
Efficient Parallelization of RMCRT for Large Scale LES

Combustion Simulations

Isaac Hunsaker∗, Todd Harman†, Jeremy Thornock‡, Philip J. Smith§
University of Utah, Salt Lake City, UT 84112, USA

At the high temperatures inherent to combustion systems, radiation is the dominant mode of heat trans-

fer. An accurate simulation of a combustor therefore requires precise treatment of radiative heat transfer.

This is accomplished by calculating the radiative-flux divergence at each cell of the discretized domain. Re-

verse Monte Carlo Ray Tracing (RMCRT) is one of the few numerical techniques that can accurately solve

for the radiative-flux divergence while accounting, in an efficient manner, for the effects of participating me-

dia. Furthermore, RMCRT lends itself to massive parallelism because the intensities of each ray are mutually

exclusive. Therefore, multiple rays can be traced simultaneously at any given time step. We have created

a parallelized RMCRT algorithm that solves for the radiative-flux divergence in combustion systems. This

algorithm has been verified against a 3D benchmark case involving participating media. The error of this

algorithm converges with an increase in the number of rays traced per cell, such that at 700 rays per cell, the

L2 error norm of a 413
mesh is 0.49%. Our algorithm demonstrates strong scaling when run in parallel on 2

to 1536 processors for domains of 1283
and 2563

cells.

Nomenclature

ŝ = Direction vector
κ = Absorption coefficient
Ω = Solid angle
Φ = Scattering phase function
σ = Stefan-Boltzmann constant
σs = Scattering coefficient
G = Incident radiation function
Iin = Incoming intensity
Iout = Outgoing Intensity
N = Number of rays traced per cell
Np = Number of processors used in a parallel simulation
Nx = Number of cells in the x direction
q = Radiative flux

I. Introduction

Historically, RMCRT has been solved on relatively coarse grids, which allows the entire domain to fit within
the memory constraints of the processors of a cluster. As the demand for more refined meshes has grown, so has
the demand to adequately resolve the radiative-flux divergence on these meshes. One method to handle these large
domains involves decomposing them into smaller subdomains, called patches. Each processor is then passed a single
patch. In combustion systems, this domain decomposition method has been very successful because the physical
phenomena governing computational fluid dynamics is local by nature. Typical finite volume schemes use stencils
that span only a few cells. Therefore the only cells that require values from outside patches are the few cells at or very
near the patch boundaries. This means that a minimal amount of information is passed between patches, resulting in
efficient parallelization. Radiation, conversely, is not a local phenomenon. The net radiative-heat flux at any given
location within the domain is a function of all other fluxes throughout the domain1. This requires that the rays of
RMCRT be allowed to traverse not just the patch, but the entire domain. We have designed a system that allows the
∗PhD Candidate, Department of Chemical Engineering.
†Research Assistant Professor, Department of Mechanical Engineering.
‡Research Assistant Professor, Department of Chemical Engineering.
§Professor, Chair, Institue for Clean and Secure Energy.

1
American Institute of Aeronautics and Astronautics

mailto:u0258978@utah.edu
http://www.utah.edu
http://www.icse.utah.edu


processors to be passed information regarding the radiative properties of the entire domain, while only requiring each
processor to trace rays from within their local patch. In this manner, we avoid the passing of rays between processors,
and achieve strong scaling of our algorithm.

II. Discussion

A. Background

The Monte Carlo method was developed by Enrico Fermi, John von Neumann, and Nicholas Metropolis for the
Manhattan Project during World War II2. The method modeled the behavior of neutrons and involved following the
histories of these neutrons during fission. In the mid 1960’s Howell and Perlmutter applied this method to thermal radi-
ation heat transfer3–5. The method was later borrowed and greatly enhanced by the computer graphics community6–8.
Since its inception, the Monte Carlo technique has been widely applied to practical problems with participating me-
dia5. The Monte Carlo method can handle the modeling of radiation within absorbing, emitting, and scattering media
with relative ease, whereas most other methods handle them inefficiently at best1. Furthermore, the Monte Carlo
method is the only method to date that can satisfactorily deal with the effects of irregular radiative properties such as
nonideal directional or nongray behavior5.

