatomies that can reveal key features that might not be observable on
the individual anatomies when modeled independently. To address this issue,
we propose a mesh grooming pipeline for extracting shared boundary surfaces
and a correspondence-based optimization scheme to parameterize multi-organ
anatomies and their shared surfaces consistently. We demonstrate the entire
pipeline with a cardiac biventricular dataset, where we model the right ventri-
cle (RV), left ventricle wall (LVW), and the interventricular septum (IVS). We
use the group-wise non-parametric particle-based optimization method proposed
by Cates et al., [5,3] to generate PDM and modify the framework to support
multi-organ anatomies with shared boundaries.

2 Methods

Constructing a statistical shape model for multi-organ anatomies with shared
boundaries requires consistent point distribution on the shared boundary across
the multi-organ anatomies and explicitly modeling the statistics of both the con-
tour and the interior of the shared boundary. To fulfill these requirements, we
first need tools to detect and extract shared boundaries and their edges (i.e.,
contour information) from two adjoining anatomies. The steps and methods for
the proposed general pipeline for shared boundary extraction are explained in
Section 2.2. Second, we need to fit a PDM that includes joint statistics of the
multi-organ anatomies, shared boundary interior and contour. Herein we lever-
age the particle-based shape modeling (PSM) approach [5,3] for automatically
constructing PDMs by optimizing point (or particle) distributions over a cohort
of shapes using an entropy-based optimization method. The PSM method uses a
system of interacting particles with mutually repelling forces that learn the most
compact statistical descriptors of the anatomy [3]. For consistent parameteriza-
tion on the shared boundary, the surface sampling objective of the PSM method
has to be modified to accommodate the interaction between the anatomies and
the shared surface. A brief overview of the PSM entropy optimization method
for single anatomy is provided in Section 2.1 and the proposed surface cost func-
tion modifications for multi-organ anatomies with shared boundary surfaces is
provided in Section 2.3.
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2.1 Background: Particle-based Shape Modeling

Consider a cohort of shapes S = {z1, z2, ..., zN} of N surfaces, each with its
set of M corresponding particles zn = [x1,x2, ...,xM ] ∈ RdM where each par-
ticle xm ∈ Rd lives in d−dimensional Cartesian (i.e., configuration) space. The
ordering of the particles implies correspondence among shapes. Each of the cor-
respondence particles is constrained to lie on the shape’s surface. Collectively,
the set of M particles is known as the configuration and the space of all pos-
sible configurations is known as the configuration space. The particle positions
are samples (i.e., realizations) of a random variable X ∈ Rd in the configura-
tion space with an associated probability distribution function (PDF) p(X = x).
Each configuration of M particles can be mapped to a single dM−dimensional
shape space by concatenating the correspondence coordinate positions into a
single vector zn which is modeled as an instance of random variable Z in the
shape space with PDF p(Z = z) assuming shapes are Gaussian distributed in the
shape space, i.e., Z ∼ N (µ,Σ). The optimization to establish correspondence
minimizes the energy function

Q = H(Z)−
N∑

k=1

H(Xk) (1)

where H is an estimation of differential entropy. The differential entropy of p(X)
is given as

H(X) = −
∫
S

p(X) log p(X)dx = −E{log p(X)} ≈ − 1

M

M∑
i=1

log p(xi) (2)

Minimization of the first term in Q from Eq (1) produces a compact distribu-
tion of samples in shape space and encourages particles to be in correspondence
across shapes. The second term seeks uniformly-distributed correspondence po-
sitions on the shape surfaces for accurate shape representation [5,3]. Further
details regarding the optimization and gradient updates can be found in [5,3].

2.2 Shared Boundary Extraction

To demonstrate the shared boundary extraction pipeline, consider two adjoin-
ing organs A and B, with a shared boundary. The steps for shared boundary
extraction entails:

1. Isotropic Explicit Re-meshing: This generates a new mesh triangulation
that conforms to the original data, but contains more uniformly sized trian-
gles. This also has the benefit of ensuring equivalent average edge lengths
across the two shapes, which is useful in ensuing steps [23].