The Monte Carlo method is not without its drawbacks. Because it is a statistical technique, the variance is inversely
proportional to the number of rays sampled. The standard deviation is therefore a function of the square root of the
number of samples, resulting in slow convergence rates5. The Monte Carlo method is also computationally expensive
when run in serial on a single processor. However, because of the uniqueness of the solutions to each of the rays,
RMCRT is amenable to massive parallelization. This attribute may outweigh the low serial efficiency, especially in
today’s era of cloud computing.

B. The Monte Carlo Method for Participating Media

In general, the end result of radiation calculations in combustion systems is the coupling of the radiative-flux
divergence to the energy equation. The radiative-flux divergence can be obtained from the radiative transport equation
to yield

∇ · q = κ(4πIb,out −
�

4π

Iind�). (1)

Because dΩ represents the solid angle of a ray, each ray has a solid angle of 4π
N . Given the temperature and

absorption coefficient of a cell of interest, one can readily compute the first term of the above equation, as Ib,out is
simply as follows

Ib,out =
σT 4

π
. (2)

The second term of Eq. (1) is not so readily obtained, and for this solution method, requires the tracing of numerous
rays into the domain, then integrating back to the origin the contributions of the intensities of the cells along the path.
This process takes place as follows.

To compute the second term of Eq. (1) for a given cell, we trace N number of rays, where N is statistically large
enough to sample the entire domain. Randomly distributed throughout the cell, the rays begins at unique origins. For
the determination of each origin, three random numbers (one for each Cartesian direction) are generated. The direction
of each ray is determined by selecting two random numbers such that the probability distribution function of these
directions is spherically distributed. For each ray, we therefore require a minimum of five random numbers. Then, for
a given timestep in which the radiative flux divergenc is calculated, we require a minimum of Nx × Ny × Nz × N × 5
rays. With this magnitude of random numbers being pulled, a fast, effective random number generator is imperative.
Section D describes the random number generator of choice for this application. Once a location and a direction have
been selected, subsequent intersections and other physical phenomena can be calculated, and the ray may be traced
through the domain until a sufficient fraction of the intensity has been attenuated. For an emitting, absorbing medium,
intensity is picked up from the current cell in the path and traced back, with exponential attenuation according to
Beer’s Law, to the origin. The contributions from each of the N rays weighted by their corresponding solid angles
are then used in the calculation of the flux divergence. For forward ray tracing, the number of rays traced will be a

2
American Institute of Aeronautics and Astronautics



function of the emissive power of the cell of origin. In reverse ray tracing, however, determining N for sufficient rays
is not so intuitive because the flux divergence of the origin cell is dependent on the radiation of all other cells, whose
emissive power may not be known a priori. Therefore, perhaps the best technique to determine N, is to use the variance
of previous results5,9.

C. Parallel Efficiency considerations

In the 1950s and 60s, users interacted more directly with low level computer algorithms. Because of the complex-
ities that would be inherent to parallelizing algorithms, computer hardware was designed to handle code in a linear
fashion. Today, however, there are several layers of computer languages separating the user from the low level al-
gorithms, giving the user more abstraction. This allows the user to handle more complex algorithms such as code
parallelization10. When this approach is implemented, the user can, in theory, attain a speedup that is proportional
to the number of processors used. Ideal speedup occurs when the time spent passing information between processors
is negligible compared to the work done by each processor, and if no computers sit idle while others complete their
tasks. The former constraint is met by efficient code writing that ensures that all or most of the information a given
processor needs to complete its computations is available to that processor. The latter constraint is met by proper load
balancing to distribute the work load equally between processors.

The first attempts to parallelize Monte Carlo codes did so on single-instruction multiple-data stream (SIMD)
machines. Vectors or groups of rays were distributed to the processors. This however, led to poor scalability as it
necessitated the termination of all rays before generating a subsequent group. More recent algorithms, ours included,
generate new rays at the onset of termination of a prior ray to avoid creating idle time amid processors11.

RMCRT lends itself to massive parallelism because each ray’s intensity is independent of every other ray’s inten-
sity, so multiple rays can be traced simultaneously at any given time step. In theory, one could simultaneously trace as
many rays as one has processors or cores. This takes advantage of the existing framework common to parallelized LES
codes such as the ARCHES code, which was developed by CRSIM and runs on the Uintah framework developed for
the Center for the Simulation of Accidental Fires and Explosions12–14. In our modified patch domain decomposition,
N number of rays are traced from each cell within the patch and allowed to traverse the entire domain until extinc-
tion. In this manner, each processor is responsible for solving the radiative-flux divergence of only the cells within its
corresponding patch.

D. Sequential Efficiency Considerations

An efficient parallel ray tracing algorithm begins with an efficient sequential ray tracing algorithm. Before in-
troducing any algorithm into a parallel scheme, it is best to optimize the code in serial mode. We therefore present
several useful speedups for a ray tracing algorithm. At the heart of RMCRT is the algorithm that calculates the inter-
sections between a ray and surfaces. This process is the most time consuming portion of the ray tracing algorithm,
so care must be taken to abstain from any practice that would compromise its efficiency. In participating media, we
are concerned not only with interactions of the domain boundaries, but also within the media. For non-homogeneous,
emitting, absorbing media, we must know the absorption coefficient and temperature of every cell along the path of
every ray. We therefore must know the cells through which a ray will pass. This is accomplished by implementing
a ray marching algorithm similar to that outlined by Woo and Amanitides15. This ray marching algorithm efficiently
handles the marching of the rays through the domain by minimizing the number of comparisons made, and by taking
advantage of trigonometric and algebraic concepts.

Attention to detail is paramount in maintaining efficient code. Even simple operations such as function calls, if
handled improperly, can lead to drastic reductions in efficiency. The elimination of all function calls is one way to
avoid this trap, but this leads to other problems such as poor user readability. Two alternatives that preserve readability
without sacrificing speed include passing by reference, and the use of inline functions. Another simple detail is the
handling of loops. For instance, one may consider removing a statement out of a “for” loop that repeats fewer than 4
times. This negates the necessity of incrementing an index for each iteration. However insignificant these details may
seem, neglecting opportunities for efficiency within deeply nested “for” loops can take a toll, especially when these
operations occur on the order of 1012 times, as is the case in RMCRT.

A good random number generator is paramount to the efficiency to any Monte Carlo algorithm. To be effective, a
random number generator must have an unbiased uniform distribution, low repeatability, and of course, fast execution
time. Mersenne Twister, a pseudo random number generator developed by Matsumoto and Nishimura, guarantees a

3
American Institute of Aeronautics and Astronautics



non-repeating sequence of approximately 220,000 16. We tested the Mersenne Twister algorithm on its ability to rapidly
produce large samples of random numbers and demonstrate variance convergence.

Figure 1. Variance convergence of Mersenne Twister. Each data point represents 100 random numbers summed to the previous data point.

Figure 1 demonstrates the approximately linear convergence of the variance of large samples of random numbers
generated by Mersenne Twister. Each ensemble represents the variance of 100 random numbers, distributed between
0 and 1. The expected value of the ensemble is 0.5, and a variance can be readily calculated. Figure 1 represents the
variance reduction as the variance of the sum of all previous ensembles reduces as the number of ensembles increases.
As an example, the final data point representing 5×107 ensembles is a collection of 5×109 random numbers, and the
variance of the collection of these random numbers is approximately 10−6. Five billion samples is of the same order of
magnitude as the number of random numbers required to run an RMCRT simulation on a 1003 mesh using 1,000 rays
per cell. We have observed that Mersenne Twister generates approximately 14 million random numbers per second
when run on a single core of a 2.3 GHz processor. With its effectiveness and speed, Mersenne Twister has met our
requirements for the RMCRT application.

Another sequential efficiency consideration is weighing the computational time for a given number of rays against
the corresponding error inherent to that sample. In theory, the computational effort should scale approximately linearly
with an increase in the number of rays. The variance of the data should also scale linearly, yet the error, the square
root of variance, will decrease only as N−0.5. Therefore, the increase in accuracy will come at a disproportionate
computational price. Naively increasing accuracy beyond a reasonable metric by increasing the number of rays will
result in poor efficiency.

E. Results

The described method of RMCRT was applied to a 3D benchmark case as outlined by Burns and Christon17. In
this case, there is a known solution of the radiative-flux divergence along the centerlines of the domain. The domain
contains a non-homogeneous absorbing, emitting medium, bounded by cold, black walls. The domain was discretized
into 413 cells, from which 700 rays per cell were traced. After computing the radiative-flux divergence of each of the
cells, a two dimensional slice of the domain was visualized as shown in Figure 2. The values at the centerline of the
above figure were compared with the exact solution to yield the results as shown in Figure 3.