2. Extracting Shared Boundary: In this step, we ingest the two original
shapes and output three new shapes, two of which correspond to the original
shapes and one for the shared boundary. Let us designate the original meshes
as Ao and Bo (Figure 1.a and 1.b) then:
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(a) Find all the triangles in Ao that are close to Bo and construct a mesh
with these triangles called As. A triangle with vertices v0, v1 and v2 is
considered close to a mesh if the shortest Euclidean distance to the mesh
for all the three vertices is below a small threshold. The threshold has
to experimentally tuned in order to ensure the extracted shared surfaces
are clinically relevant. We similarly find all the triangles in Bo that are
close to Ao and designate this mesh as Bs

(b) Find the remainder of the mesh in Ao after removing the triangles in As

and designate this as Ar. Similarly, we designate the remainder of the
mesh in Bo after removing the triangles in Bs as Br.

(c) Arbitrary designate Bs as the shared surface M

(d) Move all the points on the boundary loop of Ar to the boundary loop of
M and return three new shapes Ar, M , and Br (Figure 1.c).

3. Laplacian Smoothing: At this point, the resulting triangulation typically
contains jagged edges. We apply Laplacian smoothing to correct for this [10].

4. Extract Contour: The boundary loop of the shared surface M is computed
using LibIGL boundary loop tool [13] and designate this contour as C (Figure
1.d).

The input consisting of two adjoining organs with a shared surface has been
converted into input with four separate parts, the organs A and B, the shared
surface, and the contour using the pipeline (Figure 1.d).

Fig. 2. An example of output obtained after shared boundary extraction. Meshes rep-
resenting (a) RV and LVW show that they have a shared boundary surface, and (b)
RV and LVW meshes are pried apart. The meshes and contour obtained after shared
boundary extraction (c) RV, LVW, shared surface and contour (d) all outputs pried
apart for visualization. The red color indicates the contour. The image shows the endo-
cardial segmentation for the RV (blue) and epicardial segmentation for the LV (violet)
at end diastole in the (e) axial view and (f) coronal view

https://libigl.github.io/libigl-python-bindings/igl_docs/#boundary_loop
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2.3 Particle-based Shape Modeling with Shared Boundaries

Fig. 1. Extracting shared boundary be-
tween two meshes. The regions in green
have Euclidean distance that fall within
the threshold and are extracted as shared
boundary as per step 2. The green arrows
show the distances within the threshold and
the red arrows show distances greater than
the threshold. The contour is extracted
from the green region as per step 4. Note:
the meshes are farther apart and the thresh-
old is larger for visualization purposes.

In section 2.2, two adjoining organs
with shared surfaces were separated
into four separate parts. Now a shape
model has to be built that can faith-
fully capture the joint statistics of all
the organs while representing the in-
dividual parts consistently. The first
requirement for a shared boundary
shape model is that particle-based op-
timization should handle multi-organ
anatomies. The optimization set up
in Eq (1) was extended for multiple
organs by treating all the organs as
a single structure [4]. From the orig-
inal formulation, it is important to
note that p(xi) in Eq 2 was estimated
from the particle position using non-
parametric kernel density estimation
method [5,3]. This results in a set of
points on the surface that repel each
other with Gaussian-weighted forces.
Therefore, for multiple organ anatomy,
if one organ has distinct identities, the spatial interactions between particles
on different organs are decoupled, and particles are constrained to lie on a sin-
gle organ (surface). The covariance Σ includes all particle positions across the
multiple organs so that optimization takes place in the joint, multi-organ shape
space and the shape statistics remains coupled [4]. For D organs in an anatomy,
the cost function is

Q = H(Z)−
D∑

j=1

[
N∑

k=1

H(Xj
k)

]
(3)

where Xj
k represents the kth particle on jth organ.

Second, from Eq (3), it can be noted that the second term, which represents
the sampling objective, is summed over all the shape samples, such that the
sampling is restricted to the particles contained within the individual organs.
As a result, when two organs have a shared boundary and sampling is done in-
dependently, there is no mechanism to ensure that the particles do not clutter
around the edges of the organs. Hence, the sampling objective needs to be mod-
ified such that the particles on the shared boundary contour repel the particles
of other mesh objects. This will result in a buffer distance between particles of
the multiple organs leading to a uniform correspondence model. The proposed
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objective function is:

Q = H(Z)−

 ∑
j∈(Ar,M,Br)

N∑
k=1

H

(
Xj

k

XC
k

)
+

N∑
k=1

H(XC
k )

 (4)

where Xc is the matrix of particle positions located in the contour. Effectively,
this means that all the particles on the Ar, M and Br are repelled by the contour
C particles. We do not change the sampling objective for the contour. This is
because large gradients from the meshes could cause the particles on the contour
to swap places. Since there is only one degree of freedom on a contour, it is almost
impossible to recover from this situation.

3 Experiments and Results

Dataset: We evaluate our method on a cardiac biventricular dataset based
on how the resulting correspondence model captures variability in shape for
cardiovascular clinic patients and healthy volunteer groups. The dataset consists
of MRIs of 6 healthy volunteers and 23 patients treated at a cardiovascular
clinic. In the patient group, tricuspid regurgitation was secondary to pulmonary
hypertension in one patient; congestive heart failure (CHF) in 10 patients; and
other causes (atrial fibrillation, pacemaker lead injury, pacemaker implantation,
congenital heart disease) in 12 patients. The healthy volunteers had no diagnosis
of cardiac disease and no cardiovascular risk factors.

Initially, the RV and LVW segmentation images were generated by converting
end-diastole CINE MRI to volume stack. From each CINE short axis time stack,
an image of the heart at end diastole was extracted to create a volume image
stack. Image extraction was performed using a custom MATLAB image process-
ing code. The volume stacks were then segmented using the open-source Seg3D
software (SCI Institute, University of Utah, SLC UT). The segmentations were
then isotropically resampled and converted to meshes using the open software
ShapeWorks. In order to align the shapes, the meshes were centered and rigidly
aligned to a representative reference sample selected from the population. The
rigid alignment was done by calculating the transformations only using the RV
meshes of the population due to their complex shapes. These transformations
were then applied to the RV and the LVW meshes. The average edge length
of the right ventricle meshes was 0.8224± 0.3987, left ventricle wall meshes was
0.9438±0.3399, the IVS meshes 0.5196±0.4047, and the contours 21.469±26.205.

Shape Model Construction: We used ShapeWorks, an open-source soft-
ware that implements the particle-based entropy optimization [5,3] described
in section 2.1. We modified the optimization with the proposed cost function
(equation 4) to support multi-organ anatomies with shared boundaries. First,
the shared boundary surface and contour were extracted for building a shape
model using the tool described in section 2.2. Figure.2 shows an example output
for one sample. Then, a shape model was built using 512 particles for the RV

http://sciinstitute.github.io/ShapeWorks/
http://sciinstitute.github.io/ShapeWorks/
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and LVW, and 64 particles were used for the IVS surface and contour. From this
PDM, mean shapes and differences were computed.

Discussion: The shape model was used to identify group-level shape differ-
ences of the RV, LVW, and IVS. Figure.3 shows the mean shape of each group
and the color-coded group differences. There is a marked difference in the curva-
ture of IVS of the healthy group as compared to the patient group. The curvature
of the IVS was also captured in the modes of variation of the shape model. In
Figure.5, we visualize the modes of variation obtained using principal component
analysis of the IVS shared surface and contour obtained after building the shape
model with all the four parts - RV, LVW, IVS shared surface, and contour. The
RV and LVW are excluded only for visualization. Since the curvature is not a
linear feature, a single PCA mode is not enough to capture it. We show the top
four PCA modes that capture the curvature in various directions.

In order to study statistically significant geometric differences, we performed
linear discrimination of variation. The particle-wise mean shapes of both groups
were compared, and a difference vector was generated. The group means for the
cardiac patients is set as -1, and controls are set as 1. Each shape is mapped
to a single scalar value (or a ”shape-based-score”) that places subject-specific
anatomy on a group-based shape difference statistically derived from the shape
population. Figure.4 shows the mapping for all shapes of the two groups. Selected
shapes correspond to individual points on the graph. The shapes at the extreme
ends of the mapping also confirm that the shape model appropriately identified
the curvature of IVS as a significant geometrical difference between the two
groups. The shape in Figure.4 also shows free wall bulging and narrowing of the
base of RV for cardiac patients. For modes of variation of the shape model, see
Appendix.??.