The L2 error norm of the data was calculated to be 0.49%. As demonstrated by Figure 3 and the low value of
the L2 norm, RMCRT at 700 rays per cell produces results that agree well with the exact solution. To verify that the
convergence of the error occurs at a rate proportional to N−0.5 a series of simulations of the same benchmark case were
run, varying the number of rays per cell from 8 to 1024. As expected, the log of the L2 norm plotted against the log of
the number of rays produces a near-linear curve with a slope of - 1

2 as indicated in Figure 4.

4
American Institute of Aeronautics and Astronautics



5 10 15 20 25 30 35 40

5

10

15

20

25

30

35

40

 

 

0.5

1

1.5

2

2.5

3

3.5

Figure 2. Radiative-flux divergence of a benchmark case as solved by RMCRT. Units of W/m3
.

Figure 3. Exact solution of the flux divergence (blue) vs RMCRT (red) solution along the center line. Units of W/m3
.

Once the RMCRT algorithm had been verified on a single processor, we began testing its ability to perform in
parallel. These studies were performed on a single level, i.e. the grid resolution was the same for each patch, including
the patch from which a given processor would initiate rays. These studies were carried out with 25 and 100 rays per
cell (see Figure 5) on a domains of 1283 and 2563 cells (see Figure 6). Strong scaling analysis was performed by
varying the number of processors from 1 to 1536, and observing the total computational time. Figure 5 demonstrates
the strong scaling of RMCRT with a fixed domain size of 1283 with two cases: 25 rays per cell, and 100 rays per cell.
The scaling closely matches the ideal curve, but begins to digress at high levels of parallelism. Figure 6 demonstrates
the strong scaling with a fixed number of rays per cell for two cases: a domain of 1283 cells and 2563 cells. For the
1283 case, strong scaling closely matched the ideal curve, but digressed as the number of processors increased above
384. For the 2563 case, strong scaling was observed up to 768 processors. At 1536 processors, the simulation time
actually increased above that of the 768 processor case. This is most likely due to an unbalanced work load, as some
processors are handed patches very near the domain boundaries, and therefore trace rays only a short distance before
they are terminated at the cold, black walls. These processors would then sit idle, while the other processors trace rays
from locations farther from the walls, and therefore require more time to complete their computations.

5
American Institute of Aeronautics and Astronautics



Figure 4. Convergence of the L2 error norm in the x,y, and z directions along a centerslice of the 3D domain. The ideal curve represents

the -1/2 order scaling that is predicted by theory.

Figure 5. Strong scaling analysis of RMCRT on 12 to 1536 processors using 25 rays per cell(red) and 100 rays per cell (green). Domain size

in both cases was 1283.

6
American Institute of Aeronautics and Astronautics



Figure 6. Strong scaling analysis of RMCRT on 12 to 1536 processors using 25 rays per cell on domains of 1283
(red) and 2563

(green).

III. Conclusions

Due to its high level of accuracy and its amenability to complex physics and parallelization, RMCRT is well suited
to handle large scale, high resolution radiative transport calculations. For mesh resolutions that contain a large number
of cells, to obtain results in a timely fashion, some form of parallelism becomes imperative. We have demonstrated
that patch domain decomposition is a suitable form of parallelism for RMCRT, so long as each processor is given
radiative information of the entire domain.

At present, further strong and weak scaling analyses are being performed to verify the scalability of RMCRT for
larger domains. Memory constraints begin to restrict the size of the domain at approximately 3003 cells. Future
work will include investigation into a potential solution to this problem involving a composite mesh that allows each
processor to be handed a fully resolved version of a subset of the domain and a coarsened version of the remainder
of the domain (See Figure 7). We are optimistic that this technique will allow for radiation calculations on domains
containing hundreds of millions of cells.

7
American Institute of Aeronautics and Astronautics



Figure 7. Composite mesh for parallelization of RMCRT. At the patch level, the processor is handed information on the finest level (red), a

coarsened version of the information for proximal patches (black), and the coarsest information for distal patches (green).

Acknowledgments

The authors would like to thank Steven Parker, Charles Reid, Tony Saad, Sean Smith, and James Sutherland for
their many contributions to the numerical work. This research was sponsored by the National Nuclear Security Admin-
istration under the Advanced Simulation and Computing program through DOE Research Grant #DE-NA0000740.

References

1Modest, M., Radiative heat transfer, Academic Pr, 2003.
2Sun, X., “Reverse Monte Carlo ray-tracing for radiative heat transfer in combustion systems,” 2009.
3Howell, J. and Perlmutter, M., “Radiant Transfer Through a Gray Gas Between Concentric Cylinders Using Monte Carlo,” Journal of Heat

Transfer, Vol. 86, 1964, pp. 169–179.
4Howell, J. and Perlmutter, M., “Monte Carlo solution of thermal transfer in a nongrey nonisothermal gas with temperature dependent

properties,” AlChE Jouranl, Vol. 10, No. 4, 1964, pp. 562–567.
5Howell, J., “The Monte Carlo method in radiative heat transfer,” TRANSACTIONS-AMERICAN SOCIETY OF MECHANICAL ENGINEERS

JOURNAL OF HEAT TRANSFER, Vol. 120, 1998, pp. 547–560.
6Lee, M., Redner, R., and Uselton, S., “Statistically optimized sampling for distributed ray tracing,” Proceedings of the 12th annual confer-

ence on Computer graphics and interactive techniques, ACM, 1985, pp. 61–68.
7Pegoraro, V., Wald, I., and Parker, S., “Sequential Monte Carlo Adaptation in Low-Anisotropy Participating Media,” Computer Graphics

Forum, Vol. 27, Wiley Online Library, 2008, pp. 1097–1104.
8Pegoraro, V., Brownlee, C., Shirley, P., and Parker, S., “Towards interactive global illumination effects via sequential Monte Carlo adapta-

tion,” Interactive Ray Tracing, 2008. RT 2008. IEEE Symposium on, IEEE, 2008, pp. 107–114.
9Almazan, P., “Accuracy control in Monte Carlo radiative calculations,” In NASA. Lewis Research Center, The Fifth Annual Thermal and

Fluids Analysis Workshop p 47-62 (SEE N94-23634 06-34), Vol. 1, 1993, pp. 47–62.
10Almasi, G., “Research in highly parallel computer systems,” IEEE Electro Technology Review, Vol. 2, 1986.
11Govaerts, Y. and Verstraete, M., “Raytran: A Monte Carlo ray-tracing model to compute light scattering in three-dimensional heterogeneous

media,” Geoscience and Remote Sensing, IEEE Transactions on, Vol. 36, No. 2, 2002, pp. 493–505.
12Rawat, R., Parker, S., Smith, P., and Johnson, C., “Parallelization and integration of fire simulations in the uintah pse,” Proceedings of the

Tenth SIAM Conference on Parallel Processing for Scientific Computing, pp. 12–14.
13Luitjens, J., Worthen, B., Berzins, M., and Henderson, T., “Scalable parallel AMR for the Uintah multiphysics code,” Petascale Computing

Algorithms and Applications. Chapman and Hall/CRC, 2007.
14Spinti, J., Thornock, J., Eddings, E., Smith, P., and Sarofim, A., “Heat transfer to objects in pool fires,” Transport Phenomena in Fires, WIT

Press, Southampton, UK, 2008.
15Amanatides, J. and Woo, A., “A fast voxel traversal algorithm for ray tracing,” Eurographics, Vol. 87, Citeseer, 1987, p. 10.

8
American Institute of Aeronautics and Astronautics



16Matsumoto, M. and Nishimura, T., “Mersenne twister: a 623-dimensionally equidistributed uniform pseudo-random number generator,”
ACM Transactions on Modeling and Computer Simulation (TOMACS), Vol. 8, No. 1, 1998, pp. 3–30.

17Burns, S. and Christon, M., “Spatial domain-based parallelism in large-scale, participating-media, radiative transport applications,” Numer-
ical Heat Transfer, Part B: Fundamentals, Vol. 31, No. 4, 1997, pp. 401–421.

9
American Institute of Aeronautics and Astronautics


	I Introduction
	II Discussion
	A Background
	B The Monte Carlo Method for Participating Media
	C Parallel Efficiency considerations 
	D Sequential Efficiency Considerations 
	E Results

	III Conclusions