Since the number of samples in the patient group and control group are
not the same, we performed hypothesis testing to identify if the shape-based
score assigned to each sample is statistically significant and agnostic to the data
imbalance. We generated the shape-based scores for each sample using the statis-
tics of 6 randomly selected samples from the patient group and all six control
group samples and repeated the experiment 1000 times. The shape-based scores
from the experiment were then compared to those generated using the complete
dataset. We use t-test to test for the null hypothesis that the expected value
(mean) of a sample of independent observations from the 1000 trials is equal to
the given population mean, i.e., the scores generated using the complete dataset.
Figure.6 shows the box-and-whisker plot of the distribution of scores of each sam-
ple obtained from the experiment, and the color indicates the p-values. We select
the alpha value to be 0.01. Hence, if the p-values are smaller than 0.01, the null
hypothesis holds (shown in green), and if the p-value is greater than 0.01, we
can reject the null hypothesis and assume that the scores are affected by the
imbalance (shown in red). It can be seen from Figure.6 that the imbalance does
not affect the shape-based scores for the majority of samples.

These results confirm what has been observed in the cardiology literature:
a decrease in interventricular septal curvature during prolonged right ventricu-
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lar dysfunction. A healthy heart has a significant pressure gradient between the
right and left ventricles. However, in many cardiac diseases, the pressure gradient
dissipates because right ventricular pressure increases. As the pressure increases,
a distortion occurs at the interventricular septum, and the original septal curva-
ture matching the left ventricular becomes flattened. This signifies the structural
remodeling that occurs with severe right-sided cardiac pathologies.

Despite these observations being made previously, the clinical utility of sep-
tal curvature has been minimal because of inadequate tools for precise and ac-
curate measurements. Structural remodeling initially occurs to compensate for
acute changes in cardiac physiology. As acute changes become chronic, the car-
diac structural adaptations become permanent and cause long-term detrimental
effects. Initially, patients do not feel significant symptoms because of cardiac
tissue’s excellent adaptability and plasticity. However, structural changes, like
the ones noted above, are often already present and easily detectable. Therefore,
shape analysis of interventricular septal curvature changes could be used as an
early prognosticator of cardiac dysfunction prior to patients reporting significant
symptoms. Notably, shape analysis can be performed using non-invasive imag-
ing and does not require cardiac catheterization, a routine, invasive diagnostic
procedure typically used for detecting cardiac dysfunction. Thus, the proposed
shared-boundary SSM generation technique can potentially improve patient out-
comes with early diagnosis using non-invasive imaging procedures.

4 Conclusion

Our method provides a novel way of extracting and generating shape models of
multi-organ anatomies with shared boundary surfaces. We showed our method
provides a consistent and robust representation of the shared boundary without
compromising the integrity of the multiple-organ PDM. We applied our method
to a cardiac biventricular dataset and showed unique shape changes of the IVS
that is not captured when modeling the ventricles alone. This pipeline could
pave the way for using shape analysis from non-invasive imaging for early di-
agnosis and prognostication of pathologies affecting multiple organs and further
our understanding of interactions between any anatomical system with shared
boundaries.
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Fig. 3. Columns 1, 2, and 3 show the mean shape of the patient group, overall mean,
and mean shape of the control group, respectively. Columns 4 and 5 show the differ-
ence between the group-mean shapes (two views). The arrows indicate the direction of
group differences, and the color represents the magnitude of the group difference. The
PDM for bivenctricle data (a) top-view and (b) front view. The same shapes after (c)
excluding the left ventricular wall and (d) excluding the right ventricle for visualizing
the IVS.
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Fig. 4. Shape mapping to linear discrimination of variation between population means
for the groups of patients and controls. The first row represents the biventricle shared
boundary shapes. The second row represents the same biventricle shared boundary
shapes after excluding the left ventricular wall, and the third row after excluding
the right ventricle for visualizing the IVS. The number below each shape denotes the
“shape-based score” of each anatomy derived from the shape population.
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Fig. 5. Modes of variation of the IVS shared surface and contour that capture the
change in curvature. The model was obtained using all four parts of the anatomy -
RV, LVW, IVS shared surface, and contour. The RV and LVW are excluded only for
visualization.

Fig. 6. Statistical test for testing the effect of dataset imbalance on the shape-based
scores. Box and whisker plot showing the distribution of shape-based scores for each
sample obtained using a subset of the patient group, and all the control samples re-
peated 1000 times. Each box is color-coded based on the p-values: green - samples with
p-values≤ 0.01 and red -samples with p-value> 0.01.
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